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Abstract

Traffic disruptions impose societal costs of billions of dollars every year. A con-
stant increase in mobility demand, combined with ongoing urbanization, ex-
acerbates the problem. Since extensions of the infrastructure are for the most
part no longer feasible, researchers are trying to find solutions to increase the
efficiency of the road network usage. One key element to meeting that goal
is to use smart prediction techniques on as many traffic-influencing factors as
possible. With the availability of traffic datasets with high spatial and temporal
resolutions, more and more data-driven solutions to predict the impact of these
factors have been presented by the community. However, while the impacts of
hazards, road accidents, and daily rush hour have been the subjects of intense
study and analysis the specific impact of so-called planned special events on
traffic remains mostly unexplored. Are the effects of upcoming concerts, sport-
ing events, etc. predictable at all? This is the main question that we address in
this thesis. We focus our analysis on three different aspects. First, we analyze
the general characteristics of event-caused traffic disruptions around different
venues in Germany. The results show, that the impact of events varies strongly,
being highly affected by its venue location, the time of day, and the event cate-
gory. In the second step, we analyze the spatial impact of events around different
venues. This spatial impact describes a set of road segments, that people tend
to use to get to and from the venue. To identify those preferred routes, we
propose a classification-based technique that measures event influence for each
road segment separately. The approach is based on a large scale analysis across
many different venues in Germany. Results show impact zones around several
soccer venues in Germany that we discuss in detail. In the third part of this the-
sis we analyze features from online sources (Twitter, Facebook, etc.) in terms
of their explanatory power towards the expected event impact. We collect a large
list of different information sources for major events in different venues. Based
on that collection, we present prediction models for various measures of event

impact.



Our results show, that these approaches are capable to predict the severity of
event impact under certain conditions, which allows decision makers to create

traffic management strategies tailored to event caused traffic disruptions.
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Zusammenfassung

Verkehrsstaus kosten unsere Gesellschaft jahrlich Milliardenbetrége. Ein kon-
stant zunehmendes Mobilitdtsbediirfnis, in Kombination mit einer anhalten-
den Urbanisierung, verschirfen das Problem zunehmend. Eine Losung wére
ein weiterer Ausbau der bestehenden Infrastruktur. Vielerorts ist das jedoch
aus gesellschaftlichen und 6kologischen Griinden nicht mehr moéglich. Daher
versuchen verschiedene Forschungsgemeinschaften neue Losungsansitze zu
finden, welche die bestehende Infrastruktur effizienter auslasten. Eine Schliis-
seltechnologie dafiir sind Verkehrsprognosen, die moglichst viele verschiedene
Faktoren, welche den tdglichen Verkehr beeinflussen, bertiicksichtigen. Mit stei-
gender Verfiigbarkeit von Datensétzen, die ein genaues Abbild der raumlichen
und zeitlichen Verkehrssituation liefern, werden immer mehr daten-getriebene
Ansétze fiir derartige Prognosen vorgestellt. Der Forschungsfokus dabei liegt
derzeit auf den Einfliissen von Gefahrenstellen, Unféllen und des téglichen Be-
rufsverkehrs. Ein bedeutender Einflussfaktor bleibt jedoch fast unbeachtet: Die
Beeinflussung des Verkehrs durch Events wie Konzerte oder Sportveranstal-
tungen. Dieser wird in der vorliegenden Promotionsarbeit detailliert betrach-
tet. Die Analyse unterteilt sich dabei in drei verschiedene Aspekte. Im ers-
ten Teil analysieren wir die grundsétzlichen Eigenschaften von veranstaltungs-
bedingten Verkehrsstaus anhand von verschiedenen ausgewéhlten Veranstal-
tungsstatten in Deutschland. Die Ergebnisse zeigen ein starkes Schwanken der
beobachteten Finfliisse auf die Verkehrslage. Diese Schwankungen sind vor al-
lem abhidngig von dem Ort der Veranstaltungsstétte, dem Zeitpunkt der Ver-
anstaltung sowie der Veranstaltungskategorie. Im zweiten Teil analysieren wir
den rdumlichen Einfluss von Veranstaltungen. Dieser beschreibt eine Menge
von Strafiensegmenten, welche von Besuchern vornehmlich zur An- und Ab-
reise benutzt werden. Um diese Routen zu identifizieren, entwickeln wir klas-
sifikationsbasierte Verfahren, welche die Stirke des Einflusses von Events pro
Straflensegment separat berechnen. Diese basieren auf grofiangelegten Studi-

en iiber verschiedene Veranstaltungsstitten in ganz Deutschland. Wir zeigen



die Ergebnisse fiir ausgewdhlte Fufsballstadien und diskutieren diese detail-
liert. Im dritten Teil dieser Arbeit beschéftigen wir uns mit zusétzlichen In-
formationsquellen zu den Veranstaltungen, um den zu erwartenden Einfluss
genauer vorhersagen zu konnen. Dazu werden verschiedene Daten aus Online-
Quellen (z.B., Twitter, Facebook) herangezogen. Auf Basis dieser Daten entwi-
ckeln wir Pradiktionsmodelle und bewerten und diskutieren die Aussagekraft
der unterschiedlichen Quellen. Unserer Ergebnisse zeigen, dass die vorgestell-
ten Ansitze in der Lage sind, in gewissen Situationen die durch Events verur-
sachten Verkehrsbelastungen vorhersagen zu konnen. Dies ermdéglicht Exper-
ten zukiinftig veranstaltungsbezogene Verkehrsmanagementstrategien zu ent-

wickeln.

Schlagworte: Verkehrsprognosen, Veranstaltungen, Soziale Medien
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Chapter 1

Introduction

1.1 Motivation

Billions of dollars are wasted owing to traffic congestion every year [1]. Apart
from the economic aspects, these traffic delays are a daily burden to road users.
Taking into account the ongoing urbanization and constant growth in mobility
demand, smart solutions are needed. Toward those solutions, traffic predic-
tion has become a key technology within the research community of intelligent

transportation systems (ITS).

Traffic disruptions are caused by a wide variety of reasons. Daily rush hour,
weather phenomena, incidents, construction sites, and many other factors act
upon the traffic state. To alleviate the negative effects of congestion by smart
prediction, it is necessary to consider the individual effects of as many influenc-
ing factors as possible. From the technical perspective, this requires methods
and algorithms to learn the specific impact patterns based on real-world obser-
vations and create prediction models. Future systems need to incorporate in-
dividual influencing factor behavior patterns and provide coherent predictions

based on the resulting models. This is visualized in figure 1.1.

One influencing factor that we may all experience in daily life is the impact of
planned special events (PSEs) on traffic. Have you ever tried to reach the con-
cert of your favorite band by car and found yourself caught with all the other
fans in bumper-to-bumper traffic? According to a study from the U.S. Federal

Highway Administration ([3]), there are approximately 24000 PSEs with more
1
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Layer N: More Factors

Layer 3: Weather
Layer 2: Planned Special Events
Layer 1: Rush-Hour Prediction

Layer 0: Map

FIGURE 1.1: Example of traffic-influencing factors. Future systems (e.g., navi-

gation systems) need to incorporate as many information sources as possible.

Layer 0: Navigation based on a digital map. Layer 1: Include rush-hour predic-

tion. Layer 2: Include prediction of the effects of planned special events. Layer

3: Include prediction of the effects of weather phenomena. Layer N: Include
additional influencing factors. Source: [2]

than 10000 attendees per year in the United States. This results in roughly 460
PSEs per week where large crowds try to reach a given location at the same time.
According to the same report, the nationwide congestion cost in the United
States is between 1.7 and 3.4 billion US dollars per year. These numbers con-
tirm the need to further analyze PSE-specific influences and develop solutions

that can be incorporated into future systems.

The term PSE is a very broad definition. PSEs range from very large events
(e.g., a festival with 80000 attendees) to concerts of local bands in small corner
pubs. Whereas traffic disruptions are a well known problem in transportation
planning, only very large events receive special attention (e.g., soccer world
championships or Olympic games). For such events, procedures exist whereby
organizers, traffic operators, and local authorities work and plan together far
ahead of the event [4]. For medium or small events, these procedures are usu-
ally not in place [5]. A major problem in handling these events is the poor
availability of information. Typically, there is no systematic way to collect in-
formation about events in centralized manner. However, even if there is infor-
mation about upcoming events, little can be done without knowing the traffic
demand beforehand. In some of the larger cities, authorities address this prob-
lem by manually searching for information about events on local news sites or

on the web. While this work is very labor-intensive, it still faces the problem



Introduction 3

that without knowing the expected impact, it is difficult to plan traffic strategies

[4].

With this problem in mind, a review of the current scientific literature shows
that there is not much work addressing this specific problem. A detailed overview
is given in later chapters of this thesis. For now, we can summarize by stating
that most of the related work focuses on demand modeling of public transporta-
tion networks (e.g., [4, 6]), and those works that deal with traffic data typically
only tease the topic (e.g., [7, 8]). In this work, we focus on this precise phe-
nomenon and analyze PSE-inflicted congestion around venues. The ultimate
goal is to better understand PSE-caused traffic behavior and enable future sys-

tems to incorporate knowledge of their specific impact in advance.

But why is this difficult? If PSEs have an impact on traffic and if there is a
pattern behind it, why do we struggle so much to solve this issue? One major
challenge that we faced during our research is event traffic impact variability.
Events might act very differently on traffic, depending on a large list of different
reasons. In this thesis, we focus on two main categories of those reasons: 1)

location-specific characteristics and 2) event-specific characteristics.

Location-specific characteristics describe all influencing factors related to the
specific location of a venue. Is it located in the heart of a lively city or in a more
rural area? To what extent is the infrastructure capable of handling additional
demand due to events? In this thesis, we first analyze these characteristics by
creating event-related traffic footprints within different radii around various
venues. Based on these footprints we discuss the overall question of whether
it is possible to generate a model for event-specific impact on traffic across dif-
ferent venues and locations. Is the impact of events strong enough to obscure
location-based characteristics? This topic is the main focus of Chapter 4, but it

is also discussed in many other sections of this thesis.

Intuitively, we expect certain road segments to be more affected by event events
than others. These road segments are usually part of preferred routes that vis-
itors take to get to the venues or leave them after the event ends. How can
we find these segments and how far does the impact of events reach from the
venues? This topic is called the spatial challenge in this thesis, and it is discussed

in Chapter 5 as well as in Chapter 6. We show our approaches and results of
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tinding the spatial impact zone around different venues based on data-driven

approaches.

Event-specific characteristics describe all factors that are directly connected to
the specific event happening. Which category of event is it? Who is playing? Is
the concert a major act with thousands of visitors or a concert of a small local
band? How many people are expected? In this thesis, we analyze the relevance
of event-specific attributes for traffic impact prediction. On one hand, these at-
tributes include features that we can derive directly from the event description.
They include the category of an event, the artist and event time information
(e.g., start time and entrance time). On the other hand, we collect additional
information about events from online sources. This includes data from social
media sites (e.g. Twitter, Facebook), statistics from the search engine Bing!, and
additional information such as the presence of a Wikipedia® page for instance.
In Chapter 6, we analyze the information value of a large set of these attributes
in terms of their explanatory power toward observed traffic disruptions. In the
following study, we use a selected attribute set to gain insights about their spe-

cific use for event traffic predictions.

In this thesis, we present the chances and challenges of creating data-driven pre-
diction approaches for event-caused traffic disruptions. We draw conclusions
about the effect of each mentioned characteristic and show our approaches to

handle event traffic variability for prediction approaches.

1.2 Boundaries of the Dissertation

Simulation-based traffic prediction approaches were not handled in the course
of this work. Although there is a lot of work within the research community
that deals with different simulation environments and frameworks, we focused

solely on the data-driven domain.

Another branch that is relevant to this research but was intentionally excluded
from this thesis is the field of data collection. There are many sensors avail-
able today that could serve as input to derive the traffic state and additional

information. For instance, Bluetooth signals (e.g., [9, 10]) or mobile phone data

"http://www.bing. com
http://wikipedia.org


http://www.bing.com
http://wikipedia.org

Introduction 5

(e.g., [11]) has been widely used within the community to derive movement
patterns. In this thesis, we focus on the usability of existing commercial traffic

information sources.

We have discussed several influencing factors above that affect the traffic state.
Of course, this list is far from complete. There are many influencing factors
that also interfere with event traffic disruption, such as weather phenomena
or seasonal traffic effects [12]. In the course of this work, we focused on the

characteristics discussed above and leave others for future work.

1.3 Structure of the Dissertation

This dissertation consists of seven chapters. Chapter 3 has a preparative charac-
ter: it explains the data sources used within the various experiments presented
in this thesis. It also briefly touches the topic of storing and processing massive

datasets, the methodology for which has been published in:

e S. Kwoczek, S. Di Martino, T. Rustemeyer, and W. Nejdl. An architecture
to process massive vehicular traffic data. In 2015 10th International Con-
tference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),
pages 515-520, Nov.

e S. Di Martino, S. Kwoczek, and W. Nejdl. Smart Sensors Networks: Com-
munication Technologies and Intelligent Applications, chapter Scalable

Processing of Massive Traffic Datasets, pages 123-142. Elsevier, 2017.

Chapter 4 gives a first impression of event-caused traffic disruptions. We create
event-specific traffic footprints around different venues and discuss the role of
several location-specific and event-specific characteristics based on our obser-

vations. Parts of this chapter have been published in:

e S. Kwoczek, S. Di Martino, and W. Nejdl. Predicting traffic congestion in
presence of planned special events. In Proceedings of the Twentieth In-
ternational Conference on Distributed Multimedia Systems, DMS, pages
357-364, 2014.
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e S. Kwoczek, S. Di Martino, and W. Nejdl. Predicting and visualizing traf-
fic congestion in the presence of planned special events. Journal of Visual
Languages & Computing, 25(6):973-980, 2014

Chapter 5 is focused on the spatial impact of events. A method is shown to
identify affected road segments around venues and the findings are discussed.

The presented methodology is also published in:

e S. Kwoczek, S. Di Martino, and W. Nejdl. Stuck around the stadium? an
approach to identify road segments affected by planned special events.
In Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International
Conference on, pages 1255-1260, Sept.

The following chapter 6 focuses on the relevance of different event-specific
characteristics. Different event attributes and additional features from online
sources are evaluated in terms of their relevance and information value for traf-
tic predictions. At the end of chapter 6 we review the results from chapter 5 and

show an alternative approach for the spatial challenge.

Finally, in Chapter 7 we present our conclusion on the impact of PSEs on traffic

and discuss the perspective for future work.

Before starting with our own analytics and findings, we discuss the current state

of the art in this and related fields of research in the following chapter.
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Related Work

Human mobility behavior is, to a certain extent, predictable [13]. A recent study
by Song et al. [14] revealed 93% potential predictability in user mobility across
their database, based on mobile phone data. However, today’s systems are
rather far from these numbers. Although human mobility patterns tend to be
habitual, the heterogeneity of these patterns is recognized to impose challenges
for mobility predictions. This gains special importance whenever large crowds
are involved [4]. PSEs and their impact on mobility are a good example of this
phenomenon. This chapter is focused on presenting the current state of the art
in research related to this domain. In the following sections, we define relevant
nomenclature required to follow the rest of the thesis and outline relevant work
in the fields of mobility prediction, special treatment of events, and modern

event management.

2.1 Definitions

As this work focuses on the impact of PSEs on traffic, a common understanding
of these terms is crucial. Here, we define Traffic Congestion and Planned Special

Event, and explain the concept of Transportation Resilience.
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2.1.1 Traffic Congestion

Generally, traffic congestion can be divided into recurrent congestion (RC) and
non-recurrent congestion (NRC) [15-17]. RC results mostly from influencing fac-
tors that act periodically on the network infrastructure, such as daily commute
traffic or weekend trips [16]. Because of their recurring nature, the time, loca-
tion, and duration of RC events are typically known to commuters and traffic
management centers. This leaves RC as a burden to drivers but makes it, to
a certain extent, predictable. NRC, however, is defined as unusual congestion
where the time, location, and duration are mostly unknown beforehand. NRC
events are caused by external influencing factors (e.g., accidents, construction
zones, PSE, etc.) and their effect on the traffic network highly depends on its

local condition, travel demand, and traffic capacity.

In the following, we will refer to the “regular” traffic behavior (including RC
events) as routine and traffic conditions with NRC events as non-routine, follow-
ing the wording in [18]. Differentiation between routine traffic and when a traffic
situation exceeds the habitual patterns and turns into non-routine is a complex
task and different approaches have been reported in the literature. Most of them
do not directly define a non-routine situation but infer it based on the deviation
of the observed traffic from the routine, which itself is created from historic traf-
tic information. For example, Anbaroglu et al. (2014) [17] used spatiotemporal
clustering on Link Journey Time estimates (L]JTs) on adjacent links in the route
network to detect NRC events. They used a congestion factor as threshold with
a proposed value of 1.4, indicating that L]Ts that exceed the expected value by
more than 40% belong to an NRC event.

Another example is found in Hojati et al. (2006) [19] where they modeled the
routine for each link in the route network by applying the quantum-frequency
algorithm (proposed in [20]) on loop sensor data. They compared their detected
NRC events with information about reported events from traffic management
centers. Although it does not deal with road traffic data, the work of Pereira
et al. (2015) [4] tackles the same problem. They investigated overcrowding
hotspots within public transportation network during PSEs in Singapore. They
use the 90th percentile as threshold to identify when a certain station shows a

passenger demand higher than the norm.
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TABLE 2.1: Event categories from the Traffic Engineering Handbook. Source:

[5]

Event Planning Advanced Duration Hazard Impact Area Frequency
Notice
Vehicle Crash Unplanned/  None Minutes to Low Local to several Frequent
Emergency hours miles
Concert/ Sporting Planned Months/ 1+ Days None Several Miles Seasonally Frequent
Years
Olympics/ One-Time Planned Years 1+ Days/ None Several Miles Infrequent
Events Weeks
Parades Planned Months/  Hours Low Few Miles Occasional
Years
High-Security Events  Planned Days to Hours to Low Several Miles Occasional
Weeks Days
Snow/ Ice Storm Unplanned  Hours to Hours to Medium Regional Seasonal. varies by region
Days Days
Wildfire Unplanned/ Minutesto Hours to Medium Regional Seasonal, varies by region
Emergency  Days Weeks to High
Hurricane Evacuation Unplanned/ Days to a Days High Regional (Seasonal) Infrequent
Emergency  week
Bridge Collapse Unplanned/ None Months High Several Miles Infrequent
Emergency

2.1.2 Planned Special Events

There are many different definitions of the term event in the literature. Although
events differ in many ways, they have one thing in common: the potential to
put stress on the road infrastructure in terms of capacity, safety, and demand [5].
One commonly used definition is from the Traffic Engineering Handbook [5],
where they use three major categories: planned, unplanned, and emergency events.
An event can belong to different categories at the same time (e.g., unplanned
and emergency). To provide an example, Table 2.1 shows a summary from [5]

with selected events and their categorization.

An alternative approach to event classification is shown in Mueller [21]. They
developed a methodology to categorize events into three group: Giga-, Mega-,
and Major events. They introduced a point scale to classify an event into these
three classes based on four attributes: Visitor attractiveness (number of tick-
ets sold), mediated reach (value of broadcast rights), cost, and transformation
(capital investment). A similar approach can be found in the project STADIUM
(Smart Transport Applications Designed for large events with Impact on Urban
Mobility) [22]. They developed two ways to categorize an event: Either by
choosing from among four predefined event types (shown in Figure 2.1) or by
defining the event characteristics by five attributes: magnitude, population, dis-
persion, frequency, and duration (shown in Figure 2.2). The STADIUM project
focuses on PSEs only. From the official perspective, the term PSE is defined by

the Federal Highway Administration as an event where the scheduled times,
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FIGURE 2.2: STADIUM: Selecting Event Attributes. Source: [22]

location, and associated operating characteristics are known in advanced [23].
Under this definition, PSEs include sporting events, festivals, concerts, and con-

ventions occurring at permanent multi-use venues [23].

Information about PSEs can be obtained from different internet sources, such
as ticket sales websites or websites from local municipalities. The data usu-
ally contain information about the place of the event, the time, the artist, and
sometimes additional metadata (text description of the event, opening hours,
etc.). Figure 2.3 shows an example event from the Eventim' website with in-
formation about the artist, date, time, and location of events. The information
can either be parsed from the website, received via APIs or, depending on the
website, exported into a machine readable format such as comma separated values
(csv). However, the data usually require cleaning and preprocessing to actually
be useful for analysis purposes. Information about the preprocessing toolchain

used in this thesis will be further explained in Chapter 3.

'http://www.eventim.de
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FIGURE 2.3: Example event entity from the eventim.de website. Source: http:
//www.eventim.de - Downloaded on 02/12/16

2.1.3 Transportation Resilience

For attending a PSE, many people try to reach the same destination at the same
time which causes additional traffic. However, whether this situation results
in non-routine congestion highly depends on the network itself. The ability
to cope with additional traffic and still maintain a level of service is defined
as resilience [24, 25]. Instead of a single measure, it can be seen as a concept
that describes the network’s ability to cope with changes. Although resilience
itself is a concept that applies to any type of network, Murray-Tuite [26] as-
sembled a list of ten dimensions to described the resilience of a transportation
network: redundancy, diversity, efficiency, autonomous components, strength,
adaptability, collaboration, mobility, safety, and recovery. The specific details
of the proposed dimensions or further detailed information about transporta-
tion resilience is not required to follow this thesis and the interested reader is
referred to Murray-Tuite (2006) [26] or Laprie (2008) [24] for further reading.
However, understanding the general concept is crucial for the following chap-
ters, as it explains the variation in observed traffic congestion based on the lo-

cation and the network in the vicinity of the venues where PSEs occur.

