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Abstract

In this paper we investigate the finite-size properties of the spectrum of quantum spin chains with local 
spins taken to be the fundamental vector representation of the OSp(n|2m) superalgebra.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the years exactly solvable one-dimensional quantum magnets have been considered as 
suitable lattice regularization of two-dimensional space–time models of quantum field theory. In 
principle the respective Bethe ansatz solution offers us a non-perturbative framework to study 
the properties of the spectrum of the respective spin chain Hamiltonian for large system sizes. In 
the case of a massless theory it has been showed that the finite size corrections to the spectrum 
determine the conformal central charge and the anomalous dimensions of the underlying confor-
mal field theory [1]. The study of the finite-size effects of integrable spin chains with generators 
on some simply laced Lie algebra G suggested that their critical behavior are governed by the 
properties of a field theory of Wess–Zumino–Witten type on the same group G. By way of con-
trast when the underlying invariance of the spin chain is based on supergroups the identification 
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of the respective field theory appears to be more involved [2]. Indeed, it has been observed that 
the finite size spectrum of the OSp(3|2) superspin chain present the unusual feature of having 
states with the same conformal dimension as the trivial identity operator [3,4]. Later on similar 
phenomena have been found to be present in a staggered sl(2|1) spin chain whose degrees of 
freedom alternate between the fundamental and dual representations [5] as well as in staggered 
six-vertex model [6]. The degeneracy of many states of the spectrum was found to grow with 
the size of the chain and this was interpreted as the signature of the existence of non-compact 
degrees of freedom in the continuum limit [6].

The purpose of this paper is to study the subleading corrections to the finite-size spectrum of a 
number of spin chains invariant by the OSp(n|2m) super Lie algebra. The results obtained here 
extend in a substantial way our recent analysis performed for the specific case of the OSp(3|2)

superalgebra [4]. In particular, we find a tower of states over the lowest energy with the same 
leading effective central charge ceff as the size of the chain L → ∞. More precisely, denoting 
the eigenenergies of such set of states by Ek(L) we have

Ek(L) − Le∞ = πξceff

6L
+ 2πξ

L

βk

logL
, k = 0,1,2, · · · , k∞ (1.1)

where the integer k∞ is typically bounded by system size L. The symbol e∞ denotes the energy 
density of the ground state in the thermodynamic limit while ξ refers to the velocity of the 
elementary low-lying excitations. We shall notice that the amplitude βk can be connected to a 
subset of the possible eigenvalues of the quadratic Casimir operator of the respective underlying 
OSp(n|2m) superalgebra.

We recall here that the OSp(n|2m) superspin chain realizes a gas of loops on the square 
lattice in which intersections are allowed [3]. The integer n and m parameterize the fugacity z
given to every configuration of closed loops which is z = n − 2m. In the context of the loop 
model the above peculiar finite-size behavior was argued to be an indication that for z < 2 the 
crossing of loops becomes a relevant perturbation driving the system to an unusual critical phase 
[7]. In particular it was conjectured that the correlations functions in the loop model should be 
those of the Goldstone phase of the O(z) sigma model. The universal behavior of the two point 
correlators has long been computed in [8] and it was found to decrease logarithmically with the 
distance. More recently this calculation has been extended to two point functions of operators 
composed by the product of k field components at the same point usually denominated k-leg 
watermelon correlators [9]. This observable measures the probability of k distinct loop segments 
connecting two arbitrary lattice points x and y. Here we shall argue that the asymptotic behavior
of such correlation functions of the intersecting loop model can be inferred from the finite-size 
amplitudes βk in analogy to the known connection among critical exponents and finite-size scal-
ing amplitudes [1]. More precisely we observe that for large distances r = |x − y| this family of 
correlators can be rewritten as

Gk(r) ∼ 1/ ln(r)2(βk−βk0 ) (1.2)

for a suitable choice of the k0 state.

2. The OSp(n|2m) spin chain

The vertex model with rational weights which is invariant by the superalgebra OSp(n|2m)

was first discovered by Kulish in the context of the graded formulation of the Yang–Baxter equa-
tion [10]. The respective R-matrix Rab(λ) with spectral parameter λ can be represented as a 
linear combination of three basic operators,
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Rab(λ) = λIa ⊗ Ib + Pab + λ

2−n+2m
2 − λ

Eab (2.1)

where Rab(λ) acts on the tensor product Va × Vb of two (n + 2m)-dimensional graded vector 
spaces and Ia denotes the identity matrix in one of such spaces. The integers n and 2m stand for 
the number of bosonic (b) and fermionic (f ) degrees of freedom.

The operator Pab permutes two graded vector spaces and its expression is

Pab =
n+2m∑
i,j=1

(−1)pipj e
(a)
ij ⊗ e

(b)
ji (2.2)

where pi = 0 for the n bosonic basis vectors while for the 2m fermionic coordinates we have 
pi = 1. The elementary matrices e(a)

ij ∈ Va have only one non-vanishing element with value 1 at 
row i and column j .

The operator Eab plays the role of a typical monoid operator which can formally be repre-
sented as,

Eab =
n+2m∑

i,j,l,k=1

αijα
−1
lk e

(a)
il ⊗ e

(b)
jk (2.3)

where the non-null matrix elements αij are always ±1. Their precise distribution within the ma-
trix α depends on the grading sequence we set up for the basis of the vector space. A convenient 
grading sequence is the basis ordering f1 · · ·fmb1 · · ·bnfm+1 · · ·f2m since it encodes in an ex-
plicit way the many U(1) symmetries of the OSp(n|2m) superalgebra. For this choice of grading 
the structure of the matrix α is [11],

α =
⎛
⎝ On×m On×m In×n

Om×m Im×m Om×n

−Im×m Om×m Om×n

⎞
⎠ (2.4)

where ON×N and IN×N are the null and the anti-diagonal N ×N matrices, respectively. The ma-
trix representation for other grading choices can be obtained from Eq. (2.4) by direct permutation 
of the vector space basis.

