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Antagonistic Impedance Control for Pneumatically
Actuated Robot Joints

Alexander Tödtheide, Torsten Lilge, and Sami Haddadin1

Abstract—This paper presents a novel joint torque-based
impedance controller for antagonistically driven flexible joints
actuated by pneumatic cylinders and compares it with the
current state of the art. The work targets on transferring
soft-robotics control concepts from classical motor-gear-torque
sensor setups to pneumatic systems, with the goal of achieving
similar performance levels in comparison to this well established
technology. A detailed flexible joint model is derived that incor-
porates the pneumatic and mechanical dynamics of the proposed
antagonistic design. This model is used for analyzing model-based
control approaches, which in turn are based on reduced order
dynamics. The tendon-based joint level impedance controller
enables the simultaneous adjustment of closed-loop stiffness and
damping. The proposed scheme shows good simulation results for
both, position tracking and compliance performance, respectively.
Experimentally, an angular position tracking of 7Hz could be
achieved. Also, stable rigid contacts could be established at
considerable impact speed.

Index Terms—compliance and impedance control, hy-
draulic/pneumatic actuators, tendon/wire mechanism

I. INTRODUCTION

ENABLING robot-human-coexistence requires careful de-
sign and low-level control. In order to incorporate reac-

tions to external forces on control level, force and compliance
control was heavily researched [1], [2], [3], [4]. However,
the most widely used control approach enabling physical
interaction with a robot is probably impedance control and
its related schemes, introduced in [5] and extended to flexible
joint robots, e.g. in [6]. Based on high-performance joint
force/torque control, this approach imposes a desired physical
behavior with respect to external wrenches on the robot.
This entire research direction is known as the soft-robotics
paradigm.

Nowadays, first commercial compliant systems based on
high gearing and joint-level torque sensing are available
(known as lightweight robots), opening up the road towards
solving the high-precision assembly problem, which is e.g.
very typical in the automobile industry. Unfortunately, such
solutions are still rather complex and costly. In this respect
pneumatic actuators have promising properties for low-cost
soft robot structures due to their low weight, simple mechani-
cal design, low price, good power-to-weight ratio, and inherent
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compliance. Furthermore, they do not require gearing which
reduces weight, inertia and friction [7], [8].

Most widely researched pneumatic actuators are cylinders
and pneumatic muscle actuators (PMA). The following survey
focuses on compliant control approaches for these actuator
types: In [9] an impedance controlled cylinder with an inner
pressure control and an outer impedance control loop was
proposed. Experimental results showed e.g. 10 Hz, ±1 bar
pressure tracking and stability in case of contact. A simul-
taneous force and stiffness tracking controller was introduced
in [10] with force and stiffness tracking up to 4 Hz, ±50 N,
as well as position tracking experiments with 2 Hz, using
an external position controller. A backstepping sliding-mode
control approach was applied in [7], allowing force/stiffness
tracking at 14 Hz with an error in amplitude of about 5 %.
The potentially unstable behavior of an impedance controlled
pneumatic system with low load inertias was investigated in
[11].

In [12] PMAs were applied to an antagonistically
driven, multi-joint robot exoskeleton using a position-based
impedance control approach. An antagonistic PMA-DC-
motor-driven joint was proposed in [13], where the DC motor
adds the capability of high bandwidth tracking, resulting in
an improvement of the torque step response rise time from
0.35 s to 0.15 s. An outer impedance control loop provides the
position behavior. Force/stiffness controllers for PMAs were
considered in [14] and [15]. The latter uses a dissipativity
based force controller with a numerical and experimental force
model providing less than 2.5 % error.

Up to now, control strategies were either applied to lin-
early moving pneumatic cylinders or to antagonistically driven
PMAs. This paper presents a novel joint torque impedance
control scheme for pneumatic cylinders in an antagonistic
setup, enabling a direct implementation on rotary joints. The
setup provides a linear relation between joint angle and piston
displacement, supporting the concept of direct backdrivabil-
ity. Nonlinear kinematics and singularities are avoided and
lightweight design is enabled, since actuators are not directly
placed at the joint. Antagonism prevents buckling of piston
rods and allows a simultaneous adjustment of damping and
stiffness. While PMAs suffer from several drawbacks like
hysteresis, dead bands, friction, slow dynamics (especially
when depressurizing) [16] or small stroke lengths, pneumatic
cylinders were chosen due to their fast and accurate responses
[8] and because analytical models of pressurized air in a
distinct geometry show better accuracy. Low friction compo-
nents improve system performance and enable haptic sensing
of internal pressure sensors, where PMAs require additional
load cells. Related to the variable impedance actuators shown
in [16], this work provides a compliant actuation concept,
which already includes inherent compliant elements by com-
pressibility of air, mitigating impacts and allowing energy
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TABLE I
STATE-OF-THE-ART IN COMPLIANT CONTROL OF PNEUMATIC CYLINDERS AND PNEUMATIC MUSCLE ACTUATORS (PMAS)