2.2 Traffic State Estimation

Within recent years, high temporal and spatial resolution datasets about the

traffic state have become available. Usually, these datasets are based either on:
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1) readings from sensors along the road network, 2) Floating Car Data (FCD) or
3) a combination of both. In this section, we present a general brief overview
without going into specific detail about the generation of these data sources.
The interested reader can find more specific information in [27] or the FHWA
Traffic Detector Handbook [28].

Sensor readings have been the most prominent data source for years. These
datasets are generated from built-in sensors such as loop detectors, cameras, or
infrared sensors along the road network. An extensive list of different types of
sensors can be found at [27]. This information contains accurate sensor read-
ings at fixed locations with very high temporal resolution (i.e., per minute) and
has been heavily used within the research community over the years (e.g., [29-
32]). These sensors usually provide speed measurements and traffic flow counts
(e.g., number of vehicles/min). On the downside, such built-in sensors impose
rather high maintenance costs for the communities and nonfunctioning sensors

are usually a significant issue.

FCD is generated from so-called probe vehicles. Each vehicle sends information
about its position, speed, and heading to a server. The traffic state is derived
on the server side from a collection of information from different vehicles for
the same road segment. FCD is mostly extended through the use of mobile
phone data (called cellular-FCD), whereby movement patterns from mobile
phone providers are included. While FCD was preliminarily used as an ex-
tension to stationary data, research has shown that it can be successfully used
to derive the traffic state [33-35].

Commercial providers of traffic data usually use a combination of the men-
tioned data sources to derive the traffic state. For instance, TomTom NV pub-
lished their methodology in [36, 37]. In the presented approach, a central sys-
tem merges live traffic information from multiple sources. Those include sen-
sor readings from local traffic management centers, and a collection of FCD
and GSM probe data from mobile phone companies. The FCD is obtained from
users of TomTom navigation devices who opt-in to share their data to improve
the traffic state estimation. Each participating user receives information about
the current traffic state and in return, sends its position and speed to the cen-
tral server. For the GSM probe data, TomTom collects information about cel-
lular phone movement between different GSM network cells, which they re-

ceive from the mobile phone companies. This information source has also been
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proven to give valuable information about the traffic state on the roads (e.g.,
see [38]). A weighted combination of all available information sources allows
the fairly accurate deduction of the traffic state with large geographic coverage.
Of course, the described methodology from [36] describes TomTom’s approach
from 2009 and some information is probably outdated today. Still, it gives a fair

overview about the general principle of commercial road traffic state deduction.

2.3 Traffic Prediction

Traffic prediction has become as widely studied field within the ITS community.
In general, there are two major approaches for traffic prediction: model-based
and data-driven. Model-based approaches incorporate sophisticated models
(e.g., traffic flow models and traveler behavior models) in a simulation to rep-
resent the holistic traffic situation. However, data-driven approaches rely on
fitting the current situation to previous observations by modeling the relation-
ships between independent variables (e.g., from temporal and spatial character-
istics, information from sensors or other information sources) to a target vari-
able (e.g., traffic flow) [39]. Although these fields are merging more and more,

this work focuses on the data-driven domain only.

2.3.1 General Overview

Within the data-driven traffic prediction domain an extensive list of research
activities can be found. Searching for the term “road traffic prediction” with
Google Scholar? yielded approximately 513000 results on December 5th 2016.
Approximately 20000 of these results are from 2016. Owing to the vast amount
of research, a complete overview about all exiting approaches is difficult to pro-
vide in this thesis. Instead, in this section, we will mention a list of papers that

are relevant and somewhat representative of their specific domain.

In the past, there have been four major papers that focus on summarizing the
current approaches and offer an extensive literature review. In [40], an overview

of the literature on short-term traffic prediction up to 2003 is provided. In [41]

Zyww.scholar. google.com
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and [42], the authors focus on the domain of artificial intelligence (AI) and arti-
ticial neural networks (ANNs) within the short-term traffic prediction domain.
The fourth paper is [43]. Apart from giving an overview of the current state of
the art, they also define ten challenges that research in this domain is currently

facing.

When browsing the literature for a set of different traffic prediction methods
from the data-driven domain, one finds a large variety of different “schools of
thoughts.” In this work, we follow the definition from [44], under which meth-
ods are separated into two main approaches: statistical and/or Computational
Intelligence (CI) [44].

Statistical approaches for modeling have existed for decades and their mathe-
matical foundations are solid and widely accepted. However, those approaches
mostly struggle when dealing with high-dimensional and highly nonlinear datasets
[44]. The second class of approaches, CI, is a sub-branch of Al that concentrates

on the creation of intelligent behavior in complex and changing environments

by combining elements of adaptation, evolution, fuzzy logic, and learning [44—
46].

One large subclass of statistical methods for short-term traffic prediction are the
so-called autoregressive integrated moving average (ARIMA) methods, which
were first introduced to the domain by Ahmed and Cook [47]. Working on sta-
tionary time series only, these methods have been widely used within the com-
munity for traffic prediction [48-52]. However, these approaches have lately
been losing attention, as they are usually not high-performing under unstable

traffic conditions or complex road network topologies and settings.

Instead, supported by an increased availability of high-resolution mobility datasets
and growing computational resources, CI methods are on the rise. In particular,
the growth of ANNSs, an extremely popular class of CI models, is noticeable.
Among the ANN models, multilayer perceptron (MLP), radial basis function
neural networks (RBFNN), and back-propagation neural networks (BPNN) are
the most popular [44]. Which of these models shows superior performance is

usually highly dependent on the use case [53-56].

Combinations of statistical and CI approaches have also been investigated over
the years. Already by 1996, [57] used a self-organizing map as classifier, whereby
each defined class had an underlying ARIMA model associated with it. They
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predicted traffic with time horizons of 30 min and 60 min on French highways.
In [58], they used genetic algorithms (GAs) to optimize the structure of a time
delay neural network (TDNN). Their model showed good performance on data
from the California testbed in Orange County and outperformed other ANN-
based approaches. A generic optimization strategy based on GAs that supports
structuring of the traffic datasets and choosing the neural network structure has
been shown in [59]. In [60] they used a fuzzy-neural model (FNM) for traffic
prediction in urban street networks on five test sites in Hong Kong. They pro-
posed a two-module approach, in which the first module groups similar traf-
tic situations and the second module predicts the traffic situation based on the
selected clusters. In [61] they proposed a Bayesian combined neural network
(BCNN) approach to join different models for different prediction horizons.
They used a neural network model to combine the predictions from single-

neural-network models based on a credit assignment algorithm.

Apart from the many different algorithms and methods, the common goal stays
the same: predicting traffic more accurately and in a scalable and (real-world)
applicable manner. The abovementioned list of selected studies is far from com-
plete, and does not capture the entire field. However, it gives a comprehensive
overview of the different research directions pursued over the years. Keeping
the research question of this thesis in mind, we will close this chapter by focus-

ing on additional work that is seminal to ours.

2.3.2 Traffic Prediction for Special Event Scenarios

As mentioned earlier, the specific problem of predicting traffic during PSEs has
not been extensively investigated within the community. However, there is a
list of publications that focus on research questions similar to those outlined in
this thesis.

The first example is the work presented in [29]. They investigated different
methods for time-series-based traffic prediction on highways for RC and NRC.
They benchmarked their models with two baseline approaches, namely the
ARIMA and historical average model (HAM) approaches. ARIMA used a de-
fined set of past observations to predict the upcoming data, whereas HAM re-

lied on models based on historic information only, without any adjustment to
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the current traffic situation. As a result, the ARIMA model showed better per-
formance than the HAM for short-term traffic prediction. However, for longer
time horizons the performance of the ARIMA decreased, whereas the HAM
performance was independent of the time horizon. Using this observation,
they build a hybrid model called historical ARIMA (H-ARIMA) that combines
both models. This model performed well for day-to-day traffic prediction (RC
events). However, owing to missing contextual information about the traffic

state, its use for NRC events was limited.

As an extension, focusing on also including NRC events, they proposed a model
called H-ARIMA+. It included additional information about traffic incident
characteristics in terms of five attributes: start time, location, direction (on the
highway), type (e.g., road construction, traffic collision) and affected lanes. They
applied their models to predict two variables: impact post-mile and speed impact,
where the impact post-mile was defined as the length of the affected stretch of

the highway and speed impact was defined as the speed decrease on the sensors.

The incident attributes were used to cluster impact post-mile values. For each
cluster the average post-mile value was used to represent the impact of events
with similar attributes. In their experimental setup for NRC event prediction,
they benchmarked the H-ARIMA, H-ARIMA+, and a MLP ANN. Their results
showed that the H-ARIMA+ model outperformed the others, especially at the
beginning of NRC events when the other models were incapable of properly

reacting to the traffic dynamics.

The presented approach showed good results for the outlined scenario. How-
ever, the applicability for PSE prediction in urban areas is rather limited. Al-
though the concept of an impact post-mile works for highway scenarios without
on- and off-ramps, specifying the impacted area in an inner-city road network
is a more complex research task. Moreover, the shown similarity measure of
events is limited owing to the very few attributes of which some are highly
restricted to highways scenarios (e.g., number of blocked lanes). In terms of
the methodology, their approach uses a representative value for each observed
event class. This assumes a homogeneous behavior of traffic during events of
the same class, which, as we will describe later, is not always the case in our

scenarios.
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In [30] they used a large dataset about incidents and traffic situations on a high-
way in Los Angeles, USA to predict the spatiotemporal behavior of incidents.
They considered the initial behavior of traffic when the incident occurred in
combination with the long-lasting congestion propagation wave that results
from the incident. They classified incidents based on selected features: street
name, start time, affected number of lanes, and incident type (called level 1)
and clustered all incidents belonging to the same group according to their traf-
fic volume and occupancy features (called level 2). Their first prediction algo-
rithm, PAD, takes a new incident, defines its group by the basic feature set (from
level 1), finds its containing cluster in level 2 based on its traffic volume and oc-
cupancy level, and uses the average propagation behavior of all other incidents
from the identified cluster for prediction. Their second approach (PADI) uses
the initial behavior of incidents to further refine prediction candidates by clus-
tering candidates of each cluster in level 2 according to their initial behavior
(called level 3).

To predict new incidents, PADI selects the right candidates from levels 1 and
2 and uses the observed initial behavior of the new incident to match the clus-
ter centroid that corresponds best based on the Mahalanobis distance between
the initial propagation behaviors. Their results show that with the additional
information about the initial behavior, they outperform their baseline (using

incident features of level 1 only) by up to 45%.

The approach showed a possible way to include additional incident (or event)
information in the prediction algorithm. To apply the presented methodology
to real-word PSEs, a feature set is required that allows us to cluster similar
events. A possible similarity measure for this clustering will be discussed in

later chapters.

In [7], they analyzed traffic on a 45 mile stretch of the I-880 in California, USA
and showed a method to divide the observed congestion into six different com-
ponents: 1) congestion caused by incidents, 2) congestion caused by PSEs, 3)
congestion caused by lane closures, 4) congestion caused by weather phenom-
ena, 5) congestion caused by nonoptimized metering, and 6) congestion caused
by daily commute traffic. Under the assumption of a linear contribution to the

overall observed delay of each individual component they built the following
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model:

Dtotal(d) = /80 + BcolXcol(d) + BeventXevent(d) + BlaneXlane(d)
+BweatheereatheT (d> + €(d>

where €(d) is the error term, X, (d) is the number of incidents on day d, X.yent(d)
is the number of PSEs on day d, Xj,,.(d) is the number of lane closures on day
d, and X eqther @ boolean indicator of whether there was an adverse weather sit-
uation on day d (source: [7]). They used a linear least squares method to fit the
model to their data to retrieve the model parameters 3. The results showed the
individual contribution of each component to the overall delay, whereby PSEs
accounted for (only) 4.5% of the observed daily delay. The approach showed
a straightforward way to divide observed delays into their individual compo-
nent causes. Of course, the individual influence of each component is highly

dependent on the location of the study, the time of day, and other factors.

In [62], they analyzed a large set of mobile phone traces within the Boston, USA
metropolitan area. They showed that events of the same category resulted in
a similar spatial distribution of origin locations from visitors. This outcome
also matches the intuition that certain events (e.g., sporting events) are usually
attended by the same people. Those findings are of fundamental importance
for this work, as they motivate the assumption that the event category has a
significant impact on the spatial distribution of event traffic. However, they
focused on hand-picked events that were expected to be large enough to attract
at least a certain number of people, which drastically reduces the complexity

resulting from impact variation across events of different size.

In [63], they used information from the web about PSEs to predict public trans-
port arrival numbers. Event information was obtained from the eventful.com®
website, including (among other information) information about the title, date,
venue, price, start time, popularity, category, and a text description of the artist.
They evaluated different models from the Weka framework ([64]) for their re-
gression task and concluded that the proposed ANN model was the superior
choice. To the best of our knowledge, this was the most comprehensive analysis
of the use of Internet data for event prediction at that time. The results clearly

showed that, to a certain extent, received information from publicly available

Shttp://eventful.com
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Internet sources improved their prediction. In a later publication [4], they ana-
lyzed the use of Internet data to explain overcrowding behavior in public trans-
portation during PSEs in Singapore. As already outlined in 2.1.1, they defined
overcrowding as those points where the observed arrival numbers exceed the
90% percentile of historic data at a given location. Whenever this criterion

holds, they referred to a hotspot impact.

They collected information about PSEs from different online sources (e.g., event-
ful, last.fm, etc.). In addition to structured information about the events (loca-
tion, start time, artist, etc.), they also extracted event descriptions in text form
and applied topic modeling to create topics from these descriptions using latent
Dirichlet allocation (LDA). As a popularity indicator for events they collected
the number of Facebook? likes and the number of results in Google® for the

event title.

They based their experiment on the assumption that the specific event contri-
bution is latent and that there is going to be an explainable part (due to event-
specific) and a nonexplainable part of contributions to the overall hotspot. Thus,

the hotspot impact h is defined as:
hr,j = Qpj + br,j

where 7 is the area index, j is the hotspot index, a is the nonexplainable com-
ponent, and b is the explainable component. They assumed a Gaussian distri-
bution for a and the specific event contribution and modeled the impact using

a Bayesian hierarchical additive model, where they defined a and b as:

a ~ Naolz,o,

K
b = Z er with ey ~ N(B8 2, , 01)
k=1

where z,, a, and o, are attributes, parameter vectors, and variance of a, respec-
tively. The explainable part b is thereby defined as a sum of individual event
contributions e;, where z., corresponds to the individual event attributes of
event k£ and o, and 3 correspond to the event variance and attribute parame-

ters, respectively.

“http://facebook.com
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They implemented their model into the Infer.NET® platform. As the event im-
pact is latent, they evaluated their model on synthetic data and ran a quantita-
tive analysis on real data. The results showed good performance of the model
for the synthetic data and results that were intuitively plausible for the real-
world dataset. The shown approach is very interesting for the purpose of ex-
plaining traffic behavior in the vicinity of venues during events. However, the
approach worked for stationary locations with continuous time series data, and

applying this approach to sparse traffic datasets is challenging.

2.4 Inferring Information about Real-world Events

from Online Sources

Apart from traffic analysis and traffic prediction, a critical factor for our research
is to gain additional information about PSEs. Within that domain, research has
shown that social media can be used to discover and get insights about real-
world events. A good (and in the meantime, rather famous) example is [65],
where Twitter news was used to detect earthquakes in Japan or [66] and [67],
where Twitter was again used to detect real-world events. In general, Twitter
data is used in a large variety of different domains, from detecting riots [68]
up to small-scale events such as a factory fire [69]. Not only has the detection
of real-world events from Twitter been shown, but also the use of that infor-
mation source to gain detailed contextual information about the events. For
example, [70] created a summary of sporting events using Tweets. In [71], in-
formation was put onto a timeline to serve as a summary of scheduled events.
Another example in which Twitter was used to examine real-world happenings
was shown in [72]. They examined the use of Twitter to identify important
changes in the city in real time. They identified a change in the overall city be-
havior on Twitter during the Mobile World Congress 2012 in Barcelona, Spain.
Other related examples can be found in [73-75].

For the specific application of gaining information about the traffic state from
social media, most efforts can be divided into two main categories: traffic de-

tection and traffic prediction [76].
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2.4.1 Traffic Detection

To detect traffic, [77] described a system that used Twitter data in Thailand
to extract tweets that contained traffic-related information together with po-
sitioning data. They used a dictionary approach to classify relevant tweets and
retweeted them to broadcast the information to the public. In [78], they com-
pared traffic-related tweets to an incident database from the California High-
way Patrol. From their results, they claimed that tweets can be matched to
traffic incidents. Tweets seemed to be posted within 5 h of the incident that
they refer to and were sent from a location 10-25 miles away from the inci-
dent location. In [79], they analyzed Twitter to find incident-related messages.
They used extracted features from part-of-speech tagging to train a classifier
that detected relevant messages. In a second step, they applied the classifier
to live twitter streams to detect incidents in near-real time. In a similar way,
[80] presented a system called Dub-STAR to derive the underlying causes of
traffic congestion. They fused information from social media, historical traffic
information, DBPedia, event information, information about road works, and
data about the road network topology. In [81], they analyzed Twitter messages
in terms of transportation-related information using a keyword-based hierar-
chical annotation schema for message categorization. Also using Twitter, [82]
analyzed traffic on Italian highways and used support vector machines to clas-
sify Tweets as traffic-related or not. For the set of traffic-related messages, they
investigated a multiclass classifier to detect whether the congestion was due to
an external event (defined as scheduled event or unexpected event). In [83],
they used Twitter to detect road hazards by using sentiment analysis on Twitter
messages. In [84], they investigated the correlation between Twitter concentra-
tions and the traffic surge in July 2014 in Virginia, USA. Their results showed
promising findings about the correlation between Twitter message concentra-
tion and the local traffic surge in the area. In [85], they detected traffic-related
tweets and used a combination of language models and hinge-loss Markov ran-
dom fields to find the traffic incident locations. They evaluated their findings
with real-world traffic information from INRIX for Philadelphia and Washing-
ton, DC in the USA.
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2.4.2 Traffic Prediction using Social Media Information

The literature about research that explicitly used social media information for
road traffic prediction is sparse. In [86], they presented an algorithm for long-
term traffic prediction that incorporated information from Twitter. They showed
that their models that considered traffic intensity, Twitter semantics, and inten-
sity outperformed the models without additional information from social me-
dia. In [87], they extracted weather-related information (e.g., snowfall) from
Twitter and used the information to improve their linear regression models for

highway traffic prediction.

2.5 Summary and Conclusion

The previous sections have shown a brief overview of the current state of the

art within the domain of our work.

Apart from the presented approaches within the research community, there is
also currently a set of commercial companies that deal with traffic. Whereas
some of them have their core business in the navigation domain (e.g., TomTom
International BV?), others deal with traffic information in other applications
such as map data provisioning (e.g. Google®). These companies usually col-
lect traffic-related data from their users (e.g., from their own handheld devices
as TomTom International BV or Google from their Android users) to process
in their analytic components. Of all the known providers, only two have an-
nounced a special treatment of PSEs in their traffic engines: INRIX, Inc. and

Google.

On their website, INRIX, Inc. claims a consideration of concerts and sporting
events in their INRIX XD Traffic stream [88]. In the FAQ section, they write:
“INRIX uniquely factors in historical data with information about the traffic im-
pacts of unique local events like weather, concerts, sporting events and school
schedules to reliably help drivers know what to expect before they ever get into
their car.”[89].

"https://www.tomtom. com
$http://www.google. com/
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Google Maps’ on Android sends notifications about nearby events that might
cause traffic on your route. The website states: “You get notifications about
nearby events or road closures when Google Maps thinks it might affect a route
that you travel often. If we know about a scheduled event, you'll get an alert
ahead of time so you can plan an alternate route. For example, if there is a
concert on your way home from work, you might get a notification one day
before the concert.”[90].

Neither company presents details of their methodologies, and no publication

about their algorithms or results are available to the public.

In general, although traffic prediction and the inference of information about
real-world events from online sources has been widely studied in recent years,

the specific impact of PSEs on traffic remains unknown.

9maps .google.com
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Chapter 3
Data Sources and Preprocessing

Following the current state of the art within the domain of this thesis, this chap-
ter introduces the different information sources used within our research ac-
tivities: traffic data and event data. In the following sections, we explain the
data sources in terms of their information value and original structure. We then
briefly outline the required preprocessing steps and close with a discussion of

the specific values of each source.