In the intersecting loop model realized by this superspin chain the different terms in the 
R-matrix (2.1) correspond to the allowed local configurations with Boltzmann weights given 
by the respective amplitudes, see Fig. 1. The Hamiltonian of the quantum OSp(n|2m) spin chain 
is obtained by expanding the transfer matrix of the respective vertex model at the special value 
of the spectral parameter for which the R is proportional to the graded permutator. Let us denote 
such transfer matrix by T (λ) on a L × L square lattice with toroidal boundary conditions. It fol-
lows that this operator can be written as the supertrace of an auxiliary operator called monodromy 
matrix [10],

T (λ) =
n+2m∑
i=1

(−1)piTii (λ) (2.5)

where elements of the monodromy matrix Tij are given by an ordered product of R-matrices 
acting on the same auxiliary space but with distinct quantum space components,

T (λ) = R0L(λ)R0L−1(λ) . . .R01(λ) (2.6)
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Fig. 1. The local configurations contributing to the partition function of the intersecting loop model with fugacity z =
n − 2m and their Boltzmann weights corresponding to the R-matrix (2.1).

As usual considering the logarithmic derivatives of T (λ) around the regular point λ = 0 we 
obtain the local integrals of motion. The first non-trivial charge turns to be the Hamiltonian whose 
expression is

H = ε

L∑
i=1

[
Pi,i+1 + 2

2 − n + 2m
Ei,i+1

]
, (2.7)

where periodic boundary conditions for both bosonic and fermionic degrees of freedom is as-
sumed. The anti-ferromagnetic regime for n − 2m < 2 requires the choice ε = −1 while for 
n − 2m > 2 we need to take ε = +1.

The spectrum of this Hamiltonian can be studied by Bethe ansatz methods and is parameter-
ized by solutions to a set of algebraic Bethe equations. Since these Bethe equations depend on the 
particular choice of the grading their root configurations are grading dependent. We can however 
infer on the infinite volume properties of such superspin chain without the need of choosing an 
specific Bethe ansatz solution [3]. This can be done establishing certain a functional relation for 
the largest eigenvalue of the transfer matrix usually by means of the matrix inversion method 
[12,13]. In our case this identity can be derived combining the unitarity property of the R-matrix 
(2.1) together with its crossing symmetry under translation λ → (2 −n + 2m)/2 −λ of the spec-
tral parameter. Let us denote by [�0(λ)]L the largest eigenvalue which dominates the partition 
function of the vertex model per site in the thermodynamic limit. We find that �0(λ) satisfies the 
following constraint,

�0(λ)�0(λ + 2 − n + 2m

2
) = (λ2 − 1)(λ + 2−n+2m

2 )

λ
(2.8)

Using unitarity �0(λ)�0(−λ) = (1 − λ2) we can solve the above functional relation under 
the assumption of analyticity in the region 0 ≤ λ < |2 − n + 2m|/2. The final result is

�0(λ) =
[

(2 − n + 2m)2

|2−n+2m|
2 − λ

]

×
	

(
1 + λ

|2−n+2m|
)

	
(

1
2 + 1

|2−n+2m| + λ
|2−n+2m|

)
	

(
3
2 − λ

|2−n+2m|
)

	
(

1
2 + λ

|2−n+2m|
)

	
(

1
|2−n+2m| + λ

|2−n+2m|
)

	
(

1 − λ
|2−n+2m|

)

×
	

(
1 + 1

|2−n+2m| − λ
|2−n+2m|

)
	

(
1
2 + 1

|2−n+2m| − λ
|2−n+2m|

) (2.9)

where 	(x) is the Euler’s integral of the second kind.
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The ground state energy per site e∞ of the OSp(n|2m) spin chain (2.7) is obtained by taking 
the logarithmic derivative of �0(λ) at the spectral point λ = 0. After some simplifications we 
find

e∞ = − 2

|2 − n + 2m|
[
ψ

(
1

2
+ 1

|2 − n + 2m|
)

− ψ

(
1

|2 − n + 2m|
)

+ 2 ln(2)

]
+ 1

(2.10)

where ψ(x) = d ln 	(x)
dx

is the Euler psi function.
The same reasoning as above can be used to obtain the dispersion relation for the low-lying 

excitations, see for instance Ref. [14]. These states correspond to next largest eigenvalues of the 
transfer matrix and their ratios with the ground state [�0(λ)]L defines the excitation function 
γ (λ). Considering that Eq. (2.8) applies also for the excitations such function is expected to sat-
isfy the constraint γ (λ)γ (λ + 2−n+2m

2 ) = 1. This means that γ (λ) has the real period |2 −n +2m|
and consequently it can be expressed in terms of product of trigonometric functions. We can now 
follow the reasoning discussed in [14] and conclude that the dispersion relation e(p) for the 
low-lying excitations with momenta p is

e(p) = 2π

|2 − n + 2m| sin(p) (2.11)

and therefore the speed of sound is ξ = 2π
|2−n+2m| .