Pneumatic cylinders Pneumatic muscle actuators (PMAs)
Zhu [9] Shen [10] Taheri [7] Arbab [11] Noritsugu [12] Sardellitti [13] Sardellitti [14] Ugurlu [15] our work

Actuators single cylinder single cylinder single cylinder single cylinder antagonistic
PMA

antagonistic
PMA (+
DC-motor)

antagonistic
PMA

antagonistic
PMA

antagonistic
cylinders

Valves/unit 2×
proportional

2×
proportional

2×
proportional

2× switching
solenoid

7× digital
switches

2× pressure
regulator

2× switching
solenoid

2× pressure
regulator

2×
proportional

Pneumatic
model

isothermal gas
equation

isothermal gas
equation

isothermal gas
equation

isothermal gas
equation

static pneumatic
model

static
force/input-
signal

static
force/input-
signal with
PT1

numerical
approximation

gas equation
with weighted
in/-outflows

Mechanical
model

mass-damping
with Coulomb
friction

stiffness stiffness mass-spring-
damper

kinematic
2-DoF

antagonistic
tendon-based
visco-elastic
joint

stiffness stiffness antagonistic
tendon-based
visco-elastic
joint

Actuator inner
cycle

2 sliding-mode
pressure
controllers per
cylinder

1 MIMO
sliding-mode
force and
stiffness
controller per
cylinder

2 backstepping
sliding-mode
pressure
controller per
cylinder

2 sliding mode
pressure
controllers per
cylinder

1 PI-controller,
including static
characteristic
pressure/force
curve

Macro-Mini-
force
control

sliding mode
force control
(force/stiffness
transformation)

Force control
(force/stiffness
transformation
using numerical
model)

1 sliding mode
force control
per cylinder

Actuator outer
cycle

force control
(pressure/force
transformation)

- force and
stiffness control
(pressure/force
stiffness
transformation)

- - - - - -

Joint outer
cycle

prismatic joint
impedance
control

- impedance
control

prismatic joint
impedance
control

position-based
joint impedance
controller

antagonistic
joint
torque-based
impedance
control

force/stiffness
control

force/stiffness
control

antagonistic
joint
torque-based
impedance
control

Position
Measurement

potentiometer potentiometer magnetic
position sensor

potentiometer rotary encoder
(joint side)

rotary encoder
(joint side)

rotary encoder
(joint side)

rotary encoder
(joint side)

magnetic
position sensor

Force
measurement

pressure sensors pressure sensors pressure sensors pressure
sensors, load
cell

pressure sensors pressure sensor,
load cell

pressure sensor,
load cell

pressure sensor,
load cell

pressure
sensor

Acutator
dimensions

stroke: 15 cm,
�: 2 cm

stroke: 10 cm,
�: 2.7 cm

stroke: 7.5 cm,
�: 0.9 cm

stroke: 140 cm,
�: 2.5 cm

length:≈30 cm,
�: ≈ 5 cm

length: 21 cm,
�: ≈ 5 cm

length: 17 cm,
�: 3 cm

length:≈30 cm,
�: ≈ 5 cm

stroke: 7.5 cm,
�: 0.9 cm

Best exp.
actuator level

10 Hz
@±1 bar

4 Hz @
±50 N

14 Hz @
±15 N

1 Hz @
±2 bar

N.A. 0.1 Nm step,
τ = 0.2 s

1.5 Hz @
±2 Nm

2.2 Hz @
±15 Nm

10 Hz @
±12.5 N

Best exp. joint
level

1.5 Hz
@±50 mm

2 Hz
@±22 mm

N.A. N.A. N.A. 0.065 rad
step, τ = 0.8 s

N.A. N.A. 7 Hz @
±1 rad

∧
=

±18 mm,
0.8 rad step,
τ = 0.1 s

storage. Consequently, the current work can be seen as an
intermediate step towards a real variable impedance actuator
using the inherent capabilities of pneumatics beyond force
and impedance control. Table I systematically compares the
different pneumatic technologies mentioned above with our
approach, revealing less hardware components in contrast to
PMAs, a good actuator level torque tracking (especially in
comparison to PMAs) and the fastest joint angle tracking.
The bold characters in Tab. I point out relevant differences
or similarities. The overall contributions of the paper are