3.1 Traffic Data

Within recent years, many research efforts have dealt with various types of traf-
fic information (see Chapter 2.2). The most prominent data source is probably
that generated from sensors built into the infrastructure. While such continu-
ous sensor readings are easily applicable to analysis use cases, they come with
a drawback: most of them are only available for small geographic regions or
focus solely on highway scenarios. As the focus of this thesis is the analysis
of traffic disruptions in dense inner-city scenarios in a variety of different spa-
tial regions, this poses a problem. In addition, in Germany, those datasets are
managed by local municipalities and retrieving data for different spatial regions
would require access to a vast number of different providers and interfaces. An
alternative to fixed sensor information is FCD (see also Chapter 2.2). Whereas
FCD provides broader coverage, the problem remains: there is no single point
of access to large fleets available today that could cover the geographic regions

required.
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However, there is a list of companies that currently provide access to high-
resolution datasets. These companies usually derive their traffic states from
a combination of sensor readings, mobile phone data, and FCD (e.g., see [36]).
Companies such as TomTom NV, INRIX?, or HERE?® cover traffic information
for broad geographic regions that they use for their own specific products. Most
of them have their core business in the traffic and traffic data provisioning do-
main. They can provide access to aggregated traffic information for large geo-
graphic regions that match our spatial requirements. One disadvantage of us-
ing such data is that the structure of these datasets is optimized for their specific
use cases (e.g., providing real-time traffic information to navigation devices)
and they were never meant to serve as input for analytic tasks. This results in

rather high preprocessing efforts, which we will further explain in this chapter.

Although these datasets are available on the market today, to the best of our
knowledge, they have not yet been used extensively within the ITS research
community. In our scenarios, we used two different types of traffic data: Inci-
dent Data and Flow Data. In the following sections, we will describe these data
sources in detail. At the end of this section, we will close with a comparison of

them and a discussion about their specific advantages and disadvantages.

3.1.1 Flow Data

The flow data received is a collection of speed information for Germany between
2014 and 2015. It contains traffic information for major road segments based on
the table-based referencing system called traffic message channel (TMC) and is
updated twice per minute. Each data update contains information for road seg-
ments where the current speed fell below 80% of the speed that could be driven
under free-flow conditions. For example, if the free-flow speed on a given road
segment is usually 80 km/h, we receive a message as soon as the average speed
drops below 64 km/h. The 80% threshold is defined by the industrial provider.
As long as the driven speed stays below 80%, we receive continuous updates

for this road segment.
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http://inrix.com/
*https://here.com/


https://www.tomtom.com/
http://inrix.com/
https://here.com/

Data Sources and Preprocessing 27

Name Explanation

TrafficUpdate the received data package that contains traf-
fic information for all referenced TrafficLocations
within Germany for one particular time stamp

TrafficMessage a subset of the TrafficUpdate, that contains traf-
tic information for one specific TrafficLocation for
one particular time stamp

TrafficLocation (TL) one referenced road segment

FreeFlowSpeed (FFS) speed that is usually driven on one TrafficLocation
when it is not congested

FreeFlowPercentage (FFP) percentage of the FreeFlowSpeed that is the aver-
age speed on a given TrafficLocation at one spe-
cific time stamp

TABLE 3.1: Flow Data - naming conventions.

Preprocessing

Each data package received (hereafter referred to as TrafficUpdate) contains in-
formation for all road segments within Germany. The data are divided into
subpackages for each referenced road segment that we refer to as TrafficMessage.
Each TrafficMessage contains the TMC code ID for the referenced road segment
(hereafter called TrafficLocation), information about the FreeFlowSpeed (in km/h),
and the current traffic state for this TrafficLocation. The traffic state is given as
the current average FreeFlowPercentage. For example, if a road segment with a
given FreeFlowSpeed of 80km/h is currently congested and the average speed
is now 40km /h, the TrafficMessages gives 50% as the current FreeFlowPercentage.
A summary of the naming conventions is listed in Table 3.1. The data are re-
ceived in the protocol buffer* format from an external storage. To preprocess
the data, first each update gets decoded into the aforementioned subparts. In
the next step, all TMC codes get decoded to spatial objects (called map match-
ing). Map matching is done using open-source tools and a digital map based
on the navigation data standard (NDS)°. Each TMC code ID is resolved to a set
of NDS road segments and their geometries are used to build the TrafficLocation
geometries for this specific TMC code. As TMC is a fixed referencing system,
the TrafficLocation does not change and the map matching procedure only has

to run once for the entire dataset.

“https:/ /developers.google.com/protocol-buffers
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The data are stored using a NoSQL database. Further details about our process-

ing toolchain can be found in [91, 92].

Traffic Flow Statistics and Examples

An overview of the spatial distribution of our flow dataset is given in Figure 3.1.
It shows all approximately 55000 TrafficLocations throughout Germany. Their
density rises in urban areas and decreases in rural areas. Based on these TLs,
one can easily spot large German cities on the map shown in Figure 3.1. At the
city scale, the different spatial distributions get more obvious. Figure 3.2 shows
a comparison of three big cities in Germany (Berlin, Cologne, and Hamburg).
Each TrafficLocation (in black) has a driving direction. If the same road segment
is drivable in both directions we get two separate TrafficLocations resolved. Fig-
ure 3.3 shows traffic flow data for two different road segments within the inner
city of Berlin, Germany. The TrafficLocations represent the same road segment
(Hauptstrasse, Berlin-Schoeneberg) but for different driving directions. Both
TrafficLocations are highly congested on that day. In particular, the location in
Figure 3.3iv essentially only reaches FreeFlowSpeed at night, and is almost con-

stantly congested from approximately 06:00 until midnight.

With the given update rate, spatial coverage, and time frame, this dataset gives
detailed traffic information for major roads all over Germany. The preprocessed
data stored in the NoSQL database accounts for approximately 1 TB of required

storage space.

3.1.2 Incident Data

We received an incident dataset with a broad coverage of the entirety of Ger-
many between 2013 and 2014. It contains information about severe traffic con-
gestion on major and side roads based on a dynamic georeferencing system
called OpenLR®. Unfortunately, we cannot further specify the term severe traffic
congestion here, as we did not receive any information about the threshold from
the commercial provider. However, in comparison to the Flow Data (explained

in the previous section), the Incident Data is a small subset of it.

®http://www.openlr.org/


http://www.openlr.org/
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FIGURE 3.1: Overview of all TrafficLocations of the Flow Data dataset in Ger-
many.
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(111) Hamburg, Germany.

FIGURE 3.2: Flow Data TrafficLocation distribution in urban areas. Screenshots
of TrafficLocations within major cities in Germany.

The OpenLR reference is a binary code that can be translated to a set of road
segments and driving directions from an underlying map using open-source

libraries.

Each data package received (hereafter referred to as Trafficllpdate) contains in-
formation for all road segments within Germany. The data is divided into sub-
packages for each referenced road segment, that we refer to as TrafficMessage.
Each TrafficMessage contains the OpenLR code for the referenced road segments
(hereafter called TrafficLocation) and the current traffic state for this TrafficLoca-
tion. For each TrafficLocation, we received information about the current average
Speed (in km/h), DelayTime (in s) and CongestionLevel (on a scale from 1 to 5). A

summary of the naming conventions is listed in Table 3.2.
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(1) Berlin, Germany - inner city (II) Berlin, Germany - inner city
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FIGURE 3.3: Example traffic flow on selected TrafficLocations in Berlin, Ger-
many on 12th of May 2015.

Figure 3.4 shows an example of the data, where two incidents are shown on the

map.

The data are received via an online connection using XML files that follow the
Datex2’” schema. After the TrafficUpdate has been received and decoded into
the specific TrafficMessages the data are map matched and stored in a relational
database.

Map matching is done using open-source tools and a digital map based on
NDS?®. Each OpenLR code ID is resolved to a set of NDS road segments and
their geometries are used to build the TrafficLocation for this specific OpenLR

code. As one OpenLR is a dynamic referencing system that changes over time,

"http://wuw.datex2.eu/
8http://www.nds-association.org/
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FIGURE 3.4: An example of a traffic congestion received from the Incident Data
set. The image shows two messages where severe congestion was observed in
Berlin on 08/02/2014 at 18:20.

Name Explanation

TrafficUpdate the received data package that contains traffic information
for all referenced TrafficLocations within Germany for one
particular time stamp

TrafficMessage  a subset of the TrafficUpdate, that contains traffic informa-
tion for one specific TrafficLocation for one particular time

stamp

TrafficLocation ~ one referenced road segment

Speed information of the average speed (in km/h) that is currently
driven on this TrafficLocation

DelayTime additional time (in s) that is needed to pass the referenced

TrafficLocation compared to noncongested conditions
CongestionLevel index about the severity of the congestion (1: little conges-

tion, 4: highly congested, 5: unknown) based on an internal
scale from the data provider

TABLE 3.2: Incident Data - naming conventions.

TrafficLocations might have overlapping NDS road segments. The challenges
caused by this characteristic are further explained in 3.1.3.

We implemented a solution for storing the dataset, based on a standard rela-

tional database management system (RDBMS), using a PostgreSQL’ database
with the PostGIS" extension.

‘http://www.postgresql.org/
Onttp://postgis.net/
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3.1.3 Comparison

Although both traffic information sources provide information about conges-
tion, they differ significantly in their structure, information value, and usability.
An example can be seen in figure 3.5 where traffic information is shown from

both data sets for the exact same location and time. In terms of spatial coverage
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FIGURE 3.5: Comparison of Incident Data and Flow Data for the same location
at the same time. Location: Wolfsburg. Date: 08/02/2014. Time: 15:00.

the Incident Data is clearly the more comprehensive dataset. Using the OpenLR
referencing system, this dataset includes many roads that are not covered by
TMC. For example, the Incident Data in figure 3.5 shows severe traffic conges-
tion on a bridge in Wolfsburg/Germany. While the Incident Data also contains
the resulting congestion on the off-ramp (the small red cycle on the east side of

the bridge) this information is not included in the Flow Data.

On the other hand, the data quality of the Flow Data is much higher. The dataset
contains information with an update interval of 0.5 s whenever speed falls be-
low 80% of the FreeFlowSpeed, which is much more than the Incident Data con-
tains. Again, that becomes visible in figure 3.5 as the Incident Data only covers
the congestion on the bridge while the surrounding congestion on the other

road segments is only visible in the Flow Data.

However, the biggest difference is between the utilized referencing systems.
OpenLR is optimized for low bandwidth consumption when sending updates
over the air to mobile devices and for being independent of the utilized digi-
tal map. These are specific requirements from the mobile navigation domain,

where devices receive their updates via a UMTS or LTE connection. This is
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achieved by using dynamic referencing methods, whereby affected road seg-
ments are grouped together into one TrafficLocation, as long as they show a sim-
ilar traffic behavior. While this method fits the requirements for the typical
OpenLR use case, it complicates the usage of such data for analysis tasks. As
each OpenLR code references not only one but a list of road segments, infor-
mation from the TrafficMessage (e.g., delay time) has to be split up among them.
For example, consider three road segments that are connected to each other
(segments A, B, and C). Segments A, B, C are 45, 100, and 5 m long, respec-
tively. Now imagine a TrafficUpdate with an OpenLR code that references those
three segments and gives a DelayTime of 20 s. How do you distribute those 20
s among the involved road segments? We used information about the length of
the segments and an even distribution. In this example, we would assign seg-
ment A a delay time of 20(s)x45(m)/150(m) = 6(s) and for the segments B and
C, 13.7(s) and 0.7(s), respectively. But does this reflect the real situation on the
road? Traffic lights, accidents, crosswalks, or other influencing factors might

lead to a very different delay distribution.

The example also reveals another issue with OpenLR in this domain. Because
there are no fixed TrafficLocations, road segments from a digital map have to be
used as TrafficLocation geometries. Although these digital maps are usually also
designed for different use cases, their road schema might not be optimal. One
often finds very short road segments (especially at intersections) that compli-

cate the analysis process.

The combination of very sparse information (only if traffic is heavily congested)
and a dynamic referencing system makes it very difficult to derive a coherent
picture of the traffic behavior of specific TrafficLocations. For example, Figure
3.6 shows the traffic data for one specific road segment for 24 h. On this day,
the data show two severe congestions by which this TrafficLocation was affected
(around 07:00-08:00 and 18:00). At times without heavy congestion, we do not
have any information about that TrafficLocation, but we see drastic peaks during
congestion times. Compared to other traffic information formats, for example
sensor readings, these data make it very difficult to apply any sort of statistical

learning method.

However, when dealing with geographic regions instead of focusing on the
road network level, this data source can be used to identify the traffic behav-

ior for this region. This approach has been used, for instance, in [93] and [94] to
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example — incident data

12
|

delay (in's)
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FIGURE 3.6: Example Incident Data for one TrafficLocation on 05/06/2013 in
Berlin, Germany. y-axis: delay time, x-axis: time of day.

Information Incident Data Flow Data
Update interval 60 s 30s

Location referencing OpenLR TMC

Supported data format Datex2 Protocol buffer
Size per TrafficUpdate 5.6 MB (XML) 26 MB (Protobuf)
Compressed size (gz) 326 KB 12038 KB

TABLE 3.3: Traffic statistics for the Flow & Incident dataset.

observe the footprint around the LANXESS Arena in Cologne, Germany (which

is also shown in Chapter 4).

Although the Flow Data set only covers major road segments its information
value on these segments is significantly higher compared to the Incident Data.
Although we do not get any observations of traffic on segments that have a
FreeFlowPercentage above 80% of the FreeFlowSpeed we get a rather coherent pic-
ture of the traffic situation when there is congestion (as seen in Figure 3.3).
However, the added information leads to a significant growth of the data source
in terms of size. We implemented a completely new import toolchain and stor-
age concepts able to handle the large amounts of data (as presented in [91, 92]).
Table 3.3 shows a comparison of the statistics of the Flow Data and the Incident
Data
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FIGURE 3.7: Example event dataset about soccer games from the kicker.de
website. Contains information about games of the first soccer league in Ger-
many (time, teams, location, and results).

3.2 Event Data

The Internet provides a vast variety of event information for different venues.
In our research, we focused on two different information datasets: One that we
collected manually and another, which we received from an industrial provider

that focuses on ticket sales.

The manually collected data were mostly retrieved by parsing relevant web-
sites. For example, we collected information about soccer games in 26 venues
all over Germany using the kicker.de website!! (see Figure 3.7). Information
retrieved from those websites usually contains data about the event name, start
time, location, and occasionally additional information in an unstructured form

(e.g., descriptions of the event in text form).

The industrial event dataset was provided by one of the largest ticket retailer
companies in Europe. It contains information for over 3000 venues within Ger-
many for the years 2014 and 2015. In total, the dataset contains information
for more than 430000 events of different categories. The data are stored in a
relational database, shown in 3.8. For each Venue, we get a list of Events. Each
Event holds information about the StartTime, the Name of the event, and a short
Description. Each Event is linked to one Artist entity. Each Artist holds informa-
tion about their Name. Each Event is also part of a SubCategory and a Category.
Examples of a Category and SubCategory are Music and Rock/Pop, respectively.

Whereas this dataset holds a very comprehensive list of events, it explicitly does

Uhttp://www.kicker.de/
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FIGURE 3.8: Data model of the event data from the ticket retail company:.

not contain all events at a given venue, but only those for which the company
sold tickets.

3.3 Data Visualization

For data visualization, we developed a viewer (hereafter called TrafficViewer) for
our data collection. It is a tool based on Java'? that allows us to get a quick first
impression about the traffic situation around venues for events in our database.
A screenshot of TrafficViewer is shown in Figure 3.9. It is based on a map (marker
1in Figure 3.9) that shows the TrafficLocations on top of an OSM*" raster image.
The user can scroll to any location within Germany and load the specific Traf-
ficLocations from the database using the “reload” button (marker 3 in Figure
3.9). The date can be selected from the control panel on the right side (marker
4 in Figure 3.9). Traffic information for one specific TrafficLocation is shown at
the bottom graph (marker 6 in Figure 3.9) after the user selects the location

within the map (the selected location is marked in blue). By clicking on the

http://java.com
Bhttps://www.openstreetmap.org/
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FIGURE 3.9: Screenshot of the TrafficViewer showing traffic information.

play button in the control panel (marker 5 in Figure 3.9) the traffic situation for
all loaded TrafficLocations for the entire day is replayed in the TrafficViewer. The
tool uses a color schema for traffic situations from red (severe congestion) to yel-
low (medium congestion) to green (no congestion at all), which is also shown

in the color graph at the bottom (marker 6 in figure 3.9). Events are shown on

@ | S ‘!" e ‘3‘\ i) W

FIGURE 3.10: Screenshot of TrafficViewer showing event information.

the map depending on the venue’s position (see Figure 3.10). The control panel
on the right side shows all planned events for a selected venue, including the
title of the event, the artist, and additional information that we collected from

the web (used for the analysis in Chapter 6). The TrafficViewer shows the begin-
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FIGURE 3.11: Screenshot of TrafficViewer showing event and traffic informa-
tion.

ning of the event on the timeline, whenever a venue is selected where an event

happens on the selected day (see Figure 3.11).

In the background, the TrafficViewer is connected to different databases to get
access to the Flow Data, Incident Data, and Event Data. It enables us to get a
good impression of the impact of specific PSEs on traffic, and is further used
for illustration purposes within the remainder of this thesis. An example of the
TrafficViewer is shown in Appendix A where the traffic situation before and after

a soccer game is presented.






Chapter 4
Event Traffic Characteristics

So far, we have examined the state of the art of research activities within our
domain and the data sources used in our studies have been outlined. However,
what is event traffic and what does it depend on? How do events usually im-
pact the traffic situation around venues? In this chapter, we will focus on these
questions and introduce the overall characteristics of event-inflicted traffic sit-

uations.

Traffic during events is expected to show variations in its behavior. There are
multiple reasons for this. Major roles are played by the venue location and the
road infrastructure around it. Its capability to cope with additional traffic and to
maintain a sufficient level of service (the concept introduced as traffic resilience
in Chapter 2) is a crucial characteristic. As traffic in general varies over time,
daytime variation will also play an important role in terms of the observed traffic
behavior during events. An event on a Wednesday afternoon during rush hour
might result in congestion caused by adding load to a road network that is al-
ready at its capacity limits, whereas an event at night might show less conges-
tion, as the route capacity is sufficient. Another known phenomenon of traffic
is its different behavior during weekdays and weekends due to commute traffic
and rush hour (e.g., see [31, 95]). These day of week variations will also interfere
with the additional traffic due to an event happening. Whereas a concert on
a Sunday might result in less congestion as the route network is generally not

under stress, an event on a Monday might have a different impact.

41
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As mentioned earlier the authors of [62] have shown that there is a certain foot-
print of people attending different event types. These results allow the assump-
tion of specific travel behavior of visitors based on the event category, which im-
plies that it is also an influencing factor. Another factor is the attractiveness of
an event. A concert of Rihanna, for example, is expected (by our intuition) to
attract more people to the venue and have a higher impact than a concert of a
lesser known band at the same location. Also intuitive is the relevance of the
transport modality choice of visitors. Whereas a classical concert might attract
visitors that prefer to arrive by car, a concert of a teen band probably puts more

load on the public transportation network than on the road infrastructure.

The discussion above shows our expectation about the impact factors that are
purely based on our intuition. In this chapter, we put our expectations to the
test. We first present results of a real-world study that we conducted in Cologne,
Germany. It shows the general characteristics of event-inflicted traffic and moti-
vates the following chapters of this thesis. Next, we present a large-scale study
that we conducted in a broader geographic region using high-resolution traffic
datasets. This Flow Study focuses on all the influencing factors that we men-
tioned earlier, which can be expressed directly: venue location, daytime variation,
day of week variation, and event category. The other two influencing factors attrac-
tiveness and modality choice are latent measures which cannot be derived directly
from our data sources. However, they might be described indirectly by other

attributes and we will further analyze them in Chapter 6.

Before presenting the studies and their results, we first introduce a set of re-

quired metrics and prerequisites.

4.1 Study Prerequisites

To capture event impact on traffic, spatial and temporal criteria need to be de-
tined. The spatial criteria describes the impact region of events depending on the
venue locations. The temporal criterion defines the event time window during

which event traffic is expected to happen before it starts.

For each observed venue, the impact region of events might be different and

highly dependent on the route network topology (including traffic lights, etc.).
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Because the impact region is not known to us, we can only approximate it (the
challenge of finding the exact impact region will be further discussed in Chapter
5).

Whereas event contributions are presumably more dominant in the immedi-
ate vicinity of the venue, there is a high probability to miss parts of the event
traffic when focusing only on a small area. At the same time, capturing traf-
fic in a larger area probably lowers the contribution of the event traffic in the
observations and the data get noisier. In the following studies, we focus on
different approximations of the impact region depending on the focus of the
study. Whereas the General Event Characteristic study focuses on a small radius
around the venue (500 m) to capture mostly event-related traffic congestion, the
large-scale study uses different regions (500, 1000, and 2000 m) to analyze their

impact on the observed traffic.

As with the impact region, there is no common method to detect the event time
window and it can only be approximated. Whereas the General Event Character-
istic does not require this metric (as we only compare entire days), it is highly
relevant for the large-scale study. For that, based on our intuition and observa-
tions throughout the datasets, we use a window of 2 h before the official event

start.