We would like to note that for the results so far it has implicitly been assumed that n −2m 	= 2. 
For n −2m = 2 we can not derive the Hamiltonian from the R-matrix (2.1) since there is no point 
λ0 such that Rab(λ0) ∼ Pab . These are the cases in which the Killing form of the OSp(n|2m) su-
peralgebra is degenerated. One way to circumvent this problem is to scale the spectral parameter 
λ → λ(2 − n + 2m)/2 and afterwards take the limit n − 2m → 2 in Eq. (2.1) to obtain

Rab(λ) = Pab + λ

1 − λ
Eab for n − 2m = 2 (2.12)

which is the R-matrix of the so-called Temperley–Lieb model with E2
ab = 2Eab [13]. We note 

that in this case the respective loop model realization does not permit configurations involving 
intersecting paths since the identity operator is not present in the R-matrix (2.12). We further 
recall that for n = 2 and m = 0 the vertex model corresponds to the isotropic six-vertex model. 
The expression of the respective anti-ferromagnetic Hamiltonian is

H = −
L∑

i=1

Ei,i+1 for n − 2m = 2 (2.13)

The inversion method can also provide us with exact results for the vertex model with weights 
based on the R-matrix (2.12). It turns out that the respective partition function per site is

�0(λ) = 2

1 − λ

	
(
1 + λ

2

)
	

( 3
2 − λ

2

)
	

(
1 − λ

2

)
	

( 1
2 + λ

2

) for n − 2m = 2 (2.14)

while the ground state energy and dispersion relation associated to the Hamiltonian (2.13) are

ē∞ = −2 ln(2) and ē(p) = π sin(p) for n − 2m = 2 (2.15)

From the above results we conclude that the bulk behavior depends only on the loop model 
fugacity z = n − 2m. In next sections we shall present evidences that this feature still remains 
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valid for the central charge and for the compact part of the critical exponents of the underlying 
conformal field theory.

3. Small size results

In order to gain some insight on the spectrum properties of the OSp(n|2m) superspin chain 
we have numerically diagonalized the respective Hamiltonians for lattice sizes L ≤ 8. We have 
limited our analysis to Hamiltonians with maximum number of seven states per site n + 2m = 7. 
We find that the ground state is generically degenerated for spin chains with n − 2m ≤ 0 while 
when n − 2m ≥ 1 the ground state is always a singlet for L even. In Table 1 we present the 
ground state degeneracies for the OSp(n|2m) spin chains studied in this paper for even and odd 
lattice sizes.

We have noted that for a fixed fugacity n − 2m the eigenspectrum are basically the same 
apart degeneracies up to the size L = 4 for distinct values of n and m. Considerable number of 
new eigenvalues start to emerge for L = 6 but they occur at the higher energy part of the spec-
trum. These findings suggest that for large enough L the spectrum should satisfy the following 
sequence of inclusions,

spec[OSp(n|2m)] ⊂ spec[OSp(n + 2|2m + 2)] ⊂ spec[OSp(n + 4|2m + 4)] ⊂ . . . (3.1)

such that the ground state and the low-lying excitations for a given fugacity n − 2m is described 
by the superspin chain with the lowest possible values of the integers n and m. This feature is 
present in spin chains with different supergroup symmetries, e.g. for gl(m|n) where a spectral 
embedding of models with given m − n has been observed [15].

This above observation can be used in order to predict the value for the effective central 
charge. For n − 2m ≥ 2 the sequence can be started with the orthogonal invariance O(n − 2m)

and the respective conformal field theory should be that of the Wess–Zumino–Witten model on 
this group see for instance [16,17]. The partition function is expected to be dominated by n − 2m

Ising degrees of freedom and therefore the central charge is

ceff = (n − 2m)/2 for n − 2m ≥ 2 (3.2)

On the other hand when n −2m < 2 the orthogonal invariance is somehow broken and the par-
tition function is effectively dominated by n − 2m − 1 bosonic degrees of freedom with effective 
central charge [3],

ceff = n − 2m − 1 for n − 2m < 2 . (3.3)

At this point we remark that in the context of the intersecting loop model these two regimes are 
distinguished by the behavior of the respective Boltzmann weights. We note that for n − 2m < 2
the three weights in Eq. (2.1) can be chosen positive and consequently they can be interpreted as 
probabilities. However when n −2m > 2 one of the weights is always negative and the probability 
interpretation is lost. Therefore it is not a surprise that the continuum limit of these regimes are 
described by two different conformal field theories.

In next section we shall begin our study of the finite-size effects for large L for the superspin 
chains in Table 1 by using convenient grading choice for the Bethe ansatz solution. We will 
investigate two specific sequences of models with the same fugacity and argue that the potential 
extra eigenvalues does not lead to new conformal dimensions.
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Table 1
Ground state energy degeneracies 
for even and odd lattice sizes.

even L odd L

OSp(1|2) 3 3
OSp(3|4) 23 7
OSp(2|2) 8 4
OSp(3|2) 1 5
OSp(2|4) 16 32
OSp(5|2) 1 7

Fig. 2. The Dynkin diagram with the respective basis ordering for the superalgebras studied in this paper. The bosonic 
roots are represented by a white dot while the fermionic ones by a black dot or a crossed dot.

4. Finite size effects

In this section we will investigate the finite size properties of the super spin chains with the 
help of their Bethe ansatz solution. As mentioned above it is a common feature of integrable spin 
models based on super Lie algebras that the Bethe equations for the rapidities parameterizing
their spectrum depend on the choice of grading. In a first step we have to choose the formulation 
which is most convenient for the numerical solution of the respective Bethe ansatz equations for 
large system sizes. By now it is well known that for rational vertex models there exists a direct 
connection between the form of the Bethe ansatz equations with the specific Dynkin diagram 
representation of the underlying superalgebra. In Fig. 2 we exhibit the diagrams with the re-
spective grading ordering for the orthosympletic superalgebras suitable for each super spin chain 
studied in this paper. The explicit form of the Bethe equations and the basic root distributions is 
presented in the next subsections.