1) a systematic comparison of approaches for force or
impedance controlled pneumatic systems (see Tab. I),

2) the design, flexible modeling, and identification of a
novel joint torque-controlled antagonistic pneumatically
actuated robot joint,

3) simulative performance comparisons between four con-
trollers from literature (see Fig. 4), and between two
pneumatic tendon force controllers in an antagonistic
setup (see Fig. 5 and 6), as well as

4) the simulative and experimental validation of cascaded
control for pneumatic cylinder force, joint torque, and
joint impedance control in an antagonistic setup.

In order to develop the proposed antagonistic pneumatics
based impedance controlled actuation concept, a detailed pneu-
matic/mechanical model has to be derived, which captures
all essential physical effects. Since high-performance joint-
level impedance control relies on an inner force loop, which

constitutes a joint torque control level in an antagonistic sym-
metric setup, two promising force controllers from literature
(see [17]) were chosen and investigated. The joint level is then
controlled via a tendon-based impedance control approach.
Based on simulation analysis incorporating relevant real world
effects, the more promising force controller was selected for
subsequent experimental implementation and evaluation of the
overall control approach.

The paper is organized as follows. Section II describes the
modeling of the linear pneumatic actuator and the flexible
mechanical joint. The inner force control is outlined in Sec. III.
Section IV deals with the outer loop impedance control.
Simulation results of the antagonistically controlled pneumatic
joint are presented in Sec. V. The parameters and results of
the experimental validation are presented and discussed in
Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODELING
In the first part of this section the considered pneumatic

model is derived. In the second part, the pneumatic actuator
is embedded into a full flexible joint model.

A. Pneumatic actuator
The pneumatic modeling is done based on [8]. The motion

of the piston can be described by (see Fig. 1)

ẍpMp = P1A1 − P2A2 − PatmAr − Ff − Fext. (1)
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Valve

P1 P2

MP

u

P1,T1,V1
P2,T2,V2

xp

xs

Fext

Psup

Position sensor

Cylinder

Piston

Pressure sensor

Fig. 1. Mechanical model of a pneumatic cylinder system

Mp and xp denote piston mass and position. P1 and P2 are
the pressures of the single chambers, applying a force to the
surface A1 and A2, respectively. The atmospheric pressure
Patm affects the area Ar, which is the cross sectional area of
the rod leaving the cylinder. Friction and external forces are
denoted by Ff and Fext. A constant supply pressure Psup is
assumed. Pressures P1 and P2 are obtained by the following
pressure dynamic state equation

dP

dt
=
RTatm

V
(αinṁin − αoutṁout)− α

P

V
V̇ , (2)

which was proposed in [8]. This approach obtains an improved
pressure evolution in contrast to an isothermal assumption by
introducing the constants α, αin, and αout. αin denotes effects,
which are related to a charging process. According to [17], this
factor should be chosen close to γ =

cp
cv

, being the ratio of heat
capacities of air at constant pressure and volume. The param-
eter αout denotes effects which are caused by a discharging
process. This factor should be chosen close to 1. The factor
α weights the pressure changes due to piston movement and
according to [18] should be chosen as 1.2. The parameter R
is the specific gas constant of air. Tatm is the atmospheric
temperature. In- and outflowing masses are described by ṁin

and ṁout. The volumes V = V0i+(L/2±Aixp) of chambers 1
and 2 depend on the piston position xp. The volumes V01 and
V02 represent dead volumes at the maximum and minimum
piston position.

Mass flows ṁ are controlled by the valves and can be
modeled by the nozzle equation

ṁ = cfAvPuΨ(Pd/Pu), (3)

considering a pressure potential between an upstream pressure
Pu and a downstream pressure Pd, separated by an orifice of
area Av. The parameter cf is a discharge coefficient. The flow
function Ψ in (3) takes the form

Ψ =


√

2γ
RTu(γ−1)

[(
Pd

Pu

) 2
γ−
(
Pd

Pu

) γ+1
γ

]
Pd

Pu
≥ Pkrit√

γ
RTu

2
γ+1

γ+1
γ−1 Pd

Pu
< Pkrit

(4)

where Pkrit =
(

2
γ+1

) γ
γ−1

for the heat capacity ratio γ ∈ R+

with γ = 1.4. The allocation between Pu and Pd and P1, P2,
Patm is implemented by case analysis. The mass flow ṁ is
controlled by proportional valves, where the spool position xs

affects the area
Av = A(xs) (5)

being a specific geometric relationship of the valve. The spool
is actuated by a coil, generating a force Fc = Kcic where ic