The individual impact of events on traffic cannot be observed directly (i.e., they
are latent) but we do know that they contribute to the total observed congestion
behavior. A descriptive measure for congestion behavior is delay time. A delay
is defined as additional time that is required to pass a certain road when it is
congested compared to noncongested situations. As we focus on impact areas
rather than on specific road segments, we define our measure sumdelay as the
sum of delay time for all road segments in the observed area for the defined

event time window.

Formally, delay d (in s) for TrafficLocation (TL) at time t is defined as:
dri(t) = TT(CS(t))rr = TT(FFS(t))rL (4.1)

where TT is the travel time, CS is the current speed at time ¢, and FFS is the

FreeFlowSpeed at the specific TL for time t. TT is defined as

TTL
s

TT(s)rr, = % 3600 (4.2)
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where s is the speed at the specific TL at time ¢ (in km/h) and TTL is the length
of the TL.

As the incident data used for the General Event Characteristic study already con-
tain delay information, this attribute is used directly. For the large-scale study, the
delay time is calculated based on our dataset. Based on the delay information,

we calculate our final metric sumdelay as:

K

sumdelay = Z drr, (4.3)
1

where d is the delay information for one specific TL at time interval k.

We will present the studies and their specific results in the next sections.

4.2 General Event Characteristic

To get a first impression of event-caused traffic, we conduct an initial study
in Cologne, Germany. This study explicitly does not have the goal to analyze
as many influencing factors as possible, but serves as a starting point to un-
derstand basic event traffic characteristics. It is based on the incident dataset
described in Chapter 3 that we collected for seven months between June and
December 2013. During that timespan (and after cleaning our dataset) we ob-

served traffic for 29 events hosted in the LANXESS Arena in Cologne, Germany.

For these events we collected information about the observed delay time (as
received from the data provider) within a fixed region around the venue (500
m radius), as described in the prerequisites. The selection of this radius was
based on our observations during the study and allowed us to capture most of

the (apparently) event-caused traffic disruptions.

The resulting delay time is summed up for the entire region and days with
scheduled events (event days) and days without scheduled events (non-event
days) are separated. Data from non-event days are used to build a model for
each day of the week as the average delay time throughout all observations.
An example is shown in Figure 4.1, where the model for Tuesdays is presented.
The graph shows a typical rush-hour phenomenon with a significant traffic dis-

ruption in the morning and in the afternoon. As the data used to build the
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FIGURE 4.1: Average summed delay time around the LANXESS Arena in

Cologne, Germany for Tuesdays without scheduled events. avgdelay: aver-

age of the summed up delay time within the entire radius, for all considered
days. Radius: 500 m. Source:[93, 94]
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FIGURE 4.2: Additional delay due to the concert of Mark Knopfler around the

LANXESS Arena in Cologne, Germany. The delay on top of the historic trend

line for Tuesdays on Tuesday the 2" of July 2013. Radius: 500 m. Source:[93,
94]

trend line only cover days without events, this graph can be seen as the routine
(the “regular” traffic behavior, as described in Chapter 2.1.1) for that particular
radius on that day of the week.

We use this generated trend line to illustrate the traffic disruptions during event
days by analyzing the discrepancy of observed traffic to the routine. An ex-
ample is shown in Figure 4.2. This shows the traffic situation on July 2" 2013,
when Mark Knopfler' played a concert at the LANXESS Arena. The graph shows
the difference in the observed delay time on July 2" 2013 from the created
trend line for Tuesdays (shown in Figure 4.1). A delay above zero means that
we observed more traffic than “usual” at that time of the day and below zero

means that we observe less traffic than on “regular” Tuesdays at that time of

'http://www.markknopfler.com/
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day. With this interpretation in mind, we observe two major additional traffic
congestions: between 18:00 and 20:00, and between 22:00 and 23:00. The concert
was scheduled for 20:00. These data lead to the assumption that the observed
two peaks are due to people attending the event. The first wave (18:00-20:00)
might be caused by visitors going to the venue, whereas the other increase in
traffic (22:00-23:00) is probably caused by people leaving the venue after the
concert ended. This phenomenon of two subsequent waves of traffic has also
been reported in [96] and describes the incoming and outgoing traffic around a

venue.

Traffic during the Mark Knopfler concert almost exactly follows the assumption
of two waves of traffic. However, further examples from the initial study, as pre-
sented in Figure 4.3, show that this is not always the case. Whereas the concert
of Rihanna? on June 26" 2013 showed a similar pattern as seen for the previous
concert before, traffic during the RUSH? concert on June 06" 2013 showed es-
sentially no increase in congestion at all. Although both events were concerts
and started around a similar time in the evening, the traffic behavior seems
quite different. As a nonconcert example, we see the results of a comedy show
of Mario Bart* (a German comedian). The traffic on that day again shows no

significant increase in congestion.

Another interesting fact from this initial experiment is the varying end times of
events. Although the start time is usually (at least roughly) known in advance,
the end times vary. In our examples, Rihanna apparently played until approx-
imately 23:00, whereas Mark Knopfler finished around 22:00. Not knowing the
end of an event adds more noise to the analysis. In the rest of this thesis, we will
therefore mainly focus on the start times of events. Ideas of how to detect the
end of an event before it becomes visible in the traffic data are also discussed at
the end of this thesis, in Chapter 7.

So far, we have seen different events with different impacts on the infrastruc-
ture. Although some of them were of the same category their traffic impacts still
varied. They also happened on different days of the week, which also might

have an impact on the resulting traffic observation. To get a more concrete idea

Zhttp://www.rihannanow.com/
Shttps://www.rush.com/
“https://www.mario-barth.de/
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(111) Artist: RUSH. Date: 04/06/2013. Event start: 20:00. Category: Concert.
DayOfWeek: Tuesday.

FIGURE 4.3: Additional delay on top of the average trend line for that specific
day of the week around the LANXESS Arena in Cologne/ Germany. Radius:
500m.
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of the impact of different influencing factors, we consider a broader study, the

large-scale study.

4.3 Large-Scale Study

This study is conducted in different situations around three different venue lo-
cations in Germany: 1. Mercedes-Benz Arena (Berlin), 2. LANXESS Arena
(Cologne), 3. Alte Oper (Frankfurt). Whereas the first two venues usually host
all kinds of events, from hockey games to large concerts, the third is mostly
focused on classical and jazz events. All of the venues are in inner city environ-

ments, but their surrounding traffic networks differ.

We selected a set of attributes that describe our influencing factors to analyze.
For daytime variation, we defined a manual threshold to separate between day-
time and nighttime. In our study, we followed the suggestion from the common
literature (e.g., [97-99]) and set this threshold to 19:00. For the day of week vari-
ations, we followed the classification of days into four categories: Monday till
Thursday (Mo-Th), Friday (Fr), Saturday (Sa), and Sunday (Su). This classifica-
tion is also commonly used in the literature (e.g., [12]). For the event category, we
need to assign consistent categories throughout our dataset. A categorization
can be performed using different metrics of the event (e.g., artist) or, in larger
event scenarios (e.g., festivals), can be derived from the overall theme of the
event. In our study, we used the labels from the Main Category attribute from

our industrial event dataset (described in more detail in Chapter 3).

Of course, there are numerous other factors that can affect traffic behavior,
which are not directly tied to PSEs (e.g., holiday season, weather phenomena,
as already discussed in Chapter 1). We cannot filter out these phenomena from
our dataset completely, but we can minimize their impact to a certain extent by
using a large time horizon for our study. For each venue, we used the industrial
event dataset and selected all events over a time period of 15 months, between
02/2014 and 05/2015. Each event contains information about: the artist, cate-
gory, date, and start time (for further information about the dataset, please re-
fer to Chapter 3.2). From these attributes, we defined our metrics as described

above.
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As mentioned in 4.1, we focus on three different impact regions around the
venues to approximate event traffic contribution: small, medium, and large,

defined as circular areas of radius 500, 1000, and 2000 m.

To calculate the delay times, we took the average FreeFlowPercentage (as intro-
duced in Chapter 3) over a time window of five min within the 2 h time window
before the event start to retrieve the speed information for this time period for
each TL. Finally, we summed up all delays from all TLs within the given radius

to derive our final traffic metric sumdelay (in s), as defined in 4.3.

4.4 Results

For each venue, we created an overview of the traffic behavior grouped by the

selected metrics: daytime variation, day of week variation, and event category.

441 Mercedes-Benz Arena Berlin

The Mercedes-Benz Arena is located in the heart of city east in Berlin, Germany.
In total, we observed 102 events at this venue between 01/2014 and 05/2015. Of
these 102 events, we collected data for 42 events starting during daytime and 60
events starting during nighttime (after 19:00). For the day of week variation, we
observed 64 events happening between Monday and Thursday (Mo-Th class),
22 events on Fridays (Fr class), six events on Saturdays (Sa class), and 10 events
happening on Sundays (Su class). The resulting daytime variations can be seen
in Figure 4.4, where the delay around the venue in all three selected impact

regions is shown.

In a 500 m radius, the results show that, although daytime and nighttime have
a similar median delay value, traffic during nighttime seems to undergo higher
fluctuations than during the day. Interestingly, this observation changes for the
other two radii. Traffic variation in a 1000 m radius looks rater similar between
daytime and nighttime. For the 2000 m radius, traffic during daytime seems
to fluctuate more than during nighttime. A possible explanation could lie in
the already discussed strong variation of event impact on traffic. This variation

would appear more pronounced in a rather small radius (e.g., 500 m), because
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FIGURE 4.4: Daytime variation and day of week variation during events at the
Mercedes-Benz Arena in Berlin, Germany.

the small impact area would bring the actual effect of events more into focus.
The effect would also gain higher visibility during nighttime, because there is
usually less traffic in general and again, event-specific congestion would be em-
phasized. With this idea, the observations for the 1000 m and 2000 m radii could
be explained by too much noise resulting from the broader range of selected TLs

and non-event specific traffic phenomena.

In general, it has to be considered that in a dense city such as Berlin, a large
radius (e.g., 2000 m) captures a huge number of TLs. Many of these TLs are

rather far away from the venue and probably not influenced by events at all.
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FIGURE 4.5: Event category variation during events at the Mercedes-Benz Arena
in Berlin, Germany.

This leads to a high probability that the observed traffic variation is caused by

other influencing factors and not connected to the observed events.

For the weekday patterns, we see the highest fluctuation in the Mo-Th class,
which might be a result of daily rush hours and a generally higher occupancy
on the roads. Again, this changes for the 2000 m radius, but we can probably
conclude that there are too many disturbances in a 2000 m radius to assume a
change in event behavior. A clear trend is the lower delay on weekends, which
is probably attributable to less traffic in general. It is interesting to note the vari-

ation in Figure 4.4ii for the Sa and Su classes. The variation increases drastically
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in the 1000 m radius. One possible reason could be that the 500 m radius does
not capture all event-related traffic (at least on weekends) and the 2000 m radius

hides the effect owing to too many other influences.

At this venue, we observed four different categories of events: concert, culture,
musical & show, and sport. For these categories we observed 22 concerts, six
culture events, six events belonging to musical & show, and 64 sport events.
Four events in our database were not assigned to any category, and we filtered

them out. The traffic behavior grouped by category is shown in figure 4.5.

In general, the data show a rather stable pattern across different categories. Cat-
egories culture and sport show slightly higher variations than concert and musical
& show, but only to a certain extent. It is interesting to note the lower median
delay at the 1000 m radius for the culture category, which indicates a higher

fluctuation of event-caused traffic disruptions for that particular category.

4.4.2 LANXESS Arena Cologne

The LANXESS Arena is a multi-event venue in the city center of Cologne, Ger-
many. In total, we observed 101 events at this venue between 02/2014 and
05/2015. Of these 101 events, we collected data for 59 events starting during
daytime and 42 events starting during nighttime (after 19:00). For the day of
week variation, we observed 59 events happening between Monday and Thurs-
day (Mo-Th class), 24 events on Fridays (Fr class), 10 events on Saturdays (Sa
class), and eight events happening on Sundays (Su class). The time variation

for different events is shown in figure 4.6.

For the LANXESS Arena, traffic delay observations vary more for daytime and
nighttime than for the first venue, particularly for the 500 and 1000 m radii. A
clear trend between weekday/weekend classes is observable. The delay times

are in general higher than for the first venue.

At this venue, we observed four different categories of events: concert, misc,
musical & show, and sport. We also observed two cultural events but because two
events are insufficient for a representative statement about the traffic for this

event category, we filtered them out.
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FIGURE 4.6: Daytime variation and day of week variation during events at the
LANXESS Arena in Cologne, Germany.

For the remaining categories, we observed 25 concerts, nine events belonging to
musical & show, and 50 sport events. The misc category holds all events that do
not match into one of the others. In this case, events of this category included

11 carnival events (“Lachende Kolnarena”) and one gaming convention.

The categories show a different behavior than for the first venue in Berlin (see
Figure 4.7). For the LANXESS Arena, the concert category shows by far the
most variation for the 500 and 1000 m radii, and their impact range differs sig-
nificantly from the other categories. A possible explanation could lie in the

mixture of different concerts of different popularity. The misc category is also
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interesting. In our example, all events in this category are essentially the same

event, but happening at different times. Although one would expect a more

stable behavior because the target audience is exactly the same for all events, it

shows rather large fluctuations. However, the carnival season is a very special

time, especially in Cologne. Many people celebrate on the streets and there are

organized and non-organized street parades and parties. With that in mind,

results for that particular category have to be treated with caution.
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4.4.3 Alte Oper Frankfurt

The Alte Oper Frankfurt is an opera hall in the inner city of Frankfurt (Main), Ger-
many. In contrast to the other two venues this one is focused more on classical
events and jazz concerts. In total, we observed 257 events at this venue between
02/2014 and 05/2015. Of these 257 events we collected data for 19 events start-
ing during daytime and 238 events starting during nighttime (after 19:00). For
the day of week variation, we observed 166 events happening between Monday
and Thursday (Mo-Th class), 69 events on Fridays (Fr class), eight events on

Saturdays (Sa class), and 14 events happening on Sundays (Su class). As shown
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FIGURE 4.8: Daytime variation and day of week variation during events at the
Alte Oper in Frankfurt, Germany.
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in Figure 4.8 this venue shows a higher variation in traffic during nighttime
than daytime. Traffic around the venue shows distinct weekday/weekend traf-
tic patterns, where traffic disruptions between Mo-Th vary the most, followed

by Fr, Sa, and finally Su, where almost no traffic disruptions are observed.
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FIGURE 4.9: Event category variation during events at the Alte Oper in Frank-
furt, Germany.

Although the number of events at this venue is by far the highest, we observed
events of only three different categories: concert, culture, and musical & show.
For these categories we observed 52 concerts, 143 culture events, and 58 events
belonging to the category musical& show. Four events were filtered from our

dataset because they did not have any category assigned to them.
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Despite the high variation in daytime and nighttime delay, the Alte Oper shows
by far the most stable behavior for the event categories throughout all different

radii, as shown in Figure 4.9.

Whereas concert and culture events show very similar behaviors, musical & show
shows nearly the same variations in traffic but less delay than the other two
categories. A possible explanation lies in the different event focus of the venue.
The target audience of classical events and jazz concerts probably differ from
the group of visitors that attend the events at the other two venues. The specific
target group could be a reason for the observed stable behavior in traffic impact.
Of course, the road infrastructure and the availability of public transportation

also plays a major role.

4.5 Discussion and Conclusion

This chapter has shown that many of the discussed intuitions about event traffic
are valid. The venue location is obviously of major importance, as we have seen
huge differences in the observed delay times among the venues. Additionally,
our intuitions regarding the daytime variations seem to be correct, because for
all venues, we have seen very different behaviors between traffic on weekdays
and weekends. An interesting observation is the difference between the day of
week variations for the venues. Whereas around the Mercedes-Benz Arena in
Berlin, traffic on Fridays shows the highest delay time, traffic around the other
two venues show maximum median delay for the Mo-Th class. For all venues,
we have seen a major importance of the category of events. However, again, the

same categories of events act differently at different venues.

The presented results lead to the assumption that a generalization of event im-
pact is probably not feasible (beyond a certain accuracy). A local discussion
for each specific venue is recommended and in the following chapters, we will

always focus on individual locations separately.

Another result is the impact of the selected geographic region. Many plots show
a significantly different behavior for the 2000 m radius than for the other radii.

For a detailed discussion of event traffic, a method is required to detect the
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precise spatial impact zone around venues, instead of the presented radius-

based approach. Our approaches in that direction will be further discussed in

the next chapter.



Chapter 5
Spatial Impact of Events

The previous chapter mainly focused on fixed impact regions to approximate the
event traffic around venues. Although this approach allows a general discus-
sion about traffic behavior, it does not accurately capture the reality of event
traffic. As discussed earlier in this thesis, we expect event traffic on specific
road segments rather than an entire region around a venue. These road seg-
ments will be part of routes that people prefer to use to get to the venue before
the event starts and routes that people tend to use after the event ends. Road

segments that are part of these routes are called:

1. Inbound segments: composed of the roads that drivers tend to use to get to

the venue, and

2. Outbound segments: composed of the roads that drivers tend to use after

the PSE is over, in order to leave the venue.

This chapter describes our approaches, experiments, and results of finding the
specific impact region around venues in an automatic manner. We present an
approach that works similarly for Inbound and Outbound segments. Owing to a
lack of information about the end of PSEs (as previously discussed in Chapter
4), we focus in this chapter on experiments and results for the Inbound segments

only.

The chapter is structured as follows: First, we present and discuss our general
approach. After that, we explain the experimental setup and show results of a

large-scale analysis based on traffic Flow Data (hereafter called flow study). The
59
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next part of this chapter focuses on a similar study based on the less detailed in-
cident data set (hereafter called incident study). The chapter closes with a general

discussion of the presented results, conclusions, and next steps.

5.1 Proposed Approach

For finding the spatial impact region of PSEs, the most straightforward ap-
proach is to observe the traffic behavior and identify road segments that are
affected during the times of the PSEs. However, this approach has two main
flaws: First, road segments that represent bottlenecks in the infrastructure and
are frequently congested might be wrongly classified as affected by PSEs. Sec-
ond, this approach does not give any information about the spatial region to

observe, which would still force us to choose a region manually.

Our approach is based on the assumption that road segments that are affected
by the presence of PSEs show a different behavior on event days than on non-

event days.

With that definition in mind, the problem of finding the spatial impact region
around a venue is reduced to finding those road segments that show a differ-
ent behavior during PSEs. With this goal, our approach follows the assumption
that, given the traffic state for all road segments around a venue, a classifier
should exist that can successfully classify the road segments into positive (those
that show a PSE-specific behavior) and negative (those that do not show any
different behavior) classes. The problem therefore becomes a binary classifica-

tion task.

The discussed method avoids both problems discussed earlier for the straight-
forward approach. We intentionally exclude road segments that are “always”
congested. We also avoid the manual selection of the spatial region. By ob-
serving all road segments in a (too) big radius (one that makes sure we capture
all road segments that are affected) the classifier returns those that are actually
affected by PSEs.

However, the approach also comes with a great challenge. As it is based on the

comparison between behaviors on event and non-event days for road segments,
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the time plays a major role. In our scenarios, the time can be described in terms

of four variables: daytime, day of week, month of year, and event time.

Daytime and day of week describe the normal fluctuation of traffic over time and
we will refer to these two variables as the traffic time. As discussed earlier, traffic
changes during the day (e.g., owing to rush hour) and shows different patterns
during weekdays and weekends. Seasonal effects are also known, whereby
traffic behaves differently according to the month of year. However, our datasets
did not allow us to observe any seasonal affects, because it was too small for
such observations and we excluded them from the research focus. For the same
reasons, we also did not include other potential influencing factors, such as

holiday seasons.

Event time window describes the timespans before and after an event during
which traffic behavior is changed owing to the event happening. The exact mo-
ments of these time windows depend on a large variety of different influencing
factors (e.g., popularity of an event and weather conditions). In this work, we
use a simplification of these time windows by manually defining them based
on our observations. A discussion of possible strategies to find the event time

windows from other information sources is presented in Chapter 7.

To compare traffic on event and non-event days, we need a strategy to deal with
the mentioned time variables. In theory, one must eliminate as many varying
time attributes as possible until finally, the observed traffic is solely influenced
by the specific event. To put that into practice, we developed different strategies

and concepts called the Timespans of Interest.

5.1.1 Timespans of Interest

The concept of the Timespans of Interest (TOI) results from a simple question:
How do we compare traffic from a Monday afternoon 15:00-17:00 to a Saturday
18:00-20:00? For that question, we implemented two different concepts: the

Absolute Timespan of Interest and the Relative Timespan of Interest.
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5.1.1.1 Absolute Time Span of Interest

For the example question above, the Absolute Time Span of Interest returns the
simple solution that we do not compare those timespans at all. Instead, the
approach focuses on finding events that happen at comparable times rather

than expending effort to normalize traffic situations.

For each day of week we define one particular timespan (our time span of interest),
during which we have the most information about events in our dataset. Those

TOIs are defined separately for the incoming and outgoing traffic.

For identifying the TOI, we look for the longest consecutive timespan that holds
the most information about events. As an example, let us assume that we ob-
served three different events on the same day of week. The entrance times might
be 12:00-14:00, 12:30-14:30, and 14:00-16:00. The TOI for that venue would be
selected to be between 12:30 and 14:30, because that time interval holds the most

information about event traffic (this example was partly taken from [2]).