Based on the numerical solution of the Bethe equations we can analyze the finite size scaling 
of the spectrum. For a conformally invariant theory the finite size gaps are expected to scale as 
[18,19]

Xeff(k;L) = L
(Ek(L) − Lε∞) → Xk − ceff

, (4.1)

2πξ 12
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where Xk are the scaling dimensions of the corresponding operator in the continuum limit and 
the effective central charge ceff governs the finite size scaling of the ground state energy E0(L)

of the lattice model. Similarly, from the momentum of the states the conformal spin of the corre-
sponding operator can be determined, s(k; L) = (L/2π)(Pk(L) −P0).

As we shall see below the spectrum of scaling dimensions of the OSp(n|2m) models is highly 
degenerate in the thermodynamic limit. In a finite system this degeneracy is lifted by subleading 
corrections to scaling which can be studied in conformal perturbation theory [20,21]. With re-
spect to the conformally invariant fixed point the lattice Hamiltonian of the isotropic OSp(n|2m)

superspin chains is perturbed by a marginally irrelevant operator. If the coupling constant g is 
initially small the effective coupling at scale L vanishes as g(L) ∼ 1/ logL and the corrections 
to scaling take the universal form

X(k;L) � Xk + β(k)

logL
. (4.2)

This logarithmic dependence on the system size requires information on the spectrum for large 
system sizes to reliably determine the scaling dimensions. Below we shall use this prediction to 
determine both them and the amplitudes of β(k) extrapolating finite size date for lattice systems 
with up to several thousand sites based on the assumption that the corrections to scaling are 
rational functions of 1/ logL.

4.1. n − 2m = −2: OSp(2|4)

For the OSp(2|4) model it turns out to be most convenient to use the grading Bethe equations 
for the grading ff bbff(

λ
(1)
j + i

2

λ
(1)
j − i

2

)L

=
N1∏

k=1,k 	=j

λ
(1)
j − λ

(1)
k + i

λ
(1)
j − λ

(1)
k − i

N+∏
k=1

λ
(1)
j − λ

(+)
k − i

2

λ
(1)
j − λ

(+)
k + i

2

N−∏
k=1

λ
(1)
j − λ

(−)
k − i

2

λ
(1)
j − λ

(−)
k + i

2

,

j = 1 . . .N1 ,

N1∏
k=1

λ
(+)
j − λ

(1)
k + i

2

λ
(+)
j − λ

(1)
k − i

2

=
N−∏
k=1

λ
(+)
j − λ

(−)
k + i

λ
(+)
j − λ

(−)
k − i

, j = 1 . . .N+ ,

N1∏
k=1

λ
(−)
j − λ

(1)
k + i

2

λ
(−)
j − λ

(1)
k − i

2

=
N+∏
k=1

λ
(−)
j − λ

(+)
k + i

λ
(−)
j − λ

(+)
k − i

, j = 1 . . .N− .

(4.3)

The number of Bethe roots on the three levels determine the eigenvalues of the conserved U(1)

charges from the Cartan subalgebra of OSp(2|4). The energy of the state parameterized by a 
solution {λ(1)

k } ∪ {λ(+)
k } ∪ {λ(−)

k } to these equations is

E = L −
N1∑
k=1

1(
λ

(1)
k

)2 + 1
4

. (4.4)

The roots of (4.3) corresponding to the ground state and many of the low-lying excitations 
are found to be real with finite densities N1/L → 1, N±/L → 1

2 in the thermodynamic limit. 
This fact allows to study their finite size scaling analytically based on linear integral equations 
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Fig. 3. Finite size spectrum of the OSp(2|4) superspin chain. Displayed are the effective scaling dimensions Xeff(L)

vs. 1/ logL. Black symbols denote levels from the lowest tower (4.8) of scaling dimensions in the sectors (1, 2, k), 
k = 0, 1, . . . , 4, filled (open) symbols are data from the solution of the Bethe equations for chains of even (odd) length. 
Grey symbols are higher excitations. Dashed lines are extrapolations based on a rational dependence on 1/ log L.

[22–24]. In the present case we find that the Bethe ansatz integral equations have a singular 
kernel, similar as in the staggered sl(2|1) superspin chains and the staggered six-vertex model 
where this has been found to lead to a continuous spectrum of scaling dimensions [5,6,25,26]. 
Labeling the charge sectors of the model by the quantum numbers n1 = L − N1, n2 = L −
N+ − N− and n3 = N+ − N− and the corresponding vorticities mk=1,2,3 the resulting scaling 
dimensions of primary fields are

X
(2|4)
eff (nk,mk;L) → 1

4

(
n2

1 + (n1 − n2)
2 + ε n2

3

)
+ 1

2

(
m2

1 + (m1 + 2m2)
2 + 1

ε
m2

3

)
− 1

4
(4.5)

and their conformal spin is s(nk, mk) = ∑
k nkmk . To derive (4.5) we have introduced the small 

parameter ε to regularize the singularity of the kernel. By construction the quantum numbers nk

are integers while the vorticities take integer or half-odd integer values according to the selection 
rules

m1 ∼ 1

2
n2 mod 1 , m2 ∼ 1

2
(n1 − n2 + 1) mod 1 . (4.6)

m3 is always integer. In the limit ε → 0+ scaling dimensions with the same n3 become degen-
erate while the vorticity m3 is constraint to be 0 for states in the low energy spectrum (i.e. for 
operators with finite scaling dimension X). Taking these constraints into account we find that the 
conformal weights in the low energy effective theory are non-negative integers.