−xp1

xp2

kt

kt

q

J, r

lCM

Joint inertia

TendonPneumatic cylinder

Fig. 2. Mechanical model of the antagonistic pneumatic robot joint

is a current, Kc a coil constant and 2ks a resetting spring.
Neglecting the spool mass the dynamics of Ms, xs can be
modeled as

ẋs = −2ks

ds
xs +

Kc

ds
ic = −1

τ
xs +

K

τ
u, (6)

where ds is a viscous friction constant and u an input voltage.
The system is furthermore characterized by its time constant
τ and gain K. The state equation of the overall pneumatic
system with the state vector xCi = (P1, P2, xs, ẋp, xp)

T can
then be written as

ẋCi =


RTatm
V1

(αinṁin,1 − αoutṁout,1)− αP1
V1
V̇1

RTatm
V2

(αinṁin,2 − αoutṁout,2)− αP2
V2
V̇2

− 1
τ
xs +

K
τ
u

1
Mp

(P1A1 − P2A2 − PatmAr − Ff + Fext)

ẋp

, (7)

where ṁout,i and ṁin,i depend on specific up- and down-
stream in dependency of xp. The inputs of the system are u
and Fext.

B. Robot joint model
Figure 2 depicts the mechanical model of the pneumatic

antagonistically actuated robot joint. The system is modeled
as three independently movable elements (two pistons and a
joint inertia). The joint inertia is represented by a roller pulley
of radius r and inertia J , which can perform rotational motions
about the joint angle q. It is assumed that two tendons 1 and
2 are fixed at an outer radius r and that no coupling between
the tendons exists. Each tendon is linked to a linear pneumatic
actuator, which can induce negatively defined forces Fti to the
roller pulley. Due to the pretension force Fpi , that is handled
by the force controller, slacking does not need to be taken into
account. Putting together the full flexible joint model leads to

Jq̈ −MjlCM cos(q) = r (Ft2 − Ft1)− τf + τext (8)
ẋC1 = f1(xC1, Ft1, u1) (9)
ẋC2 = f2(xC2, Ft2, u2) (10)
Ft1 = kt(qr − xp1) + dt(q̇r − ẋp1) (11)
Ft2 = kt(qr − xp2) + dt(q̇r − ẋp2). (12)

Equation (8) follows from the sum of torques, where lCM

is the position of the center of mass with respect to the mass
Mj of the joint link. The pneumatic state equations f1 and f2

were already introduced in (7). External and friction torques
are incorporated via τext and τf . Since the tendon material
consists of a fiber material, tendon elasticity with spring and
damping constants kt and dt may be assumed if required.
The flexible joint modeling is not considered in the controller
design since the maximum theoretical tendon elongation of
our setup is 0.12 mm for a tendon force of 30 N. The tendon
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parameters are considered to be E = 55000 . . . 172000 MPa,
L0 = 0.4m, r = 0.75 mm of the dyneema fiber material.
However, in the plant simulation, the appropriate elasticities
are indeed implemented in order to obtain more realistic
controller performance under disturbances.

III. FORCE CONTROL

In our work a 1st- and a 2nd-order sliding mode force
control approach based on [17] is used. The actual force Fa,
which is generated by a linear pneumatic actuator, can be
obtained from (1) as

Fa = Fext = P1A1 − P2A2 − PatmAr − βvẋp − βc, (13)

where βv denotes a viscous and βc a Coulomb friction pa-
rameter (assuming Mp ≈ 0). However, practically influences
of friction can be neglected due to the use of low friction
components, i.e. βc ≈ 0. The force controllers make use of the
reduced order pneumatic model (2). Following [17], a general
sliding mode force controller is designed based on the sliding
mode

s(t) =

(
d

dt
+ λ

)n−1

F̃ = 0, (14)

with F̃ = Fa − Fd and Fd being the desired force. Thus,
controlling of F̃ is transformed into a first order stabilization
problem in s [17]. The stabilization follows by applying an
equivalent control input ueq, which is obtained demanding ṡ =
0. Full expressions for ueq can be found in [17]. In addition to
ueq, a switching term ensures the convergence to the sliding
mode if s 6= 0 resulting in

u = ueq − κ sat
( s

Γ

)
, (15)

with control constants κ and Γ. These were tuned using
numerical optimization (see Sec. V). The saturation function
in (15) is defined as

sat(y) =


−1 if y < −1

y if |y| ≤ 1

+1 if y > +1

. (16)