We implemented this approach by splitting up each day of week into minute-
long time steps (e.g., Monday:14.42, Monday:14:43, ...). For each time step, we
count the number of events happening in our dataset and choose the longest
consecutive timespan as our TOL The method is further visualized in Figure
5.1. For our research, we defined the TOIs for each venue for each day of week
separately. We defined a minimum TOI of 30 min. This restriction was made to
prevent excessively short TOIs, which would result in insufficient traffic sam-

ples to compare.

The Absolute Timespan of Interest focuses on a single time span for each week-
day and thereby minimizes the TrafficTime fluctuations as much as possible.
This makes it easy to compare traffic for this particular timespan on event and
non-event days. However, this approach has the disadvantage that it forces
us to limit the number of events to those that actually occur within the de-
fined timespan. In our analysis, this drastically limited the number of observed
events. A different problem lies in the fact that this approach is highly focused
on the traffic time variability by ignoring the event time window to a certain extent.
For example, assume we define our TOI for Saturday as 13:30-14:30. For event
days, we would always capture traffic between 13:30 and 14:30, disregarding
the fact that the event on one day would start at 14:30 and the other event
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FIGURE 5.1: Example for calculating the Absolute Timespan of Interest for differ-

ent events on the same day of week (Monday in the example). The same days

of the week are marked in grey and the resulting TOIs for the incoming and
outgoing traffic are marked in green.

might start at 14:00. This leads to variations in traffic behavior, with which

the approach must cope.

5.1.1.2 Relative Timespan of Interest

The Relative Timespan of Interest is based on the idea that traffic flow follows a
regular pattern that can be modeled for certain day of week categories. By cre-
ating a model for these categories, we assume that we capture the daily traffic
routine. Consequently, the difference in traffic on a specific day captures the non-
routine tratffic behavior. For the goal to capture the traffic on event an non-event
days, we build a model for each location within our traffic location network for
all mentioned day of week categories (the same ones used in Chapter 4). Using
this model, we captured the traffic caused by PSEs by observing the difference

in traffic between event days and the model.
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While the Absolute Timespan of Interest is focused on the TrafficTime variables,
the Relative Timespan of Interest focuses on the TimeOfEvent variability. By nor-
malizing traffic and by working with the difference in traffic behavior from the
model, we can analyze all events for a given weekday, which highly increases
the observations in our analysis. However, a clear drawback lies of course in
the traffic modeling that is applied. Unknown events or other influencing fac-
tors on traffic (e.g., heavy snow) might influence the created models such that
they do not represent the regular behavior anymore, which could lead to a mis-
interpretation of additional traffic. Another challenge comes with the task of
comparing traffic on event and non-event days. Let us assume we collected a
set of time windows before and after a list of events and collected the normal-
ized traffic states. How do we compare those timespans from different days of
the week and different times of the day to traffic on non-event days? Whereas
the Absolute Timespan of Interest simply defined a time window per day that can
be used for event and non-event days, handling those for the Relative Timespan

of Interest requires different strategies.

5.1.2 Binary Classification Task

For each defined Timespan of Interest from the different approaches described
above, we collect traffic information for each road segment within a given ra-
dius around a venue. The collection of traffic data is thereby aimed at providing
a balanced dataset between traffic on event and non-event days for each road
segment in a given radius. The resulting dataset contains traffic data normal-
ized over defined time periods (we used 5 min and 15 min slots) for the selected
TOlIs in combination with the information of whether an event happened at the
specific time. The fact of the occurrence of an event (false = no event, true =
event) is used as a predictor for our analysis. In the end, we obtain the follow-
ing dataset for each traffic location in a specified radius around the venues to

analyze:

X1, X, E (5.1)

where X1, ..., X,, are our traffic information and F is the event label.
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We perform a cross-validation on these datasets of the performance of different
classifiers with different parameter optimization techniques. As a result, we
assume that those road segments where the tested classifiers perform best are
those that show different behaviors on event non-event days and are, according

to our definition, especially affected by the occurrence of PSEs.

At this point, we have presented our approach to collect information about traf-
fic situations during event occurrences based on different time alignment strate-
gies, and explained the classification-based approach and the dataset used for
our studies. In the following sections, we will present our two mentioned stud-

ies and discuss their results and findings.

5.2 Flow Study

The flow study was conducted in 2016 and focused on a broad range of venues to
allow further discussions of the findings. During that time, we had access to the
traffic flow dataset as described in Chapter 3.1.1. As discussed in Chapter 4, we
observed different behaviors for event impacts on traffic for different venues.
One major influencing factor observed was the event type focus of a venue. In
Germany, we find essentially two different types of venues: those that are spe-
cialized on sporting events and occasionally host also different event types (e.g.,
large-scale soccer arenas) and those that are focused on entertainment events
and sometimes also host sporting events (e.g., the LANXESS Arena in Cologne).
In our studies, we focus on a mixture of these venue types using the approach

outlined in 5.1.

5.2.1 Experimental Setup

In total, we observed 12 different venues, of which nine were focused mainly
on soccer games and three hosted different events of all types (see Table 5.1). To
allow a comparison with previous observations, we selected the same “mixed”
venues as presented in Chapter 4. For all venues, traffic information was de-
rived in 5 min intervals for all TrafficLocations (TLs) within a radius of 4000 m.
The TrafficLocations were based on the TMC referencing system (see Chapter

3.1.1), which guaranteed a sufficient length of the road segments and avoided
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TABLE 5.1: List of venues.

Name City Type

Olympic Stadium Berlin Berlin Soccer
Commerzbank Arena Frankfurt (Main) Soccer
Volkswagen Arena Wolfsburg Soccer
Benteler Arena Paderborn Soccer
Bay Arena Leverkusen Soccer
Mercedes-Benz Arena Stuttgart Stuttgart Soccer
Borussia-Park Moenchengladbach Soccer
Signal-Iduna-Park Dortmund Soccer
Schwarzwald-Stadion Freiburg Soccer
Mercedes-Benz Arena Berlin Berlin Mixed
LANXESS-Arena Cologne Mixed

the need for further cleaning or filtering. In total, we observed one season of
soccer games, which ended up with 12 games per venue. As there were also
days included when our traffic dataset was incomplete, we ended up with 11—
12 games per venue. For the “mixed” venues, we covered a broad range of
events during the time period from 05/2014 to 05/2015 and for each venue, we

captured between 50 and 60 events.

As mentioned earlier, a critical requirement for the proposed approach is a
dataset that allows comparison of traffic behavior on event and non-event days
for each road segment. For that, time plays an important role and we presented
two different approaches to handle time variations earlier, the Absolute Timespan
of Interest and the Relative Timespan of Interest. As the high frequency the traffic
dataset used in this study allowed us to create a model for each TrafficLocation
based on historic information, we implemented the Relative Timespan of Interest

concept.

With this concept we were able to analyze all the event days in our database for
the given venues without further loss. A major challenge of this concept was
to define a time window to compare traffic during event and non-event days.
Finding the time window on event days is straightforward, as we can simply
put a time window around the event start time. But how do we find that time
window on non-event days? In our approach, we defined so-called day-pairs.
A day-pair is a set of two days, of which one is an event day and the other is a
non-event day. The event time on the event day defines the time of interest for

that day-pair, and we select the same time window from both days. As traffic
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behaves differently on different days of the week, we need to ensure that both
days of the day-pair are comparable. To this end, we followed the same day of
week classification as already showed in Chapter 4: Monday to Thursday (Mo—
Th), Friday (Fr), Saturday (Sa), and Sunday (Su). To create the day-pairs and
required models for the Relative Timespan of Interest, we divide our dataset into

three parts for each of these day of week (DOW) classes:

e Event set (E)
e Non-event set (N)

e Model set (M)

where Epow U Npow U Mpow = Dpow. The event set E contains all event days
for that specific venue that we analyze. The non-event set N contains a list of
randomly selected non-event days with the same number of days as the E set.
The model set M contains all non-event days of the database that are not part
of N.

First, we created a model for the day of week class by calculating the mean traffic
behavior over all non-event days in Mpow. For each event day in Epow, we
captured traffic within the event time window of 120 min before the event start.
That time window was then also used for one randomly selected non-event
day in Npow. We calculated the difference between the captured traffic within
the event time window for event and non-event days from the model and put
the resulting day-pair into our dataset. For example, we assume that we have an
event starting on a Saturday at 18:00. We select the times depending on the event
time window of 120 min, which results in Saturday 16:00-18:00. Our approach
would add that specific time window to the dataset, together with a randomly
selected day from the Saturday day of week class from 16:00-18:00 when no event
happened (derived from the N set). The final day-pair would contain difference
in traffic to from Saturday model for the event day from 16:00-18:00 and for a
randomly selected non-event day on Saturday from 16:00-18:00.

We used a set of different classifiers (ANNs, K-Nearest Neighbor, and SVMs)
and benchmarked them using a cross-validation approach with the F1 measure
(hereafter called the f-measure) as a metric. For more details about these classi-

tiers, we can strongly recommend referring to [100] or [101].
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FIGURE 5.2: Performance after the cross-validation for different classifiers.
Venue: Commerzbank Arena in Frankfurt.

For the benchmark, we analyzed traffic around the Commerzbank Arena in
Frankfurt, Germany. It is explicitly emphasized that the classification method
is not the main finding of this thesis, but rather the methodology. We there-
fore do not claim any sort of completeness of the benchmarked algorithms. The
crucial point is the applicability of the method to real-world examples. We used
the different classification methods in combination with a simple parameter op-
timization technique. Figure 5.2 shows the results for the following classifiers:
ANN, K-Nearest Neighbor, SVM with a linear kernel, and SVM with a rbf ker-

nel.

The results show similar performances of all the classification methods. Based
on these results and the requirement to run the analysis for a large-scale study,
we implement the method that takes the least training time: K-Nearest Neigh-
bor. In the following, we report on the results of a K-Nearest Neighbor ap-
proach. By experimenting with different distance measures, the Dynamic Time
Warp (DTW) distance measure performed best on our data. The reasons for that
is the shift in time of traffic influence by events, which are captured better using
DTW than, for instance, Euclidean measures. Therefore, in the following, we
report on the results of a K-NN optimization method using DTW as a distance

metric.



Spatial Impact of Events 69

5.2.2 Results

Throughout all venues, we find very different numbers of affected TLs. Because
we compared venues in very different areas (some in dense inner cities, some in
more rural areas), these results are expected. In the following subsections, we

present the results for all venues from Table 5.1 in detail.

5.2.2.1 Olympic Stadium Berlin

For the Olympic Stadium in Berlin, we captured 211 Traffic Locations in total
within a selected radius of 4000 m (see Figure 5.3). From these 211 TLs, 23

Hakenfelde

enhagener
Feld

A111
Saatwinkles Damm
Lootwinkler Domm
Heckerdormm
Charlottenburg-
Mard

3

L
y Charlottenl
Kadsardomem

p
2 :
orefe F\,:.':.lfrur r.':/r_
P L ! X,

k AT Halensee
. =
125

i3

13, Wil

Grunewald /Y
Grunewald L
2, Schmargendorf, %

Gatow

FIGURE 5.3: Selected TLs within a radius of 4000 m around the Olympic Sta-
dium Berlin (green marker).

showed significant correlation to the occurrence of soccer games in the stadium.
Figure 5.4 shows the results for the K-NN model for different thresholds. The
road segments with the highest f-measure (>0.9) are the one directly in front of
the stadium (see A in figure 5.4i). Those show a huge discrepancy between their

behavior on event and non-event days, which is intuitive as they are frequently
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FIGURE 5.4: Venue: Olympic Stadium Berlin. (5.4i) f-measure > 0.90. (5.4ii)
f-measure > 0.85. (5.4iii) f-measure > 0.80. (5.4iv) f~measure > 0.75.

used to reach the parking lots of the stadium. Comparing their traffic behavior

on event and non-event days (see Figure 5.5) supports that intuition.

The graph shows the traffic behavior for one exemplary TL (TMC code:13/5/32571).
The mean line on event days shows a completely different behavior than on
non-event days, which matches our definition of being usually affected by PSEs.
When lowering the threshold to an f-measure > 0.85, additional road segments
are involved (see B in Figure 5.4ii). They show parts of the “Heerstrafie” at the

intersection to the stadium. A possible explanation is the upcoming congestion
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FIGURE 5.5: Venue: Olympic Stadium Berlin. Traffic during event and non-
event days for the TL at marker A in Figure 5.4i (TL 13/5/32571). y-axis: dif-
ference in FreeFlowPercentage compared to the model on non-event days.
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FIGURE 5.6: Venue: Olympic Stadium Berlin. Traffic during event and non-
event days for the TL at marker B in Figure 5.4ii (TL 13/5/21534). y-axis: dif-
ference in FreeFlowPercentage compared to the model on non-event days.

at the intersection, which also influences traffic on these segments. Again, man-
ual inspection of the traffic behavior on these links (shown as an example for
TL id: 13/2/21534 in Figure 5.6) supports this case. However, the event day
behavior on this TL varies much more than for that in Figure 5.5. Whereas the
road segment in 5.5 shows severe congestion on every single game day, traffic
on this road segment was barely influenced on 23/08/2014, when Herta BSC
(home team) played against Bremen (red dotted line). However, other games
showed a severe impact on this road segment as, for instance, traffic dropped
up to —80% of the FreeFlowPercentage during the soccer match on 28/02/2015,
when Hertha BSC played against FC Augsburg (blue dotted line). Possible ex-
planations for this could be a higher popularity of the game, a higher traffic
density in general on this day, or other external influencing factors (e.g., road
constructions). The last two phenomena could also be the reason for the outlier

during non-event days (black line), when FFP drop by to —43%.
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When further reducing the f-measure threshold, additional road segments be-
come involved (see C and D in Figure 5.4iii and 5.4iv). However, the TL at C
seems particularly like a misinterpretation, as it is far away from the venue. As
there might be an explanation that a local expert could give, it is also quite likely
that these are simply misinterpretations and that segments below a threshold of

0.8 might be influenced by other phenomena. Additionally, analyzing traffic on

event days non-event days

diff(FFP) in %
diff(FFP) in %

hours before the event event time window on non—event days

FIGURE 5.7: Venue: Olympic Stadium Berlin. Traffic during event and non-
event days for the TL at marker C in Figure 5.4iii (TL 13/5/41077). y-axis:
difference in FreeFlowPercentage compared to the model on non-event days.

TL 13/2/41077 (C) shows that a differentiation between event and non-event
behavior is rather difficult to achieve (see Figure 5.7). A possible conclusion is
that for this specific venue, a threshold > 0.80 is suitable to identify impacted

areas in future analysis.

5.2.2.2 Commerzbank Arena Frankfurt

Around the Commerzbank Arena in Frankfurt, we captured at total of 158 Traf-
fic Locations within a selected radius of 4000 m (see Figure 5.8). Of these TLs, 22
showed significant correlation to the occurrence of soccer games at the stadium.
Figure 5.9 shows the results for the K-NN model for different thresholds.

P1-P3 in Figure 5.9i are official parking lots and people are advised to use them
to get to the stadium (as written on the official website!). The road segments
with the highest f-measure (> 0.90 shown in Figure 5.9i) are those directly lead-
ing to the stadium on the B44, a federal highway within Frankfurt area (between
P1, P2, and P3 in the image). As all of these TLs directly lead toward the rec-

ommended parking lots and the venue itself, this result seems intuitive. An

'http://www.commerzbank-arena.de/
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FIGURE 5.8: Selected TLs within a radius of 4000 m around the Commerzbank
Arena Frankfurt (green marker).

exception is the road segments around marker A. They seem oddly far away
from the venue and do not seem to be part of any incoming route. Are they
wrongly classified? A manual analysis of the traffic behavior shows a rather
clear impact of events on these locations (see Figure 5.10). Although the mean
line is less obviously different than in the previous examples, the specific event
impact is visible in the data. Because we used the DTW as a distance measure,
the event and non-event days are separable by the classifier. An explanation is
found on the website of the arena, where they give advice on how to reach the
stadium by car. They mention three official parking lots (marker P1, P2, and P3)
and refer to additional parking space within the area around A. From the web-
site (own translation): “...within the area of Lyonerstrafle, Herriotstrafle and
Hahnstrafe, you can find additional parking...”. The impacted road segments

are part of the Lyonerstrafie, which explains their behavior.

When reducing the threshold to > 0.85 (Figure 5.9ii), additional road segments
get involved (marker B). Those lead directly to the P1 parking lot, which is a
possible explanation why people would use those road segments to before the

game starts.
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FIGURE 5.9: Venue: Commerzbank Arena Frankfurt. (5.9i) f-measure > 0.90.
(5.9ii) f-measure > 0.85. (5.9iii) f~measure > 0.80. (5.9iv) f-measure > 0.75.

Figure 5.9iii and 5.9iv show further reduced thresholds (> 0.80 and > 0.75, re-
spectively). As already seen with the results above for the Olympic Stadium in
Berlin, the further we reduced the thresholds, the more likely get misclassifica-
tion. The TL at marker C in Figure 5.9iii points directly away from the venue. Its
traffic behavior is shown in Figure 5.11. The TL shows similar behavior during
event and non-event days, and a clear distinction based on traffic observation is
difficult to perceive. A possible explanation for why it shows event-specific be-
havior could lie in the side effects from traffic on other incoming road segments
due to, for example, blocked intersections. However, more specific conclusions
would require a domain expert that knows the road segments and their behav-

ior during soccer games in Frankfurt.
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FIGURE 5.10: Venue: Commerzbank Arena Frankfurt. Traffic during event and
non-event days for the TL at marker A in Figure 5.9i (TL 13/5/41077). y-axis:
difference in FreeFlowPercentage compared to the model on non-event days.
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FIGURE 5.11: Venue: Commerzbank Arena Frankfurt. Traffic during event and
non-event days for the TL at marker C in Figure 5.9iii (TL 13/2/23489). y-axis:
difference in FreeFlowPercentage compared to the model on non-event days.

5.2.2.3 Signal Iduna Park Dortmund

Around the Signal Iduna Park in Dortmund, we captured a total of 131 Traf-
fic Locations within a selected radius of 4000 m (see Figure 5.12). Of these TLs,
18 showed a significantly different behavior during soccer games. Figure 5.13
shows the results for the K-NN model for different thresholds. In this example,
the road segments with the highest f-measure are those that are not directly in
front of the venue, but point toward it. To get to the stadium, drivers have to
cross the intersection at marker A and head toward the venue. As this inter-
section is highly used by incoming traffic, these results seem reasonable. The
result for TL 13/2/24373 at marker B is less intuitive. Its traffic behavior is
shown in Figure 5.14. Although the traffic behavior varies significantly during

event days, its different behavior compared to non-event days is obvious in the
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FIGURE 5.12: Selected TLs within a radius of 4000 m around the Signal Iduna
Park Dortmund (green marker).

FIGURE 5.13: Venue: Signal Iduna Park Dortmund. (5.13i) f-measure > 0.90.
(5.13ii) f-measure > 0.85. (5.13iii) f~measure > 0.80. (5.13iv) f-measure > 0.75.

data. An explanation is, again, found on the venue website? where the B54 (TL

13/2/24373 is a part of it) is suggested as an incoming route for people arriving

from the south. The road segment ends at an intersection where people leave

the B54 to get to the venue. The results up to a threshold of 0.80 look reasonable,

knowing that the parking lots for this stadium are located north and east of the

venue, which explains the traffic in that area. Below a threshold of 0.80, we see

the first questionable results at marker C in Figure 5.13iv, where TLs are iden-

tified that seem to point away from the venue. This means that, compared to

the other venues, we see intuitively reasonable results up to a threshold of 0.80,

’https://www.signal-iduna-park.de/
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FIGURE 5.14: Venue: Signal Iduna Park Dortmund. Traffic during event and
non-event days for the TL at marker B in Figure 5.13i (TL 13/2/24373). y-axis:
difference in FreeFlowPercentage compared to the model on non-event days.
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FIGURE 5.15: Selected TLs within a radius of 4000 m around the Mercedes-
Benz Arena (green marker).

which is more than for the other venues. One could argue that the Signal Iduna

Park in Dortmund is the biggest German first league soccer venue in Germany,

with a capacity of approximately 81000 visitors. This could be a reason why

event traffic is more explicitly noticeable in this area.

5.2.2.4 Mercedes-Benz Arena Stuttgart

Around the Mercedes-Benz Arena in Stuttgart, we captured 152 TLs in total (see

Figure 5.15) within the given radius. Of these, 27 showed a significantly differ-

ent behavior on event days compared to non-event days. Figure 5.16 shows the

results for the K-NN model for different selected thresholds. Again, similar to
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FIGURE 5.16: Venue: Mercedes-Benz Arena Stuttgart. (5.16i) f-measure > 0.90.
(5.16ii) f-measure > 0.85. (5.16iii) f~measure > 0.80. (5.16iv) f-measure > 0.75.

the results for Signal Iduna Park the road segments with the highest f-measure
(Figure 5.16i) are those that are obviously part of incoming routes to the venue.
The only questionable results are those at marker A in Figure 5.16i, as the seg-
ment is pointing away from the venue and does not seem to be of any obvious
incoming route. It still results in an f-measure of 0.91, a recall of 0.83, and pre-
cision of 1.0. These results are remarkable, because the high precision means
that, all the times that the TL showed a significantly different behavior, a soccer
game happened. Figure 5.17 shows the traffic behavior on this specific TL (TMC
code: 13/2/54812). The data reveal, on average, a lower FFP on event than on
non-event days (red mean line). During event days, the mean never reaches
the O-line which means that it always shows more congestion than normally,
which probably leads to the classification result. However, compared to other
TLs that have been analyzed so far (see above), this road segment also shows
severe fluctuations during non-event days. Is this a common phenomenon in
that venue? For comparison, we analyze the TrafficLocation directly in front of

the venue (marker B in Figure 5.16i) in Figure 5.18.

