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ABSTRACT   

Based on the z-scan method, an interferometric set-up for measuring the optical Kerr-effect was engineered and 
optimized. Utilizing a Mach-Zehnder configuration, the wave front deformation caused by the Kerr induced self-
focusing is monitored. Fitting this deformation to a theoretical approach basing on a beam propagation model, the 
nonlinear refractive index is obtained. The procedure can be applied to measure the nonlinear refractive index of both, 
the substrate material as well as the deposited dielectric layer on top of the substrate. The nonlinear refractive index of a 
layer specially deposited for this purpose as well as for several substrate materials was measured and the results 
presented. 
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1. INTRODUCTION 
In the past years, the demands on optical components have increased continuously. This increase can be divided into two 
different directions. On one hand, ultra-short-pulse applications demand the management of broad spectra, combined 
with a management of the spectral phase for GDD-control [1]. This requires a precise control of the coating process and 
extensive knowledge of layer material properties. On the other hand, the available laser power keeps increasing and so 
the power handling capabilities of optics are moving more and more into the focus of attention [2]. 

These two developments necessitate the consideration of nonlinear optical effects in the coating stack, as they gain in 
importance with higher incident powers and can influence the function of a coating stack in different ways. Of major 
significance are nonlinear effects of the third order, as they, contrary to effects of second order, occur in amorphous 
media, which typically constitute optical layer stacks. An example is the optical Kerr-effect, which changes the refractive 
index depending on the intensity of the incident radiation and a material constant, the so called nonlinear refractive 
index. This effect can either change the spectral properties of an optical component [3] or contribute to the destruction of 
the component via the so called self-focusing.  

To compensate or even exploit the nonlinear effects occurring in thin film layer stacks, a precise knowledge of the 
corresponding material constants is essential. As the linear optical properties of materials as thin films are known to 
differ from the linear optical properties of the corresponding bulk materials [4], it is reasonable to assume this also to be 
true for the nonlinear properties of optical layers, so that using the values known from bulk materials could cause errors 
when dealing with the effects in thin film stacks. To measure the nonlinear properties of optical layers, either a high 
nonlinear coefficient or a sufficient propagation length in the investigated material is necessary, with typical materials 
for optical thin films requiring propagation lengths of over 50µm. To create optical films with thicknesses in this order of 
magnitude and the desired optical quality, the coating process and treatment of the samples has to be optimized 
thoroughly. Most prominently, the layer stress as well as the absorption of the layer material has to be minimized to 
reach the desired mechanical stability and optical transmission. To achieve this, the layers were deposited applying an 
Ion-Beam-Sputtering process in combination with in-situ substrate heating as well as ex-situ annealing. 
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Figure 3: A typical signal created by a z-scan for a sample with positive n2. The changing focal length of the Kerr-lens in the 
sample caused by the varying intensity during the sample movement causes different beam diameters on the aperture and 
therefore the transmitted power changes with the sample position. When the sample is in front of the beam’s focus, the 
intensity is lowered, and after the beam’s focus, the intensity is increased because of the smaller beam diameter. The 
transmitted power is normalized to the undisturbed level. 

 

With a known initial beam parameter	ݍ୧୬, and an optical system characterized by an optical matrix ܯ with the 
components ܯ = ቀܣ ܥܤ  ቁ,      (2.8)ܦ

one can calculate the resulting optical beam parameter ݍ୭୳୲ via the following relation [12]: ଵ௤౥౫౪ = ஼ା஽/௤౟౤஺ା஻/௤౟౤      (2.9) 

This generalized calculation method allows the simulation of the Kerr-effect for differing setups. Figure (4) shows a 
typical z-scan profile for a thin sample, one time simulated with the classical wave-optical procedure (compare [12]) and 
one time with the matrix approach. The different methods of simulation methods yield almost identical results. 

Often, the intensities necessary to achieve a significant impact of the self-focusing require a strong focusing of the 
applied radiation. This leads to short Rayleigh-ranges for the focused beams and therefore limits the thickness of 
samples, for which the approximation as a thin lens is valid. The simulations performed for thicker samples would 
consequently not match the measurements. To avoid that inaccuracy, the matrix formulism can be applied in 
combination with the so called distributed lens approximation [13]. Samples with thicknesses in the range of the 
Rayleigh-length are approximated as a sequence of Kerr-lenses ܮ௜ followed by a short propagation Δܮ through a Kerr-
inactive medium (see figure (5) for illustration). The propagation length following each Kerr lens is chosen short enough, 
so that the thin lens approximation is valid again, and the sequential calculation accounts for beam changes through self-
focusing while the beam propagates inside the medium. Therefore, the self-focusing inside of thick media can be 
considered with an iterative procedure, in which the beam parameter is calculated after each sequence of ܮ௜ and Δܮ, and 
the resulting beam parameters are then used to calculate the focal length of the next Kerr-lens. This process is repeated, 
until the necessary number of sequences is reached and the beam exits the Kerr-active medium.  
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Figure 9: The interference pattern (a) created by superimposing the beam transmitted through the sample and the reference 
beam. A 2-dimensional FFT is applied to obtain the spatial spectrum (b). The spectrum clearly shows a central maximum 
and two, symmetric maxima, caused by the interference pattern. 