The ground state of the chain for even L appears in the sector with (n1, n2, n3) = (1, 2, 0)

(and also (1, 0, 0)) and m1 = m2 = 0. Both from (4.5) and the extrapolation of data obtained by 
numerically solving (4.3) we find

X
(2|4)
eff (n = (1,2,0);L) → 1

2
− 1

4
= −ceff

12
(4.7)

with the effective central charge ceff = −3, in agreement with (3.3).
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The lowest excitations in the sectors (n1, n2, n3) = (1, 2, k) with |k| = 1, 2, 3, . . . ∼ L mod 2
are also described by real Bethe roots. Among these is the lowest energy state of the odd length 
super spin chains for k = ±1. As expected from (4.5) they exhibit the same leading finite size 
scaling as the ground state but different subleading corrections, see Fig. 3. From our numerical 
data based on the solution of the Bethe equations we find that the corrections to the scaling di-
mension of these states vanish as 1/ logL, as expected from perturbative renormalization group 
analysis of the low temperature Goldstone phase of the loop models with n − 2m < 2 [7]. Ana-
lyzing the subleading corrections in detail we find

X(2|4)((1,2, k);L) � β(2|4)(k)

logL
, β(2|4)(k) = (k + 1)(k − 1)

8
. (4.8)

Similar groups of excitations parameterized by real Bethe roots appear in the sectors 
(n1, n2, n3) = (2, 3, k) and (2, 4, k) with n2 + k ∼ L mod 2, see Fig. 3. The finite size analysis 
shows that the corresponding primaries have a scaling dimension X(2,3,k) = 1 and X(2,4,k) = 2, 
their conformal spins are s = 1 and s = 0, 2, respectively. Again, the subleading corrections to 
finite size scaling are found to vanish as 1/ logL with k-dependent amplitudes.

Among the remaining low energy levels in the spectrum of small systems found by exact 
diagonalization we have identified (see Fig. 3)

• a descendent of the ground state with X = 1, s = 1 in the (n1, n2, n3) = (1, 2, 0) sector 
described by a Bethe root configuration containing a single 2-string of complex conjugate 
Bethe roots λ(1)

0± � λ0 ± i/2 with real λ0 in addition to the real ones;
• two states in the sectors (2, 4, 0) and (2, 4, 2) disappear from the low energy spectrum as 

the system size is increased. Such behavior is expected for levels violating the constraint 
m3 = 0.

4.2. n − 2m = −1

For the OSp(1|2) model the Bethe equations are [10,27](
λj + i

2

λj − i
2

)L

=
L−2n∏
k=1

λj − λk + i

λj − λk − i

λj − λk − i
2

λj − λk + i
2

, j = 1 . . .L − 2n . (4.9)

Solutions of these equations parameterize highest weight states for (4n + 1)-dimensional irre-
ducible representations of OSp(1|2) with superspin J = n, n = 0, 12 , 1, 32 , . . . and energy

E = L −
L−2n∑
j=1

1

λ2
j + 1

4

. (4.10)

The operator content of the effective theory describing this superspin chain at low energies is 
known from Ref. [27], the primary fields have scaling dimensions

X
(1|2)
eff (n,m;L) → n2 + m2 − 1

12
(4.11)

for states with superspin J = n and vorticity m subject to the constraint (n +m) ∈ Z + 1
2 .1 Hence, 

for the triplet ground state (n, m) = ( 1
2 , 0) we find the central charge ceff = −2. The finite size 

1 Note that there exist highly excited states for which this constraint is violated.
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scaling and finite temperature properties of the OSp(1|2) superspin chain have recently been 
studied based on a formulation of the Bethe ansatz in terms of nonlinear integral equations [28]. 
As a consequence of the boundary conditions used in that work the effective central charge 
obtained from the low temperature behavior differs from the one appearing in the finite size 
scaling behavior of the ground state. We note that the ground state is degenerate (up to subleading 
corrections to scaling) with the lowest singlet, (n, m) = (0, 12 ).

As discussed above, the spectrum of the OSp(1|2) superspin chain is a subset of that of the 
OSp(3|4) model. Therefore we discuss the finite size scaling in the context of the latter based on 
the Bethe ansatz for grading bff bff b

(
λ

(1)
j + i

2

λ
(1)
j − i

2

)L

=
N2∏
k=1

λ
(1)
j − λ

(2)
k + i

2

λ
(1)
j − λ

(2)
k − i

2

, j = 1 . . .N1 ,

N1∏
k=1

λ
(2)
j − λ

(1)
k + i

2

λ
(2)
j − λ

(1)
k − i

2

=
N2∏

k=1,k 	=j

λ
(2)
j − λ

(2)
k + i

λ
(2)
j − λ

(2)
k − i

N3∏
k=1

λ
(2)
j − λ

(3)
k − i

2

λ
(2)
j − λ

(3)
k + i

2

, j = 1 . . .N2 ,

N2∏
k=1

λ
(3)
j − λ

(2)
k + i

2

λ
(3)
j − λ

(2)
k − i

2

=
N3∏

k=1,k 	=j

λ
(3)
j − λ

(3)
k + i

λ
(3)
j − λ

(3)
k − i

λ
(3)
j − λ

(3)
k − i

2

λ
(3)
j − λ

(3)
k + i

2

, j = 1 . . .N3 ,

(4.12)

where the corresponding state of the superspin chain has energy

E = −L +
N1∑
k=1

1(
λ

(1)
k

)2 + 1
4

. (4.13)

The ground state and low lying excitations of the model have root densities Ni/L → 1 in the 
thermodynamic limit. We label the charge sectors of the OSP(3|4) model by quantum numbers 
(n1, n2, n3) = (N1 − N2 + 1, N2 − N3 + 1, L − N1 − 2).