1) First order: The 1st-order (n = 1) sliding mode ap-
proach neglects the spool dynamics (6), leading to the linear
relation u = xs/K. The sliding surface can then be defined
by combining (13), (14) and F̃ = Fa − Fd as

s = F̃ = P1A1 − P2A2 − PatmAr − βvẋp − Fd. (17)

Applying ṡ(t) = 0 leads to

ṡ = Ṗ1A1 − Ṗ2A2 − βvẍp − Ḟd = 0 (18)

requiring Ṗi, which can be obtained from the pressure dynam-
ics (2). The equivalent input ueq then follows from the inverse
function xeq(Aeq) of the orifice function (5). When solving
(18) for Aeq, a case distinction needs to be implemented in
order to differentiate between in- and outflow. In our work the
orifice function A(xs) and its inverse function were modeled
by cubic splines based on measurements (see Fig. 8) instead
of using a series expansion as implemented in [17].

Force
controller1

Pneumatic
system1

xp → q

Impedance
controller τ → F

Force
controller2

Pneumatic
system2

qd

uv1

uv2Fd2

Fa1

−

Fa2

−

Fd1
xp1

xp2

qa

−

Fig. 3. Signal flow diagram of impedance control for the tendon driven
pneumatic system

2) Second order: The 2nd-order sliding mode controller
(n = 2) considers the spool dynamics of xs (6). In analogy to
(14), the sliding surface is

s = λ (P1A1 − P2A2 − PatmAr − Fd)

+ Ṗ1A1 − Ṗ2A2 − Ḟd − λβvẋp − βvẍp.
(19)

Setting ṡ = 0 leads to

ṡ = λ
(
Ṗ1A1 − Ṗ2A2 − Ḟd

)
+ P̈1A1 − P̈2A2 − F̈d

− λβvẍp − βv
...
xp = 0.

(20)

The second order derivatives P̈i are obtained from (2). This
requires time derivatives of (4) and (5). The equivalent voltage
ueq is obtained from (20) for ẋs and insertion into (6). The
spool velocity xs was determined using an unscented Kalman
filter [19] based on the pressure state equation (2) of a single
chamber and the spool dynamics (6).

IV. ANTAGONISTIC TENDON BASED IMPEDANCE
CONTROL

A. Antagonistic system
The overall impedance controller structure for the antago-

nistic robot joint is shown in Fig. 3. It consists of an impedance
controller on joint level and two underlying force controllers
on tendon level. The impedance control law, applied to the
pneumatically driven joint, is denoted by the impedance con-
trol together with an acceleration feed forward term for better
tracking accuracy as

τff = (J + 2r2Mp)q̈d (21)
τd = kimp(qd − q) + dimp(q̇d − q̇) + ĝ(q) + τff . (22)

kimp denotes the desired stiffness, ĝ(q) is the gravity com-
pensation and τff a feed-forward term compensating for the
inertial effects. Please note that in our controller we do not
consider inertia shaping. However, in principle this would be
possible via an appropriate estimation and feedback of external
torques. dimp is chosen to be

dimp = 2D
√
kimp(J + 2r2Mp), (23)

using the desired damping ratio D. The ideal closed loop
behavior is

(J + 2r2Mp)ϕ̈+ dimpϕ̇+ kimpϕ = τext, (24)

with ϕ := qd − q being the angular position error.
The tendon Jacobian matrix P (q) relates joint and piston

velocity by [20], [21]

ẋp = P (q)
T
q̇. (25)
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The relation between tendon force F t and torque τ can then
be written as

τ = P (q)F t. (26)

For the system in Fig. 2 the Jacobian takes the form

P (q) =
(
−1 1

)
r, (27)

having full row rank. Then, given τ , (26) has an infinite
number of solutions F t. Following [22], the entire set of
solutions is represented by

F t = P †τ + (E − P †P )f = P †τ + FP (28)

where P † = P T (PP T )−1 = 1
2r

(
−1 1

)T
is the right

inverse of P , E is the identity matrix, and f an arbitrary
vector. Inserting (28) into (26) confirms that P †τ is one
solution and PFP = 0, i.e. FP does not affect τ . In our
case, the force vector FP takes the form