The TL shows an f-measure of 0.92, a recall of 1.0, and a precision of 0.86. As
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FIGURE 5.17: Venue: Mercedes-Benz Arena Stuttgart. Traffic during event and
non-event days for the TL at marker A in Figure 5.16i (TL 13/2/54812). y-axis:
difference in FreeFlowPercentage compared to the model on non-event days.
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FIGURE 5.18: Venue: Mercedes-Benz Arena Stuttgart. Traffic during event and
non-event days for the TL at marker B in Figure 5.16i (TL 13/2/54812). y-axis:
difference in FreeFlowPercentage compared to the model on non-event days.

expected, the TL shows a clearly distinguishable behavior on event and non-
event days. However, it also shows rather large fluctuations on non-event
days. A possible explanation is given by the INRIX scorecard®. It states that

1,

(own translation): “... Stuttgart experiences the biggest increase in traffic con-
gestion in Europe and is now officially the city with the highest traffic demand
in Germany...”[102]. As Stuttgart is one of the most congested cities in Germany,

fluctuations, independent of events, seem to be the norm.

Further lowering the f-measure threshold for selecting road segments in Figure
5.16 shows similar results as seen in the examples above. Additional road seg-
ments get selected (see C in Figure 5.16ii and D and E in Figure 5.16iii). Their
data allow an interpretation of being affected by events. However, a clear de-

cision (especially for D) can only be made by a domain expert from the area.

Shttp://inrix.com/press-releases/scorecard-de/
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FIGURE 5.19: Selected TLs within a radius of 4000 m around the Benteler-
Arena Paderborn (green marker).

Further reducing the threshold to > 0.75 lead to misclassification (see F in Fig-
ure 5.16iv) of road segments that are obviously not involved in any incoming
routes to the stadium. In general, results for this venue show the applicability

of the approach in dense inner city scenarios with very high traffic fluctuations.

5.2.2.5 Benteler-Arena Paderborn

Earlier discussions have shown that the impact on traffic highly depends on the
venue. A good example of this is the Benteler-Arena in Paderborn. The arena is
in a more rural area than those above. In total, we captured 27 Traffic Locations
within the selected radius of 4000 m (see Figure 5.19). Of these 27 TLs, none
show a significant congestion behavior over the time of our analysis. Figure
5.20 shows the f-measure for all selected TLs (ordered by f-measure) showing that

none of them reach a value > 0.75. As an example, Figure 5.21 shows the traffic

Performance for Inbound Segments
1.0

F—Measure
o
3]

FIGURE 5.20: Venue: Benteler-Arena Paderborn. f-measure of all TLs within the
radius (sorted by f-measure).
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behavior of the TL right in front of the venue on the direct path to the venue
parking lot. As seen in the graph, there is no significant traffic congestion on

event or non-event days. Additionally, manually analyzing traffic in the area
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FIGURE 5.21: Venue: Benteler-Arena Paderborn. Traffic during event and non-
event days for a TL directly in front of the venue (TL 13/5/41077). y-axis:
difference in FreeFlowPercentage compared to the model on non-event days.

reveals that there are no noticeable traffic congestion events in the area around
the venue. The capacity of the road network seems to be capable to cover an
(eventual) additional event traffic. The most intuitive explanation probably lies
in the size of the arena. Whereas the Signal Iduna Park accommodates approx-

imately 81000 visitors, the Benteler-Arena can accept (only) 15000 visitors.

5.2.2.6 Mercedes-Benz Arena Berlin

As the first “mixed” venue in our analysis, we analyzed traffic around the
Mercedes-Benz Arena in Berlin. During the time of our analysis we observed 66
events happening. Owing to gaps in our traffic database, we ended up with 48
events for which both event and traffic information were available. Although
we lost around one quarter of all the events in our final dataset, this amount
is still significantly higher compared to 11-12 games observed at the soccer
venues. In total, we captured 285 Traffic Locations within a radius of 4000 m
(see Figure 5.22). The maximum f-measure observed is 0.72 for one specific TL.
That result is significantly lower than for most of the other venues discussed
above. Further reducing the threshold to 0.65 results in five TLs with an f-
measure above that threshold (see figure 5.23). The results show that the most
correlated TL (marker A in Figure 5.23i) is directly in front of the venue, which

is similar to our observations at the other venues. Although its final f-measure
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FIGURE 5.22: Selected TLs within a radius of 4000 m around the Mercedes-
Benz Arena in Berlin (green marker).

FIGURE 5.23: Venue: Mercedes-Benz Arena Berlin. (5.23i) f-measure > 0.65.
(5.23i) f-measure > 0.70.

value is much lower than for similar TLs in the previous examples, its selection
as the most impacted seems plausible. The additional TLs by further reducing
the threshold do not seem to be far off the expectations for incoming route seg-
ments either, except for the TL at marker B in Figure 5.23ii. Below a threshold
of 0.65, the results become inconsistent with the expectations and obvious mis-
classifications appear. However, analyzing traffic behavior in detail explains
the weak classification result. Figure 5.24 shows the traffic behavior at the road
segment with the highest classification result (marker A in Figure 5.23i). Al-

though the mean line is slightly lower on event than non-event days, both day
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FIGURE 5.24: Venue: Mercedes-Benz Arena Berlin. Traffic during event and
non-event days for the TL at marker A in Figure 5.23i (TL 13/5/26927). y-axis:
difference in FreeFlowPercentage compared to the model on non-event days.

categories show very high variations in traffic.

A possible explanation is the road infrastructure around the venue. We have
seen drastic influences of the infrastructure, especially its ability to cope with
varying traffic load scenarios, on the event traffic observations. Although pos-
sible, it seems unlikely that these results could be explained by the road in-
frastructure only. The suggested approach worked in the previous examples in
dense inner cities scenarios and even in cities with very high traffic volume (see

Olympic Stadium Berlin or the Mercedes-Benz Arena in Stuttgart above).

Another explanation lies in other venues within the radius of the analysis that
might interfere with the observations for this particular one. Especially in Berlin,
where many PSEs are hosted, the density of venues is very high. Figure 5.25
gives an impression of venues in the area (green markers are venues, and the
Mercedes-Benz Arena is marked in magenta). In total, we list 77 venues within
a radius of 4000 m around the Arena. This list is derived from our industrial
event dataset and only shows those venues for which the company sells tick-
ets. In reality, there might be even more venues. Events happening at the same
time in different venues could result in additional load on the infrastructure at
times that are counted as non-event times. That leads to a reduced performance
of the classifier. For example, on Thursday 28/05/2015, which is counted as a
non-event day for the analysis, we observed severe traffic congestion for the
TL shown in figure 5.24 (dashed black line, starting at —81% ). On that day
three different events happened in the direct vicinity (closer than 1000 m ra-

dius) of the Mercedes-Benz Arena. Two of them were concerts (Rhodes played
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FIGURE 5.25: Venues around the Mercedes-Benz Arena in Berlin. Green
marker: venues. Magenta: Mercedes-Benz Arena Berlin.
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FIGURE 5.26: Avgdelay variation over time attributes within a radius of 1000
m around the Mercedes-Benz Arena Berlin.

at Berghain and Leslie Clio at the Postbahnhof Club) and one cultural event at the
Kriminaltheater. Each one of these could have caused the observed delay. Ow-
ing to such interferences, a clear separation between event and non-event days

solely by traffic observations is difficult to achieve.

A third possible explanation lies in the event type diversity. In contrast to the
tirst venues that mostly focused on soccer games, this venue hosts a mixed
type of event categories (concert, culture, musical&show, and sport). We have
seen that those categories of events show a different impact on traffic. For the
discussion, we take the example from Chapter 4, Figure 4.5ii (shown here again

in Figure 5.26 for the convenience of reader). The graphs show that among
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the categories, the observed traffic impact varies. As their specifics have been
discussed earlier, the general observation has a huge impact on the performance
of the classifier: The only information available to the classifier is the presence
of an event, independent of its category. That implies that its performance is
highly dependent on the consistency of the event impact. The more permanent
is the impact of events on traffic, the better the classification result becomes. To
further analyze this assumption, we discuss the other two mixed venues in the

following.

5.2.2.7 LANXESS Arena Cologne

Similar to the Mercedes-Benz Arena in Berlin, the LANXESS Arena in Cologne
shows comparably weak classification results. In this venue, we observed traffic
on 160 TLs within a radius of 4000 m for 33 events. The highest observed f-
measure for one TL is 0.71. Figure 5.27 shows the results for setting the threshold
to 0.65. The road segments at marker A are the two TLs with an f-measure >

Befrieh Skl

FIGURE 5.27: Venue: LANXESS-Arena Cologne (green marker). F1-measure >
0.65.

0.7 and all others are in the range 0.65-0.70. In total, we find five TLs > 0.65.
From these five TLs, at least those at marker B seem (to an observer who is
not a local expert) to be wrongly classified as an incoming route because they
point away from the venue. Traffic on the TL with the highest f-measure looks
similar to the example of the Mercedes-Benz Arena Berlin, shown in Figure 5.28.

Additionally, in this example, traffic varies significantly on event and non-event
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FIGURE 5.28: Venue: LANXESS Arena Cologne. Traffic during event and

non-event days for the TL at marker A in Figure 5.27. TL with the highest

f-measure (TL 13/5/40103). y-axis: difference in FreeFlowPercentage compared
to the model on non-event days.

days and a separation is difficult to achieve. In Cologne, the venue density is
significantly high. Figure 5.29 shows the spatial impact radius of the analysis

(TLs in blue, green markers are venues, LANXESS Arena marked in magenta).
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FIGURE 5.29: Selected TLs within a radius of 4000 m around the LANXESS
Arena in Cologne. LANXESS Arena: green marker with magenta. Venues:
green markers. Selected TLs: blue.

We find in this example, compared to the Berlin example, fewer venues in
the immediate vicinity. However, north of the LANXESS Arena, there is the

Messegeliinde Koln, where many events are hosted. In addition, most of the
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Concerts at the LANXESS Arena in Cologne

Miley Cyrus -+ James Last ---- QUEEN Bryan Adams

diff(FFP) in %
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FIGURE 5.30: Venue: LANXESS Arena Cologne. Traffic during four exem-
plary concerts at marker A in Figure 5.27. Miley Cyrus (26/05/14), James Last
(26/04/15), QUEEN (29/01/15), Bryan Adams (09/12/14).

venues are in the inner city (west of the arena). As there are only a number of
bridges to cross the river to get to the inner city, events happening there might

also influence traffic in a wider area.

This arena hosted events of four different categories (concert, misc, musical&show,
and sport). Whereas all of them showed severe variations in the observed
traffic behavior, the concert category showed the highest fluctuations. Figure
5.30 shows traffic on the same TL as in Figure 5.28 for four selected concerts.
Whereas traffic before Miley Cyrus on 26/05/14 and before the James Last on
26/04/15 do not show any significant congestion behavior on this specific TL,
traffic before the concert of QUEEN on 29/01/15 and Bryan Adams on 09/12/14
is strongly affected. There are many possible reasons for this phenomenon, as
we have discussed before. In Chapter 6 we will analyze this phenomenon in de-
tail. At this point, these observed variations between events drastically reduce

the performance of the classifier and explain the poor results for this venue.

5.3 Incident Study

We have seen that the shown approach works for soccer games based on traffic
flow information. Unfortunately, this type of dataset is usually not available

to the public. What is usually available is incident data (as described in Chapter
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3.1.2), which is used in everyday navigation devices*. To get an idea of its appli-
cability for analytics use cases, we conducted the study again using the Incident

dataset for two soccer venues in Germany.

During the study we observed traffic around the Moenchengladbach Arena and
the Wolfsburg Arena in Germany. As a traffic measure, we collected delay time
information in 15 min intervals for all Traffic Locations within a radius of 4000 m
around the venues. The Traffic Locations were based on the NDS digital map (as
described in 3.1.2). As some Traffic Locations in this map format are very short,
they tend to show high fluctuations in their traffic behavior. We therefore de-
cided to filter out road segments that are shorter than 30 m. To handle varying
times of events, we implemented the Absolute Timespan of Interest concept (see
5.1.1.1) to limit TrafficTime variances. Unfortunately, this concept reduced our
event database significantly. However, as the incident data does not allow a co-
herent time information for each Traffic Location a more data-preserving method
such as the Relative Timespan of Interest was not applicable in this setup. The re-
sulting TOIs for both venues were Saturday 13:30-15:30 and 17:30-19:30 for the

start and end time, respectively.

In total, we observed 37 events over a time period of one year and ran the ex-
periment on more than 1000 road segments in total within the vicinity of both
venues. The classification was performed using an ANN in combination with
a simple brute force parameter optimization technique. The results were eval-
uated by a leave-one-out cross-validation approach resulting in the following
metrics: precision, recall, and f-measure for each road segment. The study has
been published in [2]. In Wolfsburg, the road segments with the highest f-
measure are those on the bridge directly in front of the venue (marker 1 and
2 in Figure 5.31). As this is the shortest way to reach the venue from the south-
bound direction, these results seem intuitively reasonable. What looks odd are
the road segments at level 4. They seem to point away from the venue. Are they
wrongly classified? Marker 3 shows a parking lot that people frequently use to
reach the venue. What is not visible in the image is the fact that during games,
the area between markers 3 and 4 can also be used to park cars. Those road
segments at marker 4 are the last possible way to reach those parking spots and

are frequently used by visitors. The results therefore seem reasonable.

‘e.g. https://www.tomtom.com/de_de/drive/maps-services/live-services/
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FIGURE 5.31: Venue: Volkswagen Arena in Wolfsburg. f-measure for a subset
of the roads around the Volkswagen Arena on a color scale from yellow (f-
measure=0) to red (f-measure=1). Source:[2]
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£

FIGURE 5.32: Venue: Borussia-Park in Moenchengladbach. f-measure for a
subset of the roads around the Borussia-Park on a color scale from yellow (f-
measure =0) to red (f~measure=1). Source:[2]

For Moenchengladbach the situation is similar. Figure 5.32 shows the results
using the f-measure as metric. The road segments at marker 1 and 2 are pointing
directly toward the venue and are rather obviously part of the incoming route.
At marker 3, we find an intersection that connects the incoming routes to a rural

road that leads directly to the venue.

We have seen that Incident data can successfully be used for data analytics tasks.
However, the data source itself requires significant preprocessing effort. The in-
ability to retrieve coherent information about the traffic state at a road segment
in combination with dynamic referencing methods make it extremely difficult

to use.
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5.4 Discussion and Conclusion

From the results above, we have seen that finding the spatial impact zone of
events is possible by applying the presented classification approach on traffic
data. For most of the road segments that were identified by the classifier as
potentially affected by PSEs, we found an intuitive explanation that justified

the result.

However, we have also seen the limitations of this approach. Although it shows
good results for soccer games in the flow study, its performance lowered drasti-
cally for the “mixed” venues. For those venues, the results were less straight-
forward to interpret. None of the observed road segments showed an f-measure
that was comparable to the results from the soccer stadia. However, at the same
time, we have also not seen any false positives. Whenever a road segment got
an f-measure above a reasonable threshold, we were able to find an explanation
by which it could actually be affected by PSEs in that area. The threshold itself
was dependent on the venue location, which was expected because the traffic
network plays an important role. For each soccer venue, we were able to de-
tine a threshold that seemed reasonable for the given results. In future studies,
we could reuse that threshold and build an automatic procedure to detect the

affected spatial region.

Another interesting result is the performance of the Incident study. Although the
information value of the data source is much lower, we were still able to detect

affected road segment.

In summary, we can conclude three different statements from this chapter:

1. Traffic incident data is useful for analysis, up to a certain extent.

2. Soccer games are the most stable event category in our database.

3. PSEs vary drastically in their specific impact on traffic.
Statement 1 is of major importance. Throughout the literature, we find a huge
collection of articles that describe the use of traffic information for a long list

of use cases. So far, to the best of our knowledge, none of them (except [2])

has shown the use of Incident data for data analysis. At the same time, Incident
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data is used in for all types of navigation devices today and it is possible to
retrieve this data in vast amounts. However, it comes with great challenges:
1) Its information value is limited (you only get information about drastically
severe congestion). 2) As it is used in modern navigation devices, it mostly
uses dynamic referencing formats such as OpenLR, which makes it impossible
to retrieve consecutive information for fixed Traffic Locations. We have shown
in this chapter that this data source can be used in certain cases, but that its

limitations are severe.

Statement 2 is a direct result of our analysis. The more stable the event impacts
are, the better the presented approach works. Our results for soccer games are,
were congestion was observed at all, satisfyingly independent of the road net-
work infrastructure. This implies a very consistent behavior of soccer games
regarding their impact on traffic. Possible reasons for this are the same target
group of people, probably similar mobility choices of those people, and a sim-
ilar number of visitors for most of the games. This observation also possibly
explains why current literature about the impact of PSEs on traffic mostly focus

either on megaevents or soccer games only (e.g., [103, 104]).

Statement 3 is an extension of what we have already seen in previous chapters.
In Chapter 4, we observed that the event impact of different categories varies .
However, from our spatial data analysis, we can conclude that those variations
are much more drastic on the road segment level. This behavior cannot be ex-
plained by the category of events only, as events of the same category might also
show very different behavior (see the soccer examples shown in Figure 5.6). To
further analyze their impact on specific road segments, more information about
the event and/or the road network is required. In the following chapters, we

will analyze the value of additional information about events in detail.






Chapter 6

Social Media for Event Impact

Explanation

In the previous chapters, we have seen that the impact of PSEs on traffic varies
drastically. Whereas soccer games tend to show a rather stable behavior in this
regard, other categories highly fluctuate in the amount of related traffic conges-
tion. But what is the describing attribute that allows us to predict whether an
event is going to have a huge impact on traffic or not? How can we know in ad-
vance that a concert of QUEEN results in more traffic congestion than a concert

of Miley Cyrus (example taken from Figure 5.30)?

Possible intuitive explanations for varying traffic impact have been discussed
in Chapter 4. Although that chapter mostly focused on influencing factors that
can be expressed directly, such as venue location, daytime variation, day of week
variation, and event category we now focus on latent measures of events. Such
measures describe the overall popularity of an event (attractiveness), the choice
of modality of visitors, and much more. The focus of this chapter is to analyze
the possibilities to find a describing measure for the expected traffic impact size

of events.

Unfortunately, there is no such measure in existence today. What does exist (in
vast amounts) is information about the online popularity of events [63]. The lit-
erature has shown that online popularity measures, such as number of results in
Google or number of likes on Facebook, can be used to describe the attractive-

ness of events to a certain extent, at least in other domains (see [4, 6]). Although

93
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this approach seems appealing, the question remains as to whether the obtained

popularity measures are suitable predictors for the impact on traffic as well.

This part of the thesis aims to answer this question in detail by analyzing traffic

and event data around the two mixed venues from the previous chapter:

1. Mercedes-Benz Arena Berlin, Germany

2. LANXESS Arena Cologne, Germany

This chapter is structured as follows: We first present our data collection pro-
cess and describe the resulting dataset in detail. We then evaluate the relevance
of the collected online metrics for the observed traffic impact in the next section.
Based on these results, in the next section, we build different prediction models
and discuss our results. In the following section we propose an alternative ap-
proach for the spatial challenge based on our findings. This chapter closes with a

discussion of our results, lessons learned and open issues.

6.1 Dataset Description

The dataset used in this research consists of two distinct sets of information:
event information from online sources and traffic measures during event hap-

penings. Both are presented in the following sections.

6.1.1 Online Metrics

For our research, we applied a very similar strategy as that in [4, 6] and collected
six different online metrics: existence of a Wikipedia page HasWikipediaPage,
number of likes on Facebook FacebookLikes, number of Facebook talks from the
Bing APT' FacebookTalks, number of results in Bing BingHits, number of follow-
ers on Twitter TwitterFollower, and the existence of a Youtube page YoutubePre-
sent. We collected these metrics via different APIs from the web for all events
that we observed between 05/2014 and 05/2015 (the timespan for which we
have traffic data).

"https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api
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Although this data collection was done automatically, we had to check parts
of the datasets manually for quality assurance. Occasionally, the APIs did not
result in any meaningful values or did not return any data at all. The reasons for

that were mostly ambivalent artist names or spelling mistakes in our datasets.

Events with more than one artist need special preprocessing. A possible way to
handle those situations could be to only collect information for the main act or
the most famous artist. As our dataset contains many sporting events, in which
usually two teams compete against each other, and the most prominent team is
hard to identify, we decided to handle such cases differently. We collected on-
line metrics for all teams or artists and merged the information using the mean
of the collected values. Using the mean as aggregation instead of the sum re-
duces the chance to overestimate the size of an event, especially for sporting
events where only limited capacities for the guest team are available anyway:.
The shown approach, nevertheless, could be easily adapted to use different ag-

gregation functions.