The lowest energy states appear in the sectors (n1, n2, n3) = (1, 1, k) where k = 0, 1, 2,

. . . ∼ L mod 2. Their Bethe roots are arranged in (L − k − 2)/2 complex conjugate pairs

λ
(1)
j,± � λ

(1)
j ± 5i

4
, λ

(2)
j,± � λ

(2)
j ± 3i

4
, λ

(3)
j,± � λ

(3)
j ± i

4
,

and real centers λ(a)
j . In the thermodynamic limit these states are degenerate, see Fig. 4. The 

levels with k = 0, 1 are the lowest and their energies coincide with those of the triplet ground 
state and the lowest singlet excitation in the spectrum of the OSp(1|2) chain. Analyzing the 
subleading corrections to scaling for this class of levels we conjecture (k = 0, 1, 2, . . .)

X(3|4)((1,1, k);L) � β(3|4)(k)

logL
, β(3|4)(k) = 2k2 + 2k − 1

12
. (4.14)

A second tower of primaries with spin s = 1 levels extrapolating to X(3|4) = 1 is found in 
the OSp(3|4) sectors (n1, n2, n3) = (2, 1, k) for k = 0, 1, 2, . . . ∼ L − 1 mod 2, see Fig. 4. In 
the corresponding Bethe root configurations one of the N1 = L − 2 − k roots on the first level 
is real. The lowest of these excitations, k = 0, is also present as a triplet in the spectrum of the 
OSp(1|2). In addition there are descendents of the (1, 1, k) primaries with scaling dimension 
X = 1.
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Fig. 4. Finite size spectrum of the OSp(3|4) (symbols) superspin chain. Levels already present in the OSp(1|2) model 
due to the inclusion (3.1) are marked by red dashed lines. Displayed are the effective scaling dimensions Xeff(L) vs. 
1/ logL. Black symbols denote levels from the lowest tower (4.14) of scaling dimensions in the OSp(3|4) sectors 
(1, 1, k), k = 0, 1, . . . , 4. Filled (open) symbols are data chains of even (odd) length. Also shown are extrapolations 
based on a rational dependence on 1/ logL. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

The next excitations, both of the OSp(1|2) and the OSp(3|4) chain, for which we have de-
termined the Bethe root configurations correspond to fields with scaling dimension X = 2. Their 
conformal spin is s = 0 or 2.

4.3. n − 2m = 0

We study the spectrum of the OSp(2|2) superspin chain using the Bethe equations in the 
grading f bbf :(

λ
(1)
j + i

2

λ
(1)
j − i

2

)L

=
N−∏
k=1

λ
(1)
j − λ

(2)
k + i

λ
(1)
j − λ

(2)
k − i

j = 1 . . .N+ ,

(
λ

(2)
j + i

2

λ
(2)
j − i

2

)L

=
N+∏
k=1

λ
(2)
j − λ

(1)
k + i

λ
(2)
j − λ

(1)
k − i

j = 1 . . .N− .

(4.15)

Solutions to these equations parameterize states with energy

E = L −
N+∑
k=1

1(
λ

(1)
k

)2 + 1
4

−
N−∑
k=1

1(
λ

(2)
k

)2 + 1
4

. (4.16)

The ground state and low energy excitations of the OSp(2|2) superspin chain are described by 
real roots of (4.15) with densities Nk/L → 1/2 in the thermodynamic limit, see [29]. Similarly as 
for the OSp(2|4) chain above we use this fact to analytically compute the scaling dimensions of 
primary fields from the finite size spectrum. Introducing quantum numbers n1 = L − N+ − N−
and n2 = N+ − N− for the U(1) charges and regularizing the singularity of the Bethe ansatz 
kernel we find that the scaling dimensions of primaries are
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Fig. 5. As Fig. 3 but for the OSp(2|2) superspin chain. Black symbols denote the levels from the lowest tower (4.20) of 
scaling dimensions in the sectors (1, k), k = 0, 1, . . . , 4.

X
(2|2)
eff (nk,mk;L) → 1

4

(
n2

1 + ε n2
2

)
+ 1

4

(
m2

1 + 1

ε
m2

2

)
− 1

6
. (4.17)

Their conformal spin is s = n1m1 +n2m2. Here, the charges n1/2 are integers, the corresponding 
vorticities take values according to the selection rules

m1 ∼ L − n1 mod 2 , m2 ∈ Z . (4.18)

For levels from the low energy spectrum in the thermodynamic limit (where the regularization 
constant ε → 0+) the vorticity m2 is constrained to be 0.

The lowest energy states appear in the sectors n1 = 1, m1 = 0 such that

X
(2|2)
eff (n1 = 1,m1 = 0;L) → 1

4
− 1

6
= −ceff

12
(4.19)

with the effective central charge of the OSp(2|2) superspin chain, ceff = −1. Scaling dimen-
sion and spin of the corresponding primary are X = 0, s = 0. The degeneracy of the scaling 
dimensions for levels with different n2 is lifted for finite system sizes, see Fig. 5. Analyzing the 
subleading corrections to scaling of the (n1, n2) = (1, k) states, k = 0, 1, 2, . . . ∼ L − 1 mod 2, 
we find a tower of levels:

X(2|2)(n = (1, k);L) � βk(2|2)

logL
, βk(2|2) = 2k2 − 1

8
. (4.20)

A tower of spin s = 1 excitations extrapolating to X = 1 is found in the sectors (n1, n2) =
(2, k) with k = 0, 1, 2, . . . ∼ L mod 2. A state with spin s = 2 in the sector (2, 4) disappears 
from the low energy spectrum as the system size is increased since the restriction m2 = 0 is 
violated.