F p = (E − P †P )f =

(
0.5 0.5
0.5 0.5

)
f , (29)

where (E − P †P ) has identical rows leading to identical
components of F p, which then does not affect τ . Therefore,
F p can be interpreted as the pretension force vector required
to avoid slacking of the tendons. The desired force vector that
is fed to the underlying force controller is given by

F d = P †τd + FP. (30)

An alternative approach to the adjustment of FP can be found
in [23]. The joint angle q can either be measured directly on
the joint shaft or obtained from the piston positions together
with the tendon Jacobian. Since in our case P is constant q
becomes

q = P †
T
x. (31)

V. SIMULATION RESULTS

The developed algorithms were first elaborated in simulation
before their experimental realization. First, the inner force
control loop is discussed. Thereafter, the performance of the
joint impedance control on top of the force controller is elabo-
rated. All results were obtained with Matlab/Simulink, where
a fixed step Runge-Kutta solver at sample time ts = 10−5 s
was used. The sliding mode controllers were updated with
a sampling time of 10−4 s in order to demonstrate the real-
time applicability of the approach. Simulated models were
numerically validated via energy and mass equivalences.

In [17] general adjustment rules for the magnitude of Γ
were described while the parameter κ was tuned experimen-
tally. These parameters already provided promising results
for sinusoidal command inputs in first simulations. However,
in our setup, the force control loop is the inner loop of a
cascaded control scheme, requiring good tracking for arbitrary
forms of the desired force (including steps). For further
improving tracking performance, both force controller gains
κ and Γ were adjusted based on minimizing the cost function
J =

∑N
k=0(Fd,k − Fa,k)2 using a particle swarm algorithm

within the simulation [24]. The Kalman filter gains of the 2nd
order spool position observer were tuned manually until the
error between simulated and estimated states was minimal and
could not be improved anymore.

Time [s]
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F
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15 Hz

5 Hz

Fig. 4. Simulation: Force tracking results against a linear spring damper
element k = 2000 N/m, d = 50 Ns/m for different Fd signals comparing
different controllers from literature

TABLE II
ERRORS OF SINUSOIDAL FORCE TRACKING (SEE FIG. 4)

¯|e| [N] - 5 Hz ¯|e| [N] - 15 Hz
Richer,1st 0.2355 1.089
Richer,2nd 0.0423 0.3178

ShenGoldfarb 0.3465 0.7174
ZhuBarth 0.4073 2.4113

A. Pneumatic linear force control
Figure 4 depicts the simulative force control results for the

the 1st- and 2nd-order sliding mode controller by Richer et al.
[17]. They are compared to the sliding mode force and stiffness
controller from [10] and to the sliding mode pressure controller
from [9], being the inner cascade of a cylinder level impedance
controller from literature, see Tab. I. The stiffness in [10] was
set to 800 N/m to get rid of the additional degree of freedom in
the force/stiffness controller. The pressure controllers from [9]
are not used simultaneously, but one of the controllers is set
to Patm while the other one tracks the required pressure to get
the desired force Fd. In this simulative experiment the cylinder
(using the four controllers mentioned above) moves against a
linear spring-damper system with stiffness k = 2000 N/m and
damping d = 50 Ns/m.

Figure 4 (left) shows a force step of 5 N, applied to the four
controllers. The 1st and 2nd order force controllers by Richer
et al. provide a clear asymptotic response with a response time
of 0.025 and 0.01 s. The controller by Zhu et al. reacts faster,
but suffers on indistinct oscillations leading to a response time
of 0.006 s. The controller by Shen et al. is the fasted of the
tested schemes but leads to high chattering. Table II shows the
errors of the four controllers for 5 Hz and 15 Hz force tracking
of Fig. 4 (right). In summary, the controllers by Richer et al.
provide the lowest jerk and a response which is similar to a
first order system.

Furthermore, an evaluation of the step time for these two
controllers was carried out under ideal conditions (no sensor
noise). It is important to note that the 2nd-order sliding mode
controller requires a sample time of at least 2×10−4 s for oper-
ation. Otherwise, a chattering in force tracking was observed.
The 1st-order sliding mode controller was less demanding
in our simulations and required only ts = 10−3 s, which
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indicates that a larger stability margin was inherently provided
in contrast to the 2nd-order type. However, for real-world
disturbances, higher sampling rates are still required. These
numerical results showed that both chosen force controllers by
[17] have suitable performance. A slightly better time behavior
of the 2nd-order could be shown compared to the 1st-order
controller. The demanding sampling rates of the 2nd-order
controller makes it, however, more reasonable to finally select
the 1st-order type controller for the subsequent experimental
analysis.