A challenge arises from the potentially time-dependent variably of event popu-
larity. A singer might be highly popular at a certain point in time, but different
occurrences might affect this popularity in a positive or negative way. One pos-
sibility to alleviate these affects would be to collect data right before the event
happens. This would of course not consider that tickets are usually bought far
ahead of an event, at least for larger events. Another possibility would be to
track the popularity over time and give it a standardized value over the entire
timespan. Because many of the collected attributes (e.g. likes on Facebook) do
not come with a history, this approach would necessitate tracking all events
in real time. For that, prior knowledge of all upcoming events to be analyzed
would be needed. As we ran our analysis on historic traffic data, none of the
mentioned approaches were feasible for us. In our case, we collected all infor-
mation in a single shot in June 2016 (past our study time frame). This gives
us a snapshot of the popularity of events at this particular point in time, but of
course does not allow us to react to ups and downs of artist popularity. We leave

it to future work to re-run this study based on more real-time online sources.

Until this point, all the described metrics were collected from social media
sources. We added two additional features based on our findings in Chapter

4: the category of an event EventCategory and a categorization of weekdays into
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five distinct classes (Mo-Th, Fr, Sa, and Su) DayCluster, as introduced in Chap-
ter 4.

6.1.1.1 Overview

For the Mercedes-Benz Arena we collected information for 48 events for which
event and traffic information was available to us. From these events, 33 artists
had their own public Youtube? account and all of them were mentioned at

Wikipedia®. To get a rough estimate about the distribution of the data figure
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FIGURE 6.1: Venue: Mercedes-Benz Arena. Online metric overview.

6.1 gives an overview about the collected metrics. They show large differences
between the collected datasets. For example, the TicketSales range from 0 for
some sporting events, where the industrial provider apparently did not sell any
tickets for, up to 11774 for a concert of Herbert Gronemeyer. At the same time,

FacebookLikes range from 0 up to almost 30 million (a WWE wrestling match).

Similar behavior can be found for the LANXESS Arena. For this venue we col-
lected data for 33 events. For 29 events we found a Wikipedia page, and 23 events
were represented on Youtube. The overview of the other collected metrics is

shown in figure 6.2. The online metrics at this venue also vary significantly. Es-

Zhttp://www.youtube. com
*https://www.wikipedia.org/
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FIGURE 6.2: Venue: LANXESS Arena. Online metric overview.

pecially Twitter ranges from 8000 for a sporting event and approximately 32000
k for a Miley Cyrus concert.

6.1.2 Traffic Measures

The impact on traffic can be measured in various ways. In the previous chap-
ters, we mostly focused on one single metric to describe the traffic state on the
road. Following this approach, in this study we defined the impact on traffic
using two different measures: the mean and variance of the free flow percentage
(FFP) over a predefined timespan. We followed the same approximation of the
event time window that we introduced in Chapter 4 and analyzed the traffic

during the 2 h time window before the event start.

6.2 Feature Relevance

As a first step in this study we analyzed the relevance of our collected event
metrics for the observed traffic states. For that kind of study general feature se-
lection algorithms (FSA) are applicable (see [105] for an extensive overview about

FSA in general).
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FSAs are usually separable into those that address two distinctive subproblems:
minimal optimal problem and all relevant problem. A minimal optimal problem in
feature selection focuses on finding the minimum set of attributes that result
in the best classifier for the problem state. An all relevant problem, however,
focuses on identifying all relevant features that describe a given problem state

[106]. Our application belongs to the second category.

There is a long list of different algorithms that focus on finding all relevant
features in the literature [107-110]. Many of them are based around ensembles
of decision trees. They mostly work quite similarly to each other, differing in

their performance and the implementation of the statistical test [106].

For our analysis, we picked the Boruta (see [111, 112]) algorithm using the
Boruta R package [113]. Boruta is based on a random forest classifier and its
essential idea is rather straightforward: For each attribute, a shadow attribute
is generated by permuting its values randomly. These shadow attributes get
merged to the system. If the importance of a variable exceeds the importance
of its shadow variable after building the classifier the original attribute gets con-

sidered as important.

In our scenario, we used all attributes described in 6.1.1 and ran the study once

for each traffic measure described in 6.1.2.

6.2.1 Experimental Setup & Results

We split our analysis into two separate parts: First, we analyzed the importance
of the selected attributes on traffic observations within three fixed radii (500,
1000, and 2000 m) around the venues. Second, we took the results from the
spatial study (see Chapter 5) into consideration and applied the same method
using the FreeFlowPercentage (FFP) on TrafficLocations (TL) that showed the high-

est event-related impact around the venues.

For all the experiments, we created a dataset containing all online metrics and
one of the traffic measures as a target variable. Because the used attributes show
very different distributions, we normalized all of them to a [0,1] range before
running the Boruta algorithm. The results are presented per venue in the next
sections. We also collected information about feature relevance for a venue in

Hamburg, Germany. These results are shown in Appendix B.
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6.2.1.1 Mercedes Benz Arena Berlin

Some characteristics of the Mercedes-Benz Arena in Berlin have already been
given in the previous chapter. We have seen that it is located directly in the
inner city of Berlin (city east), surrounded by other venues, and shows high

variations of observed traffic during events. At first, we ran the study for the
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FIGURE 6.3: Venue: Mercedes-Benz Arena Berlin. Attribute relevance ranking
for traffic observations within 500 m radius. y-axis: Boruta importance mea-
sure.

mentioned three different radii. The results are shown in Figures 6.3, 6.4, and
6.5.

The results for the 500 m radius using the mean as traffic measure (see Figure
6.3i) show that only two features that were confirmed as important: TicketSales
(median Z score: 6.74) and BingHits (median Z score: 2.22). However, the over-
all median Z score of TwitterFollower, YoutubePresent, and DayCluster are rather
similar to the selected measures. For the variance as a traffic measure (see Figure
6.3ii), the results change. TicketSales is by far the one with the highest median
Z score of 13.69, and in total, five other features also get marked as important
by the algorithm: Twitter (median Z score: 6.23), BingHits (median Z score: 5.31),
DayCluster (median Z score: 5.01), YoutubePresent (median Z score: 4.08), and
EventCategory (median Z score: 2.88).

In total, the overall median Z scores of all attributes, except TicketSales for the

variance as a traffic measure, are rather low. However, it stands out that most of
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the attributes that show any significant importance to the observed traffic vari-
ables are event-related. In particular, TicketSales shows a noticeable predictive
power for the traffic situation that is higher than attributes that describe the reg-
ular traffic variations (e.g., DayCluster). This leads to the assumption that in the
selected radius around this venue, events show an impact and change traffic

behavior above its regular fluctuations.
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FIGURE 6.4: Venue: Mercedes-Benz Arena Berlin. Attribute relevance rank-
ing for traffic observations within 1000 m radius. y-axis: Boruta importance
measure.

Within the 1000 m (see Figure 6.4) radius, all analyzed attributes lose signifi-
cance. A possible explanation for this is that the radius includes more segments
that are not affected by events, which would lead to a reduced significance of
event-related attributes. At the same time, it seems that the radius also con-
tains insufficient non-affected road segments to emphasize day-to-day traffic
variables. This effect changes for the 2000 m radius up, to a certain extent (see
Figure 6.5). For the variance as a traffic measure, we see a strong increase in the
DayCluster attribute, which indicates that the regular behavior during different

days of the week becomes dominant.

In summary, it seems that there is event-related traffic around the Mercedes-
Benz Arena in Berlin, which can at least partly be described by some of the
selected event-specific attributes. To alleviate other influencing factors and to
focus on the event-specific parts, we include the results from our previous study

in Chapter 5 in the analysis. We have seen that some road segments showed
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FIGURE 6.5: Venue: Mercedes-Benz Arena Berlin. Attribute relevance rank-
ing for traffic observations within 2000 m radius. y-axis: Boruta importance
measure.

a higher tendency to change their traffic patterns during events than others.
Those segments have been discussed in Chapter 5.2.2.6. For our analysis, we
picked the most highly correlated road segment from the previous study (TL
13/5/26927), as shown at marker A in Figure 5.23i. For this TL we collected
traffic data for all events and ran the same approach as presented in the section

above. The results are shown in Figure 6.6.
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For this TL, nearly all selected attributes become relevant when considering the
mean as a traffic measure. The only exception is the presence of a Wikipedia
page. This can easily be explained, as we found a Wikipedia page for all events
that happened in this venue during the timeframe of our analysis. It therefore
does not contain any relevant information and can be ignored. For all the other
attributes, event-specific ones dominate over the non-event-specific ones. The
event-specific attributes with the highest median Z score is TwitterFollowers, with
a score of 9.11. The first non-event-specific attribute is DayCluster, with a mean
Z score of 4.6. For the variance as a traffic measure, only one attribute was de-
clared as relevant: DayCluster. This finding is interesting, as it indicates that the
overall traffic density on this road segment is connected to the events, while its

variation seems to be based more on daily traffic pattern fluctuation.

6.2.1.2 LANXESS Arena Cologne

Similar to the Mercedes-Benz Arena in Berlin, the LANXESS Arena in Cologne
is close to the city center and has similar properties. For this arena, we analyzed
47 events that happened within the timespan of our analysis. The results of our
studies for the mentioned three different radii are shown in Figure 6.7, 6.8, and
6.9.
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FIGURE 6.7: Venue: LANXESS Arena Cologne. Attribute relevance ranking for
traffic observations within 500 m radius. y-axis: Boruta importance measure.
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For the 500 m radius using the mean traffic measure, five attributes were iden-
tified as relevant: DayCluster, TwitterFollower, FacebookLikes, BingHits, and Tick-
etSales. Of these DayCluster, with a mean Z score of 9.87 and TwitterFollower,
with a mean Z score of 7.78 are the most relevant. For the variance as a traffic
measure (see Figure 6.7ii) only three variables are marked as relevant: Day-
Cluster, BingHits and TwitterFollower. It is interesting to observe that the results
between the mean and variance traffic measure do not look drastically different.
Compared to the results for the 500 m radius around the Mercedes-Benz Arena,
where the relevant attributes differ significantly, the choice of traffic measure
does not significantly affect the result. A possible explanation could be that
events may lead to a higher variance in traffic than around the Mercedes-Benz
Arena. Another interesting fact is the dominance of the DayCluster for both
traffic measures. It seems that around this particular venue, the traffic varia-
tion due to day-to-day traffic is more severe than around the Mercedes-Benz
Arena. Within the 1000 m radius (see Figure 6.8), DayCluster and TwitterFol-

Feature Selection Result Feature Selection Result

& &

important == rejected important == rejected
e shadow e shadow
o _| o _|
o~ N
Q (5]
o o
c =
g o . g o _| o
o — P S — -
a 8 | S ,
E *Q;Ti?i 1S 7i§5
O | 7 pmenms ST - e T T g W

© 4 OT—E.TUO‘*ALO o - 7-9--!-!!*
= C - MR

o o

— — —

O L R L 1 S N S S
CCE OV >N N N = e CEC >SN0 O NNV -
SEgPicgifisg SEEEIEZEaE
3285039232432 s 3S3PLE2DJdS 2%
S2a56RLBEZFOQ 8o 2RSS CESBQF
c3s388%5cmd S > T80 03S@DAET >
ST L2y 98 = o i ® QT 2 9q = oc s
S c 32 o c k- c Q 0 L 3scagshk Q<0
5:;80’ 2] Q m:gw%§ Qo »

momu_> (] om>LL(n [
>_€U w L = w © w
T T
(1) Traffic metric = mean. (11) Traffic metric = variance.

FIGURE 6.8: Venue: LANXESS Arena Cologne. Attribute relevance ranking for
traffic observations within 1000 m radius. y-axis: Boruta importance measure.

lower remain dominant for both traffic metrics and most of the other measures
become rejected (except for FacebookLikes but with a very low median Z score).
This trend persists for the 2000 m radius (see Figure 6.9). These results lead
to interesting observations: 1) TicketSales are not that relevant compared to the
Mercedes-Benz Arena. 2) The two dominant features stay the same for all radii.
3) mean and variance traffic measures do not differ as much as for the Mercedes-

Benz Arena.
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FIGURE 6.9: Venue: LANXESS Arena Cologne. Attribute relevance ranking for
traffic observations within 2000 m radius. y-axis: Boruta importance measure.

Again, we ran the study for the most affected TL from the previous chapter.
In this case, we picked TL at marker A in Figure 5.27. The results are shown
in Figure 6.10. Similar to the TL example in Berlin, this one shows significant

importance of most of the event-related attributes. An interesting observation is
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FIGURE 6.10: Venue: LANXESS Arena Cologne. Attribute relevance ranking
for TL 13/2/39689 directly in front of the venue (see marker A in Figure 5.27).
y-axis: Boruta importance measure.

the lower importance of TwitterFollowers. Whereas this attribute was dominant
for the mean traffic measure for all different radii, it is rejected by the Boruta

algorithms for this particular TL.
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6.3 Impact Prediction

The presented feature relevance results show a significance in event-related
attributes. The remaining question is, how important are these attributes to
explain the observed congestions? To gain initial insights to this question we

present, in this section, two different prediction approaches.

The first uses simple linear regression to evaluate the usefulness of different
sets of information for the prediction result. The goal is to evaluate if the infor-
mation sets, that have been identified as relevant, hold enough information to

create reliable predictions.

The second approach focuses on classification-based impact prediction based
on the same types of information sets. The goal for this approach is to evaluate
if the given information sets are useful to classify events into certain severity

categories.

In both studies, we limit our datasets to publicly available online information;

therefore, TicketSales information is excluded.

With both approaches we ran experiments for the same TLs around the venues
as in the studies presented earlier in this chapter. The experimental setups and
results are described in the following sections. The focus was on generating a
first impression of the usefulness of the mentioned information sources. De-

tailed studies using various modeling strategies will be left for future work.

6.3.1 Regression

Following a similar approach as presented in [7, 63], we used linear regression
(LR) models to predict the mean FreeFlowPercentage for the selected road seg-
ments. To evaluate the explanatory power of different information sources, we

developed models that differ significantly in the information they employ.

The DayToDay model focuses on information about the specific day of the week
only. It predicts the observed mean(FFP) by a combination of day of week at-
tribute classes. These classes are the same as described in previous chapters:
Monday-Thursday (Mo-Th), Friday (Fr), Saturday (Sa), and Sunday (Su). For
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the LR, the model is given as:

meanF FP(e) = By~ Bmo—thXmo—tn(€) + BrrXsr(€) + BsaXsale) +
BsuXsu(e) + €(e)

where e is the event, €(e) is the error term, X, (€) is 1 if e is on a weekday
between Monday and Thursday, Xy, (e) is 1 if e is on a Friday, X,,(e) is 1 if e in
happening on a Saturday, and X, (e) is 1 if e is happening on a Sunday.

The second model, the CategoryModel is based on the event category only. De-
pending on the location, we model all event categories as individual attributes.

The model is given by:
meanFFP(e) = [o+ BaXe(e)+ ... + Ben)Xevy () + €(e)

where X, is 1 if event e is of that specific c1 category (e.g., concert), N is the

number of categories, and ¢(e) is the error term.

The third model, the SocialMediaModel, includes the social media metrics dis-
cussed earlier in this chapter. We adapt our model of each TL separately to
those social media metrics that were declared as relevant from the previous

study. The model is given as:
meanFFP(e) = Lo+ Bsm1Xsmi(e) + ... + Bsmm Xsmar(€) + €(e)

where X, is the first relevant social media attribute (e.g., Twitter), M is the

number of selected social media sources, and ¢(e) is again the error term.

To evaluate the performance of the presented models, we also developed a base-
line model called Baseline. That model simply used the average of all observed

event traffic situations in our dataset as a prediction.

6.3.1.1 Experimental Setup & Results

We ran the study for both TLs from the previous section. T'LjjercedesBenz 1S the
one shown in Figure 6.6 with the TMC code 13/5/26927. For Cologne, we se-
lected the 'L oy x pss with the TMC code 13/2/39689 (shown in Figure 6.10 at
marker A) as it is one of the most affected TLs around the LANXESS Arena.
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For both TLs, we selected the same dataset as for the previous study in this
chapter. A leave-one-out cross-validation was performed for each road segment
separately. To fit the model to our data, we followed the method presented in
[7] and selected a fitting via linear least squares. Using the specific models, we
predicted the mean(FFP) from a combination of the shown parameters for each

event. The performance was evaluated using the mean absolute error (MAE).

For the 'L an x ess, the event categories were concert, sport, and musical & show.
The social media attributes that have been selected as being important from the
previous study were BingHits, HasWikipediaPage, and FacebookLikes. However,
for the LR, our analysis showed that the best model was derived using BingHits
only.

For the T'LyjercedesBen=, the event categories were concert, culture, sport, and mu-
sical & show. This time, the social media attributes that have been selected as
being important from the previous study were Twitter, YoutubePresent, BingHits,
FacebookLikes, and FacebookTalks. For this TL, our analysis showed the best per-
formance for the top three attributes BingHits, Twitter, and YouTubePresent and

those were selected for our following results.

The results for the LANXESS Arena are shown in Figure 6.11. They show a
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FIGURE 6.11: Model benchmark for the T L sy xESs-



Event Impact Explanation using Social Media 108

similar performance for all models, although the CategoryModel and the Social-
Media model showed marginally better performance than the Baseline and the
DayToDayModel.

The regression results for the different models are shown in Table 6.1. All mod-

TABLE 6.1: Regression results for the T'Lrqnzess-

Model Factor Estimate Std. Error p-value Multiple R?
DDM  (Intercept) —22.5833 6.6363  0.0023 2.83e—05
Mo-Th  —0.1925 7.3842  0.9794

CM (Intercept) —18.6944 49004 0.0009 0.373
IsConcert —13.9419 6.0920 0.0316
IsSport 5.3565 6.3264  0.4059

SM (Intercept) —19.4475 2.9820  0.0000 0.1849
BingHits —25.4437 10.9034  0.0283

DDM: DayToDayModel, CM:CategoryModel, SM:SocialMediaModel

els show significantly low multiple R? values, especially the DDM and SM. For
the DDM information about the day of week did not seem to be relevant for the
resulting traffic situation, shown by the very high p-value. The same applies
for the isSport category for the CM. Apparently, the use of day classes, event
categories and information from online metrics was insufficient to create an ac-

curate prediction model for the resulting traffic disruptions.

A similar effect can be seen for the Mercedes-Benz Arena in figure 6.12. Again,
the performance of all models seems very similar, of which the DayToDay model

and the SocialMedia model perform slightly better than the others.

The regression results for the different models are shown in Table 6.2. Again,
the regression results show similar Multiple R? values as for the TL;anx£ss,
and the overall attribute relevance for the different event specific information
sources is rather low. For the CM all attributes show p-values that indicate no
statistical significance. For the SM only the presence of a Youtube page seems

to yield valuable information.

The results show that, for both TLs, additional information about the events
did not increase the performance of the selected model significantly. Does this

mean that the phenomenon is not predictable at all?
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FIGURE 6.12: Model benchmark for the T'L yrercedes penz-
TABLE 6.2: Regression results for the T'Lsercedes—Benz-
Model Factor Estimate Std. Error p-value Multiple R?
DDM (Intercept) —15.0750 3.9052 0.0004 0.2843
Mo-Th  —1.9207 4.2285 0.6521
Fr 11.7990 49782 0.0226
Sa  —3.5917 6.3772 0.5764
CM (Intercept) —17.1806 5.5498 0.0035 0.1328
IsConcert  —3.5028 6.3277  0.5829
IsSport 5.1028 5.8206 0.3858
IsCulture 2.3056 8.7749 0.7941
SM (Intercept)  —5.4865 24774 0.0324 0.3107

Twitter —0.6060 8.1965 0.9414
BingHits —11.4913 6.8525 0.1012
YoutubePresent —11.1108 2.8728 0.0004

DDM: DayToDayModel, CM: CategoryModel, SM: SocialMediaModel

Of course, different modeling approaches could possibly improve the perfor-
mance. Nonetheless, the predicted attribute mean(FFP) also poses great chal-
lenges. The FFP is already the result of an aggregation of traffic information
that has been preprocessed from the traffic data provider. During that aggre-
gation process, an information loss is very likely. Additionally, the meanFFP
metric has been calculated over varying time windows, which also adds noise

to the attribute. As a conclusion, the low prediction performance is probably
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also highly affected by the prediction metric itself.

6.3.2 Classification

To analyze whether we can use the collected event information to classify events
into certain severity categories, we first need to create those severity labels. One
possibility would be a manual classification based on observations, but this
solution would be very time-consuming if the approach were employed for a
larger study. To ensure a degree of generalizability of our approach, we create
those labels automatically using a clustering technique. We cluster the observed
meanFFP into three different clusters, and assign a severity level depending on

the cluster centers.

For the modeling part, we define the same classes of models based on the same
information source as for the regression part: DayToDay, Baseline, Category, and
SocialMedia model. In this study, the models are trained using standard classifi-

cation trees.