4.4. n − 2m = +1

The finite size spectrum of the OSp(3|2) superspin chain has been studied extensively using 
its solution by means of the algebraic Bethe ansatz in Ref. [4]. The ground state displays no 
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finite size corrections from it has been concluded that ceff = 0. The excitations considered in that 
work can be grouped into towers extrapolating to integer scaling dimensions X = 0, 1, 2, . . . or 
disappear from the low energy spectrum in the thermodynamic limit. The degeneracies in the 
spectrum of scaling dimensions is lifted for finite system sizes: with the exception of the ground 
state the finite size gaps show strong logarithmic corrections to scaling. For the levels in the 
X = 0 tower these corrections have been found to scale as

X
(3|2)
eff (k;L) � 0 + βk(3|2)

logL
, βk(3|2) = k(k − 1)

2
(4.21)

4.5. n − 2m = +3

As mentioned above the continuum limit of the OSp(n|2m) superspin chain for n −2m > 2 is 
expected to be different from that for the cases discussed so far. Here first insights into the finite 
size spectrum can be obtained from the spectral inclusion spec[O(3)] ⊂ spec[OSp(5|2)] ⊂ . . . , 
see (3.1). The integrable O(3) spin chain (or the spin S = 1 Takhtajan–Babujian model [30,
31]) is known to be a lattice realization of the SU(2) Wess–Zumino–Witten–Novikov (WZNW) 
model at level k = 2 with central charge ceff = 3/2 and spectrum of conformal weights h ∈
{j (j + 1)/4 : j = 0, 1/2, 1}. Its primaries can be written as composite operators built from an 
Gaussian representing the Kac–Moody algebra with topological charge k = 2 and an Ising field 
[32]. The lowest scaling dimensions appearing in the lattice model of length L are

XO(3) ∈
{

{ 3
8 ,1, . . .} for L even

{ 3
8 , 1

2 ,1, . . .} for L odd
(4.22)

and higher descendents thereof. We note that the level with XO(3) = 1/2 has conformal spin 
s = 1/2 and is therefore not realized in the spectrum of the even L chain. The corrections to 
scaling due to the marginally irrelevant perturbation of the conformal fixed point present in the 
lattice Hamiltonian have been computed in perturbation theory [33]. For the ground state this 
leads to logarithmic corrections to the central charge

c
O(3)
eff (L) � 3

2
+ 3

2(logL)3 , (4.23)

while the finite size gap of the lowest triplet and singlet excitations are

X
O(3)
S=1 (L) � 3

8
− 1

4

1

logL
,

X
O(3)
S=0 (L) � 3

8
+ 3

4

1

logL
.

(4.24)

(Note that the singlet is realized in the spectrum of the O(3) spin chain with an odd number of 
sites only.)

The additional levels in the spectrum of the OSp(5|2) superspin chain can be studied based 
on its solutions by Bethe ansatz. For the grading fbbbbbf the Bethe equations read
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k=1,k 	=j

λ
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k + i
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λ
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j − λ

(3)
k − i
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=
N2∏
k=1

λ
(3)
j − λ

(2)
k + i

2

λ
(3)
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(2)
k − i
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, j = 1 . . .N3 .

(4.25)

Solutions to these equations parameterize OSp(5|2) highest weight states with energy

E = −L +
N1∑
j=1

1

(λ
(1)
j )2 + 1

4

. (4.26)

Unlike in the OSp(n|2m) models with n −2m < 2 discussed above the ground state of the su-
perspin chain remains a unique singlet indicating the absence of a symmetry breaking transition 
into a low temperature phase of the loop models in this regime [7]. Labeling the charge sectors 
of the OSp(5|2) chain with quantum numbers (n1, n2, n3) = (L − N1, N1 − N2, N2 − N3) the 
lowest excitations above the ground state of the O(3) chain are found in the sector with (k, 0, 0), 
k = 1, 2, 3, . . . ∼ L mod 2. The corresponding Bethe root configuration consists of (L − k)/2
pairs of complex conjugate roots on each level with complex parts2

λ
(1)
j,± � λ

(1)
j ± 3i

4
, λ

(2)
j,± � λ

(2)
j ± i

4
, λ

(3)
j,± � λ

(3)
j ± i

4
,

and real centers λ(a)
j , a = 1, 2, 3. The states with k = 1 and 2 appear as the triplet excitations in 

the spectrum of the O(3) model for chains of odd and even length, respectively, and the state 
with k = 3 has the energy of the O(3) singlet. The energy levels for k > 3 are not in the O(3)

part of the spectrum. In the thermodynamic limit, L → ∞, they degenerate, see Fig. 6. For large 
but finite systems we find that this degeneracy is lifted as

X
(5|2)

eff ((k,0,0);L) � 3

8
+ βk(5|2)

logL
, βk(5|2) = 2k2 − 6k + 3

4
(4.27)

matching the known behavior (4.24) for the O(3) levels k = 1, 2, 3.
Higher energy excitations for even length superspin chains have been found extrapolating to 

scaling dimensions X = 1, 3/8 + 1, 2, and 3/8 + 2, see Fig. 6. The first of these is in the sector 
with (n1, n2, n3) = (1, 1, 0) and its energy is that of the zero-spin field with scaling dimensions 
X = 1 in the O(3) model. Its root configuration differs from the one for the lowest tower by one 
root λ(1) = 0 on the first level. The energy is that of the zero-spin field with scaling dimensions 
X = 1 in the O(3) model.

We have investigated the corrections to finite size scaling of mostly spin zero levels in the 
OSp(5|2) chain of even length up to some energy cutoff which including the first states ex-
trapolating to X = 3/8 + 2. Among these we find no evidence for the existence of towers of 
dimensions except those starting at the descendents of the field with X = 3/8. This resembles 

2 For the level with k = 1 the pairs with real part closest to the origin are strongly deformed.
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Fig. 6. As Fig. 4 but for the OSp(5|2) superspin chain (symbols) and the O(3) spin chain (red dashed lines). Black 
symbols denote the levels from the tower (4.27) of scaling dimensions in the OSp(5|2) sectors (k, 0, 0), k = 1, 2, . . . , 6.

the presence of both a continuous and a discrete part in the conformal spectrum of the sl(2|1)

superspin chain with alternating quark and antiquark representations and its deformation [5,25,
34,35].