B. Antagonistic impedance control
The antagonistic structure from Fig. 2 together with the

antagonistic impedance control from Fig. 3 is analyzed in this
subsection. Fig. 5 shows the step response of the antagonistic
impedance controlled system for a step change in qd for three
different damping ratios D = 0.2, D = 0.7 and D = 1
with the 1st- and 2nd-order sliding mode force controllers.
For validation purposes the system response is compared to
an ideal impedance behavior qi (gray line in plot), which is
characterized by the following transfer function

G(s) =

kimp

(J+2r2Mp)

s2 + 2D
√

kimp

(J+2r2Mp)s+
kimp

(J+2r2Mp)

. (32)

The results show that the system resembles the behavior of
(32) according to desired linear theory quite well. Minor
differences can still be observed between 1st- and 2nd-order
sliding mode controllers, which can be explained by the
observations from Fig. 4.

The underlying force controller of the upper cylinder at
D = 0.2 is depicted in Fig. 6, again for both sliding

mode controllers. In this application the better force-tracking
performance of the 2nd-order controller is apparent in terms
of lower response times and less overshoots. A large negative
peak of Fd can be observed, which occurs when choosing a
large kimp. The output force Fa is not able to follow this value
due to limited supply pressure.

VI. EXPERIMENTS
An antagonistic joint setup was designed for experimentally

validating our results, see Fig. 7.

A. Hardware setup

Fig. 7. Setup of pneumatic antagonistically driven robot joint

Special care in the design was taken on low-friction compo-
nents. Two pneumatic low-friction cylinders Airpot Airpel E9
D 3.0 NM were chosen as basic actuator units together with
contactless, high-accuracy position sensing (0.1 mm) via the
SICK MPS-096TSTU0 magnetic position sensor. Two propor-
tional valves LS-V05s by Enfield Technologies were chosen
due to their high flow rate of 3.5 g/s and bandwidth of 109 Hz.
For absolute pressure measurements, the 142 PC100A-PCB by
First Sensor was chosen due to its fast response time of 0.1 ms
and high accuracy of 0.1 % FS. Data acquisition was done,
using the National Instruments EtherCat Chassis NI9144 with
analog in-/output modules NI9205 and NI9264. The control
algorithms were executed on Matlab/Simulink using a real-
time Linux Kernel.

B. Model identification
Since the parameters of cylinder and thermodynamic prop-

erties are known by design, the only left unknowns are the
valve parameters. Two experiments were done to identify
the discharge coefficient cf and the orifice area function
A(xs). Up- and downstream measurements were performed
and steady state mass flows ṁ were measured using the mass
flow gauge Profimess GR-02.1.2.1.1.0.0.L.D5.

The discharge coefficient cf was identified under maximum
valve voltage to enable a consideration of an orifice Amax,
known from the valve specification. Different up- and down-
stream pressures were applied to the valve. Pressure and mass
flow measurements were applied to (3) and (4) in a least-
squares sense to then obtain cf . The identification of A(xs) was
done by setting different up- and downstream pressures to the
valves for various positive and negative valve signals u. From
mass flow and pressure measurements, a specific area can be
calculated by (3) and (4) and cf . B-splines were fit through the
voltage and area estimations. The parameter cf was identified
to be 0.38. The results of the orifice area identification are
depicted in Fig. 8.
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C. Control algorithms

The impedance control was implemented on top of the 1st-
order sliding mode control using a step time of ts = 4×10−4

s. Most parameters for the model/controller were obtained
from technical manuals of the components, see Sec. VI-A.
Mechanical quantities of the joint link are r = 0.018 m,
J = 1.51 × 10−4 kgm2, lCM = 0.025 m, Mj = 0.079 kg.
The valve rise time is assumed to be τ = 0.0015 s. The
force controller parameters κ = 4.78 and Γ = 4.347× 103

s2kg−1m−1 were tuned manually based on optimized param-
eters from simulation, see Sec. V. In contrast to the previous
simulation, position measurements xp and desired forces Fd

were filtered by a first order digital filter (Tfilt,x = 0.0013 s,
Tfilt,F = 0.0029 s) to achieve an improved system performance
(less chattering). Alternatively, we implemented numerical
differentiation using a DT1 filtering, where similar, however,
no improved performance could be achieved. In comparison,
[17] used 2nd-order filter.