6.3.2.1 Experimental Setup & Results

We create the clusters for the severity level assignment using the k-means clus-
tering algorithm (see [114, 115]). As most of today’s state-of-the art navigation
systems use three classes to describe traffic situations (e.g., high, medium, and
low) we follow that convention and select a k-value of 3. This results in three
separated groups that we associate with one of the severity levels, based on the
cluster centers. The result of the clustering for both TLs can be seen in Figure
6.13 and 6.14. They show the artist name and the meanFFP of the event, together
with a color code for the assigned level. As an example, Figure 6.13 shows that
the concerts of QUEEN, Bryan Adams, and Usher belong to the same cluster of

events with a high impact on the traffic situation on that road segment.

For the classification part, we trained a classification tree on the same input
vectors as for the LR models in the previous sections, but picked as a dependent

variable the resulting cluster ID from the k-means algorithm.

The results are shown as the confusion matrices of the different models in Table

6.3 and Table 6.4. For the Mercedes-Benz Arena in Berlin, the results show a
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FIGURE 6.13: Clustering of the mean FreeFlowPercentage into three clusters at
the TLranxEss. High: high traffic disruption, Medium: medium traffic dis-
ruption, Low: low traffic disruption.
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FIGURE 6.14: Clustering of the mean FreeFlowPercentage into three clusters at
the T'Ljercedes—Benz- High: high traffic disruption, Medium: medium traffic
disruption, Low: low traffic disruption.

similar performance of the DDM and SM models. Both models result in similar
f-measures for the High class of 0.67 and 0.69, respectively. The CM model un-
derestimates the traffic disruptions of events (belonging to the High category)
almost half of the time and shows an f-measure of 0.34 for that specific category.
At the same time, it wrongly classifies all events belonging to the Low category
as events with High impact. This behavior can be explained by considering Fig-
ure 6.14. It shows that events of the same category (which is the only input for
the CM model) belong to very different impact classes. For instance, games of

Alba Berlin (basketball) appear in all three clusters.
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TABLE 6.3: Classification Results for T'L yercedes— Bens
Model Cluster High Medium Low Precision  Recall F1
Baseline High 0 0 0 0 0 NaN
Medium 22 7 17 0.15 1 026
Low 0 0 0 0 0 NaN
DDM High 17 3 9 0.59 0.77  0.67
Medium 0 0 0 0 0 NaN
Low 5 4 8 0.47 047 047
CM High 8 0 17 0.32 036 0.34
Medium 0 0 0 0 0 NaN
Low 14 7 0 0 0 NaN
SM High 15 2 4 0.71 0.68 0.69
Medium 2 5 6 0.38 0.71 0.5
Low 5 0 7 0.58 041 048
DDM: DayToDayModel, CM: CategoryModel, SM: SocialMediaModel
TABLE 6.4: Classification Results for T L anxESs
Model Cluster High Medium Low Precision  Recall F1
Baseline High 0 0 0 0 0 NaN
Medium 12 6 8 0.23 1 0375
Low 0 0 0 0 0 NaN
DDM High 12 6 8 0.46 1 0.63
Medium 0 0 0 0 0 NaN
Low 0 0 0 0 0 NaN
CM High 9 1 1 0.82 075 0.78
Medium 0 0 0 0 0 NaN
Low 3 5 7 0.46 0.88 0.61
SM High 8 0 0 1 0.67 0.8
Medium 0 0 0 0 0 NaN
Low 4 6 8 0.44 1 062

DDM: DayToDayModel, CM: CategoryModel, SM: SocialMediaModel

However, the fact that the SM model performed better is an indicator that infor-

mation from SocialMedia helps to differentiate those events around that venue,

at least up to a certain extent.

For the LANXESS Arena, the results show better f~measures for the CM and

SM models compared to the other models, and compared to the models at the

Mercedes-Benz Arena. The CM model shows a precision of 0.82 for the High class

and a recall of 0.75. The SM model even shows a precision of 1.0 for the High class

but at 0.67, its recall is lower than that of the CM. In general, for this venue, all

event related-models noticeably outperform the Baseline and the DDM model.
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The presented results show that for the T'L; anxEgss, a classification-based ap-
proach to predict the severity of event-caused traffic seems feasible. The SM
model shows an f-measure of 0.8, which outperforms the baselines significantly.
For the T Lyjercedes—pen- the results are less easily interpretable. One explana-
tion could lie in different events in that venue, including other artists and event
categories. Another reason that could explain the results, which has already
been discussed for that venue, is the overlapping events and in general, a more
variant traffic situation in that area of Berlin. These factors would also interfere

with the other models, which could explain the overall weak results for that TL.

6.4 Review - Spatial Challenge

In Chapter 5, we defined road segments that show a different behavior on event
and non-event days as being affected. We have also shown that a classification-
based approach works for some event types but the results for mixed venues

were less easy to interpret.

What we have seen in this chapter is that in certain scenarios, we were able to
build models that were, to a certain extent, capable of predicting the severity
of event-caused traffic disruptions. Can we combine these ideas? What does
it mean if information from event-specific sources helps to build a model that
works better than the one without them? Although not working perfectly, as
long as event-specific information lowers the prediction errors, that particular
link is probably affected by PSEs.

With that idea in mind, we re-run the classification study for all road segments
within a radius of 4000 m around the venues. As in Chapter 5, we plot the
road segments according to the resulting f-measure. The figures in 6.15 show
all affected TLs with an f-measure > 0.7 for the LANXESS Arena in Cologne,
Germany for the CM and SM separately.

The results show that we captured all road segments that were also shown in
Figure 5.27 at marker A, which showed the highest f-measure from the spatial
classification part. In this study, these road segments resulted in a f-measure of
0.74-0.78 for the CM and 0.73-0.8 for the SM, which is significantly higher than

the f-measures in the previous studies, ranging between 0.65-0.71. Additionally,
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FIGURE 6.15: Spatial region around the LANXESS Arena in Cologne based on
the classification f-measures from the CM and SM.

the CM also marked these road segments leading southwards, left from marker
A, with an f-measure of 0.74 as possibly affected. As discussed in the previous

chapter, these results seem plausible.

The results also show that those segments around marker B in Figure 5.27 (shown
in Figure 6.15 at marker (B)), that have been discussed as possible misclassifi-
cations, did not show significantly good results in the classification task for the
SM or CM.

However, we can also see new road segments: marker C in Figure 6.15i and
6.15ii and those segments around marker D in Figure 6.15i. The road segments
at marker C result in an f-measure of 0.73 for the CM and SM. The CM returned
an f-measure of 0.70 for the road segments at marker D. Thus, on those road seg-
ments, information about the category or social media information about events
was partly sufficient to identify events with a high impact on traffic on those
segments. Again, owing to missing ground truth information, that interpreta-
tion is solely intuitive, but the observed behavior allows the assumption that
those road segments are at least partly affected by large events in the LANXESS

Arena.

Another interesting phenomenon is the observation that the road segments that
show a high f-measure for the SM represent a subset of road segments where a
classification based on the category performs best. For most of the road seg-

ments, the resulting f-measures are also comparable.

In summary, the results for the LANXESS Arena support the results from the

previous study in Chapter 5. We were able to identify road segments that were
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intuitively expected as being affected by PSE traffic. In addition, the CM and
SM also reduced the number of misclassifications for this venue and we found

new road segments that showed event-related traffic behavior.

The results for the second venue, the Mercedes-Benz Arena, are shown in Fig-
ure 6.16. These figures show the results for the CM and SM models, where
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(1) CategoryModel (CM) results.  (1I) SocialMediaModel (SM) results.

FIGURE 6.16: Spatial region around the Mercedes-Benz Arena in Berlin, Ger-
many based on the classification fI-measures from CM and SM.

the f-measure > 0.7. Comparing these road segments to those from Figure 5.23
shows that none of the segments with a high f-measure in the spatial classifi-
cation study also showed good results using the SM or CM. As already seen,
the road segment right in front of the venue (marker A in Figure 5.23) that was

analyzed as T'Lyfercedes—Ben does not return results > 0.7.

However, there are road segments that have not been selected by the spatial
region classification task in the previous chapter. Those at marker A show an
f-measure of 0.70 for the CM and 0.74 for the SM for the High class. These road
segments are surprisingly far away from the venue. They point directly to a
highway on-ramp that can also be used to reach the venue, but we have not
found any evidence supporting this assumption. There is also the possibility

that people leave their cars and take public transport from that location.

The road segments at marker D show a f-measures of 0.73 and 0.70 for the CM

and SM, respectively. Again, these segments are not part of the results of the
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study in Chapter 5. They point directly to the venue location and the fact they

show certain PSE patterns seems plausible.

The CM also classified the road segments at markers B and C, both with an f-
measure of 0.7. Again, intuitively, they could be affected but we did not find any

evidence for that.

In general, the results for the Mercedes-Benz Arena are less intuitive than those
for the LANXESS Arena. Compared to those results in Chapter 5, the current
approach however showed results that could be explained by our intuition and
there are no road segments in the result set that are obviously misclassifications.
Still, this approach was also probably highly affected by the difficult traffic sit-

uation in this area of Berlin.

6.5 Discussion & Conclusion

We have seen that neither information about the event category nor from social
media sources was sufficient to predict traffic reliably using a LR approach.
The results have shown that traffic, including among categories and intuitively

“similar” events still varies too strongly for reliable predictions.

Whereas a prediction of the expected reduced FFP gave insufficient results to
use it in driver information systems, a classification of events based on event
attributes showed better results. We have seen that we were able to create a
model based on online data sources that, at least for some road segments, pre-
dicted the size of events correctly. Again, we leave it for future work to develop
other models or apply different strategies, but with this initial attempt, we have

shown that it is at least partially feasible.

Another interesting take-away of this study is the difference between results for
the two venues. For the LANXESS Arena, we found that the event-specific in-
formation was useful to classify the severity of events, whereas for the Mercedes-
Benz Arena, regular day-to-day traffic was dominant. In conclusion, we argue
that around the LANXESS Arena, event-specific disruptions are more distin-
guishable than for the Mercedes-Benz Arena. Venues in the neighborhood or a
generally stronger impact of habitual traffic in Berlin could be a possible expla-

nation.
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For the task of identifying affected road segments, the approach shown in this
chapter worked slightly better for the mixed venues than that shown before.
However, without ground truth information, we can only evaluate the perfor-

mance by our intuition.






Chapter 7
Conclusions and Future Work

The data-driven traffic prediction domain has been fundamentally boosted by
the high availability and coverage of traffic datasets. However, the dynamic of
traffic eco systems is influenced by many different factors and deriving a stable
prediction model that takes them all into account is still an open challenge. For
the specific topic of predicting traffic caused by PSEs, we have analyzed and
shown some relevant aspects, which we conclude in this section. As part of
this section, we also discuss our general findings and the lessons learned. This
chapter closes with a list of challenges and questions that could be addressed

in future work.

For the location-specific characteristics, as introduced in Chapter 1, we discussed
many results and findings in the previous chapters. In this section, we want to

emphasize two of them:

1.1) The impact of PSEs on traffic is venue-specific. We have seen very different
traffic situations around different venues. A major distinguishing factor is the
topology of the road infrastructure, but of course the observed results are not
caused solely by that. Different types of people with different interests, different
public transportation networks, and many other reasons lead to varying traffic
situations. In Chapter 4, we analyzed traffic during events for different venues
and concluding from our results, we can assume that a specific traffic footprint
exists that is characteristic for each particular venue. This conclusion is, from
our perspective, fundamental. Following our argumentation and results, it is
not possible to generate a single model that can be applied to multiple venues.

Particularly for data-driven approaches, this has severe implications. For each
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venue, there are only a limited number of event observations per year. As data
has to be separately analyzed for each venue, modeling approaches requiring
massive amounts of training data (e.g., deep learning strategies) are not appli-

cable.

For future work, an alternative solution could lie in grouping similar venues to
exploit more data observations together. Another possibility could be to find
specific road segments around different venues that are comparable in their
behavior during incoming or outgoing traffic, and use those segments to aggre-

gate observations.

1.2) Traffic impact zones can be found using data-driven approaches. To analyze the
behavior of a traffic-influencing factor, one first needs to locate it. This is why
we analyzed the spatial impact region of traffic disruptions due to events in
Chapter 5. We found that for soccer games, a classification-based method leads
to plausible results, identifying road segments that tend to be affected during
those games. We validated our results with information from different stadiums
and found compelling arguments for the identified road segments. However,
we learned that other event categories behave differently and show a less sta-
ble behavior. For those categories, we have shown an alternative approach in
Chapter 6, using different sets of event-specific prediction models. Again, we
found arguments to explain the observed results. However, the method can
still be improved. Future work should focus on acquiring more detailed infor-
mation sources in terms of traffic and event information. Additionally, based
on those detailed information sets, more sophisticated prediction models are

expected to increase the performance of the method.

In Chapter 4 and Chapter 6, we analyzed event-specific characteristics. Again, we

want to focus here on two major conclusions:

2.1) Specific data from online sources contains information that is relevant for event-
impact prediction. In Chapter 6, we analyzed measures from online sources in
terms of their explanatory power toward the final goal of predicting event-
specific disruptions around venues. Whereas regression methods did not re-
turn applicable results, we have seen that those sources were partially usable
to classify the expected impact of events into severity classes. The presented
results allow the assumption that, to a certain extent, information from social

media is a predictor for the traffic disruptions from events. However, again,
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those phenomena seem to be venue-specific. We observed that the informa-
tion value from the analyzed online sources changed among different radii and

different venues.

2.2) Soccer games show the most stable behavior of all observed event categories. In
Chapter 5, we analyzed traffic around different venues that focused on different
types of events. From our results, we can conclude that traffic disruptions due
to soccer games have a higher tendency to follow a repetitive pattern than for
other event categories. For future work, this information could be crucial to

benchmark new prediction models.

A general lesson learned from this work, although not directly connected to
event traffic, is that incident traffic data has limited use for data analytics use
cases. Such datasets are usually available to the public from commercial providers.
However, we found only a few use cases where the limited information from
those datasets was actually sufficient. We discussed the difficulties of those
datasets in previous chapters and for future work, these issues should be criti-

cally evaluated.

We have seen that PSEs have the potential to change the traffic situation around
venues drastically. Understanding these phenomena and being able to predict
the expected traffic disruptions are crucial steps to ease the problem. In this
thesis, we have shown our approaches toward that goal. However, for the time
being, that problem is not yet entirely solved. In this thesis, we have identified

the various challenges in that domain.

For future work, we outline some aspects that are still open issues and that

should be analyzed more in detail:

Event Timing. In the presented studies, we always relied on fixed event time
windows for the beginning and the end of events. Of course, this is a sim-
plification. Different events probably show very different behavior when the
attendees arrive or leave the event. Without knowing those times, even the best

prediction would not be of much help.

Especially for the time before the event, the challenge lies in finding an infor-
mation source that warns about the event start early enough before the traffic

disruptions occur. One option is to focus on additional information from other
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sensors (e.g., mobile phone data) that could hold valuable information about

crowd movements before the event.

For the end of events, we believe that information from live stream social media
sources (e.g., Twitter) could provide useful information. Tweets such as “that
concert was so cool...” could be used to detect the end of an event. Of course,
such an approach would first have to overcome the many hurdles that come
with this type of social media information. Still, though, event detection using
Twitter data is an ongoing research topic (e.g., see [116] for a short summary)

that, in our opinion, holds a high potential for this use case as well.

Live Traffic Information. Another interesting subject for future work is the use
of more detailed traffic information. In our work, we used different traffic met-
rics (e.g. mean or variance) from historic collections only. For future work, an
integration of live traffic information could yield significant benefits. Especially
for areas such as Berlin, which have proven to show large variation in their daily

traffic routines, those information sets would probably be very helpful.

Accurate and Regional Event Information. In Chapter 6, we discussed the
collection of online information about events. In this work, for the explained
reasons, we collected those datasets during one specific timespan for all artists.
Of course, this approach cannot reflect sudden changes in popularity of artists
(e.g., the release of a new album). Future studies should focus on the collection
of near-real-time online information. The challenges for this approach have
been already discussed in the previous chapter. Still, collecting information
about the current popularity of artists from online sources could bring an ad-

vantage.

Apart from the up-to-dateness of online information, we also observed a region-
specific bias in our dataset. For instance, in Figure 6.13, we can observe large
traffic disruptions during concerts of Herbert Groenemeyer and The Scorpions. As
both bands are from Germany, their popularity might be higher in their home
country than in other regions. The collected online information sets, however,
are international and do not reflect local popularity at all. Possible strategies
to include such information in the datasets could focus on regional information
sources. However, as those sources are rather limited, it would probably be

challenging to collect sufficient data.
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Another possible strategy could be to add region-specific weights to the dataset.
These weights could also be learned from historic data. As promising as this
approach sounds, it would require many observations of the same artist in dif-

ferent locations to be able to learn a certain pattern.

In this thesis, we have taken the initial steps toward a reliable PSE traffic pre-
diction. To the best of our knowledge, research in this domain has been limited
so far. We have shown different approaches to the various challenges that come
alongside the ultimate goal of predicting these traffic phenomena. However,
we have also identified many additional challenges and open issues for future

work.






Appendix A

Event Traffic Example

This thesis focuses on the impact of planned special events on traffic. The fol-
lowing figures give an example of a traffic situation before and after a soccer
game. The shown traffic situations were captured in Wolfsburg, Germany on
08/02/2014 when the VfL Wolfsburg played against 1. FSV Mainz 05. On that
day, the VfL Wolfsburg won three to zero.

The game was scheduled for 15:30. The following figures show the incoming

and outgoing traffic in A.1 and A.2
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FIGURE A.1: Incoming traffic before a soccer game in Wolfsburg on 08/02/2014.
Green marker: soccer venue.
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FIGURE A.2: Outgoing traffic after a soccer game in Wolfsburg on 08/02/2014.
Green marker: soccer venue.






Appendix B

Online Metrics Hamburg

In Chapter 6.2 results of a feature relevance study have been presented for

venues in Cologne, Germany and Berlin, Germany. In the following we show

the results for the O2-World in Hamburg, Germany.

Feature Selection Result
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FIGURE B.1: Venue: O2-World Hamburg. 500 m radius.

In a 500 m radius around the O2-World in Hamburg, with the mean as a traffic

measure (see Figure B.1i), the only feature that has been selected as relevant is
the ticket sales with a median Z score of 7.77. All the other features got rejected

by the algorithm. These results stay nearly the same when taking the variance
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as the traffic measure, as shown in Figure B.1lii. Again, only the ticket sales got

confirmed in this scenario, with a Z score of 7.56.

By enlarging the radius to 1000 m (see Figure B.2) around the venue, the overall
Z score for the ticket sales increases to 10.0 for the mean and 8.84 for the variance

as a traffic measure. In addition, for the mean traffic measure, the features Face-
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Metric = mean. Metric = variance.

FIGURE B.2: Venue: O2-World Hamburg. 1000 m radius.

bookLikes, LastFMListeners, and LastFMPlayCounts become more relevant and

are no longer rejected by the feature selection algorithm.

Further increasing the radius to 2000 m (see Figure B.3) shows similar patterns.
For the mean traffic measure, BingHits, FacebookTnlks, LastFMListeners, Ticket-
Sales, and LastFMPlayCounts become relevant. However, their mean Z score
lowers compared to the 500 and 1000 m radii, and the most relevant feature
for 2000 m (LastFMPlayCounts) only shows a Z score of 4.62. For the variance
metric, no feature is selected as relevant at a radius of 2000 m, although the Z

scores for the attributes are similar to those for the mean study.
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Feature Selection Result

Feature Selection Result
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FIGURE B.3: Venue: O2-World Hamburg. 2000 m radius.
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2013 - Today Leibniz Universitit Hannover Hannover,
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Knowledge Based Systems
PhD Candidate
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Open Communication Systems

Diploma degree in Computer Science

PROFESSIONAL EXPERIENCE

2016 - Today = Volkswagen AG Wolfsburg,
Researcher Germany

2013 - 2016 Volkswagen AG Wolfsburg,
PhD Candidate - Mobility Solutions Germany
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List of Publications

Journals & Book Chapters

S. Di Martino, S. Kwoczek, and W. Nejdl. Smart Sensors Networks: Com-
munication Technologies and Intelligent Applications, chapter Scalable

Processing of Massive Traffic Datasets, pages 123-142. Elsevier, 2017.

S. Kwoczek, S. Di Martino, and W. Nejdl. Predicting and visualizing traf-
fic congestion in the presence of planned special events. Journal of Visual
Languages & Computing, 25(6):973-980, 2014

Conferences

S. Kwoczek, S. Di Martino, T. Rustemeyer, and W. Nejdl. An architecture
to process massive vehicular traffic data. In 2015 10th International Con-
ference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),
pages 515-520, Nov.

S. Kwoczek, S. Di Martino, and W. Nejdl. Stuck around the stadium? an
approach to identify road segments affected by planned special events.
In Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International
Conference on, pages 1255-1260, Sept.
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S. Kwoczek, S. Di Martino, and W. Nejdl. Predicting traffic congestion in
presence of planned special events. In Proceedings of the Twentieth In-
ternational Conference on Distributed Multimedia Systems, DMS, pages
357-364, 2014.

Relevant Patents

S. Kwoczek, S. Di Martino and A. Sasse. Verfahren und Vorrichtung zur
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