5. Discussion

In this paper we have studied the fine structure appearing in the finite size spectrum of the 
OSp(n|2m) superspin chains. We find that the ground states of these models have a finite degen-
eracy for n − 2m < 2. For large finite system size L there exists a tower of scaling dimensions 
extrapolating to that of the identity operator, X = 0, and forming a continuum in the thermody-
namic limit, L → ∞.

For n − 2m = 3 (and most likely for all n − 2m > 2) the ground state of the superspin chain is 
a unique singlet, with the same energy as the ground state of the O(3) spin chain. The low energy 
effective description of the O(3) model is known to be the SU(2)2 WZNW model, its lowest two 
excitations with scaling dimension X = 3/8 show strong subleading corrections to scaling (4.24)
due to the presence of a marginally irrelevant perturbation in the lattice model. These levels are 
also present in the spectrum of the OSp(5|2) chain, see Eq. (3.1). In addition, however, we have 
found continua of scaling dimensions to emerge starting at X = 3/8 and its descendents.

These observations are reminiscent of the appearance of a continuous component in the 
spectrum of scaling dimensions in staggered (super) spin chains [5,6,25,26]. There are some 
differences to our present findings though: the fine structure in the finite size spectrum of the 
staggered models has been argued to be a consequence of a non-compact degree of freedom in 
the low energy theory and the subleading gaps vanish quadratically with the inverse of logL. 
This has to be contrasted to the linear dependence predicted from conformal field theory for the 
WZNW models with a marginal perturbation and observed in the towers of excitations of the 
OSp(n|2m) models. Similarly, the corrections to scaling of the ground state of the staggered 
models due to a marginal perturbation by a continuum of excitations differ from (4.23) [36].

From the analysis of our data we have formulated conjectures for the amplitudes of the sub-
leading (logarithmic) corrections to the lowest tower of excitations. For the OSp(n|2m) models 
considered above these amplitudes are found to be quadratic functions of the single quantum 
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number labeling the different levels in the lowest tower. This suggests that they should be con-
nected to the quadratic Casimir of the algebra underlying the superspin chain. This is similar to 
the case of the O(3) model where (4.24) is derived by studying the effect of a marginal interac-
tion of left and right Kac–Moody currents JL · JR . In a multiplet with given left and right spin 
quantum numbers SL and SR this results in [33]

X
O(3)
SL+SR

� XWZW − SL · SR

logL
. (5.1)

For the orthosymplectic algebras OSp(n|2m) the eigenvalues of the Casimir operator on a 
highest weight vector (ν|μ) = (ν1, . . . , ν[n/2]|μ1, . . . , μm) are [37].

C
(m|2n)
2 (ν|μ) = 2

⎧⎨
⎩

[n/2]∑
a=1

νa(νa + n − 2m − 2a) −
m∑

α=1

μa(μa + 2m + 
n − 2α)

⎫⎬
⎭ , (5.2)

where 
n = 2 (1) for n even (odd). The first term in this expression, 2ν1(ν1 + n − 2m − 2), 
is present in the Casimir for each of the algebras with given n − 2m for n > 1. We note that, 
the amplitudes of the subleading logarithmic corrections measured relative to the first level with 
positive scaling dimension (i.e. after subtracting the smallest non-negative amplitude β(n|2m)) 
appearing in the superspin chains with n − 2m < 2 for even L the amplitudes can be directly 
related to the corresponding Casimir eigenvalue:

OSp(2|4) : β(2|4)(k) − 3

8
= (k + 2)(k − 2)

8
= C

(2|4)
2 (k + 2|0,0)

16
,

OSp(3|4) : β(3|4)(k) − 1

4
= (k + 2)(k − 1)

6
= C

(3|4)
2 (k + 2|0,0)

12
,

OSp(2|2) : β(2|2)(k) − 1

8
= (k + 1)(k − 1)

4
= C

(2|2)
2 (k + 1|0)

8
,

OSp(3|2) : β(3|2)(k) − 0 = k(k − 1)

2
= C

(3|2)
2 (k|0)

4
.

This can be compared to the case of OSp(5|2) where the finite part of the scaling dimension for 
the lowest tower is already positive. Therefore, measuring β(5|2) relative to the smallest one we 
get

OSp(5|2) : β(5|2)(k) + 1

4
= (k − 1)(k − 2)

2
= C

(5|2)
2 (k − 2|0,0)

4
.

Being corrections to the scaling dimensions of primary field these amplitudes are expected to 
determine logarithmic corrections to correlation functions. Again, the scaling dimensions should 
be measured starting from the smallest non-negative one for the given model. For the OSp(n|2m)

models with n − 2m < 2 this predicts two-point functions of these fields to be

G
(n|2m)
k (r) ∼ (log r)−αk , αk = k(k + n − 2m − 2)

2 − n + 2m
(5.3)

For the correlation functions to decay at large distances k has to be restricted to k > 2 − n + 2m. 
Eq. (5.3) agrees with the exponents for k-leg watermelon correlators proposed for the Goldstone 
phase of intersecting loop models with fugacity n −2m < 2 and studied numerically using Monte 
Carlo simulations for n − 2m = 1 [8,9].
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Eq. (5.3) leads us to propose the existence of a family of fields in the OSp(5|2) model whose 
two-point correlation functions feature a multiplicative logarithmic correction to the algebraic 
behavior expected from conformal field theory, i.e.

G
(5|2)
k (r) ∼ 1

r3/4 (log r)−k2−k+1/2 k ≥ 0 . (5.4)

We note that G(5|2)
k=0 (r) is the spin–spin correlation function in the O(3) model [33].
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