Regarding the performance of the impedance controller, a
maximum stiffness of 1.20 Nm/rad at D = 0.7 could be
achieved until oscillations occur. A linear relation between
torque and angular displacement yields up to the maximum
achievable tendon force, depending on the supply pressure.
However, above this value the system still reacts compliantly
due to the compressibility of air (see Fig. 13). In order to ob-
tain a linear force/displacement relation within a joint angle of
±45◦, maximum and minimum tendon forces were designed to
be −20 N and −5 N for both tendons. Consequently, a tendon
pretension of Fp = −12.5 N and a stiffness of kimp = 0.3438
Nm/rad was chosen. Adapting Fp in order to minimize the
overall tendon forces was not implemented yet.

Please note that the lower cylinder slightly lost its low
friction properties in the course of our experiments which
decreased the position tracking in Fig. 12.

Figure 9 depicts a system response test, which replicates the
simulation experiment from Fig. 5. The comparison reveals
a similar system behavior according to linear theory. The
experimental setup reflects the expectation for the chosen
damping ratios. However, in comparison to simulation, the
experimental system produces slightly larger overshoots. Due
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to a lower supply pressure of 3.5 bar the required forces, which
are needed for deceleration, are not achieved, leading to the
observed overshoots.

Figure 10 depicts tracking performance for different sinu-
soidal signals. Additionally, the feed-forward term τff (see
(21)) was added to the control law in order to compensate
inertia influences. The desired joint angle qd at 0.125, 2, 4, and
7 Hz is achieved correctly for all frequencies. At 7 Hz some no-
ticeable deviation q can be observed. The mean absolute errors
are |e|0.125Hz = 1.2◦ ≈ 0.021 rad, |e|2Hz = 2.4◦ ≈ 0.042 rad,
|e|4Hz = 1.6◦ ≈ 0.028 rad and |e|7Hz = 7.6◦ ≈ 0.133 rad.

Figure 11 shows the reaction of the system for two different
damping ratios during interaction with a human hand. The
desired angle is chosen to be qd = 0 rad. Starting at t = 0.6 s
one can observe a deflection of the system, which is caused
by the compliance of the system. After the system is released
it responses with its particular viscoelastic behavior.

Figure 12 elaborates sudden contacts of the system during
tracking operation. The contact is realized by an obstacle,
which is moved under the finger. The experiments show that
the system remains stable also in case of rigid contact and
is able to proceed with the tracking after qd moves out of
the obstacle range again. This behavior is also reflected by
the force control behavior. When motion is inhibited by the
obstacle, the impedance control law increases the force to
the position error accordingly. The force controller is able to
track the desired input force from the impedance controller.
Furthermore, symmetric distribution of actuator forces can be
noted as described by (30).
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An investigation of the static stiffness characteristics is
shown in Fig. 13. An experiment was carried out at qd = 0
rad. From this set point the link is deflected in small angular
steps up to π/2 for stiffness values from 0.1 to 2.75 Nm/rad.
The markers in Fig. 13 represent force measurements for
specific deflections. The solid lines show the ideally adjusted
stiffness during the experiment. It can be observed that the
expected torques are achieved correctly for smaller angular
displacements. For increasing stiffnesses earlier detachment
from the ideal stiffness characteristic line can be observed.
This detachment is caused by the particular choice of F p

in (30) in combination with a linear distribution of tension
forces, which increases one tendon force while decreasing
the other. When the lower tendon force reaches a predefined
lower boundary, it saturates to prevent slacking. Furthermore,
a maximum torque of about 0.55 Nm can be observed, which
follows from supply pressure Psup and cylinder piston areas
A1 and A2. Finally, it can be stated that all defined stiffnesses
are achieved correctly for angles lower than 0.1 rad.

VII. CONCLUSION
In this paper, a novel joint torque-based impedance con-

troller for pneumatically actuated, antagonistically driven flex-
ible joints was proposed and analyzed. The developed system
achieves all essential soft-robotics and motion capabilities
so that it could be applied to similar tasks as joint torque
controlled lightweight robots with high gearing and high
quality DC motors, however at presumably much lower costs.
Compliant system reactions and stable contact behavior could
be demonstrated with very good performance compared to the
state of the art. Also, fast angular position tracking at 7 Hz
was achieved. The maximum stiffness of 2.75 Nm/rad is about
5.5 times higher than a human MCP joint [25]. Next steps
will be the extension to multi-joint structures for robotic and

prosthetic hands. For this, a reduction of the form factor of
our design becomes crucial.
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