 

 
Figure 10. The phase distribution retrieved from the interference pattern. The green pattern represents schematically the 
lines used for evaluation of the ROC. 

4.  MEASUREMENTS OF THE NONLINEAR REFRACTIVE INDEX FOR BULK 
MATERIALS 

To quantify the developed method for measuring the nonlinear refractive index, several types of optical bulk material 
were measured. For the measurements to be accurate, the correction factor a from equation (2.1) needs to be determined. 
This can be done by measuring a material with a well-known nonlinear refractive index, such as sapphire [16, 17, 18]. 
The measurement of a sapphire sample with a thickness of 1mm and the corresponding simulation is shown in figure 
(11). With the set-up calibrated in this fashion, more materials with different thicknesses were investigated and 
simulations were used to determine the nonlinear refractive index of the material, as this is the only free parameter 
remaining. The measurements and simulations are presented in figure (12) and the resulting values for the nonlinear 
refractive index are summarized in table (1). The table also shows corresponding values from the literature for 
comparison. The measurements show overall a good agreement with the simulations, and the calculated nonlinear 
refractive indices match with published data. 
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Table 1: Measurement results for the nonlinear refractive index of optical bulk materials and literature values for 
comparison. Overall, the measured values are in reasonable agreement with the literature.  

Material Thickness (mm) n0 @1064nm n2
.(10-20 m2/W) n2 lit (10-20 m2/W) 

SiO2 2 1.4496 4.3 1.9-3[19] 

SiO2 6 1.4496 3.4 1.9-3[19] 

YAG (@1300) 2.6 1.8147 7.1 7.7[20] 

B270 Glas (@620) 2 1.5186 3.3 3.4[21] 

5.  MANUFACTURING AND MEASUREMENT OF OPTICAL THIN FILMS 
To create optical thin films with the required thickness of over 100µm and high quality for the measurement of the 
nonlinear refractive index, two main factors have to be kept in mind and optimized: The layer stress and the absorption. 
If the layer stress is too high, the optical film will, when a certain thickness is reached, either break the substrate or 
delaminate. When the absorption in the optical film is not low enough, the film will, because of its very high thickness, 
absorb a significant amount of the laser radiation applied for measuring purposes.  

To create the layers, an Ion Beam Sputtering (IBS) deposition with the special co-sputtering technique was applied [22]. 
While IBS processes are used to create high quality, the typical deposition rate of these processes is rather low. However, 
for the multi-micrometer coatings presented here, the deposition rate could be increased to approximately one nms-1 for a 
small area by optimizing the substrate position. The application of the co-sputter technique allows manufacturing 
mixtures of two coating materials by using a target translation mount to laterally move the target material relative to the 
ion beam. The ratio of the areas the ion beam hits on the two target materials then determines the ratio of the sputtered 
materials. The atoms sputtered from the target materials are then oxidized by inserted oxygen gas and create a ternary 
oxidic layer on the substrates. In this work, a commercial Veeco RF high power ion source was used, and the sputtering 
is performed with argon gas.  

As an addition to this set-up, a heating element is implemented into the coating process. Usually IBS is a so called “cold” 
coating process, but, as the substrate temperature can have a significant influence on minimizing layer stress and 
absorption, a powerful heater was used for the manufacturing of layers in this work.  

Several materials were investigated for their layer properties. As an example, the results for stress and absorption for a 
mixture of silicon oxide and aluminum oxide are presented in figure (13). The layers were deposited with substrate 
heating during the coating process as well as with post process annealing. Post process annealing was able to reduce the 
layer stress significantly for samples manufactured without heating, while the heating during the process reduces the 
initial stress strongly. The absorption values for unheated samples also improve with post-process annealing, but heated 
samples possess lower absorption values, which in turn do not change with post process annealing.  

Overall, heating during the coating process seems to reduce the layer stress in the process, which allows for thicker 
coatings without interruptions for annealing, while also reducing the absorption in the manufactured layers. This 
knowledge was applied to manufacture layers of different material mixtures for investigation of the nonlinear refractive 
index of the coating material.  

5.1 Measurement of thin films 

To measure the nonlinear refractive index of optical thin films, different layers with thicknesses of approximately 100µm 
were deposited on quartz substrates of different thicknesses. While investigating the properties of the so produced 
samples, it became clear that thick (6mm) substrates are more practical for measuring the layer properties. As can be 
seen in figure (7) and (12), thick substrates produce a signal with two distinguished peaks, which are caused by the 
surfaces of the sample. When an optical layer is deposited on one of these surfaces, the corresponding peak will change, 
while the other peak almost perfectly retains its shape.  
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6.  CONCLUSION 
In this work, a novel measurement method for the nonlinear refractive index is presented and evaluated. The 
measurement is based on the established z-scan approach, but uses an interferometric procedure to monitor the wave 
front deformation instead of the classical power monitoring. This new approach could provide a higher sensitivity and is 
less influenced by nonlinear absorption caused by excited electrons in the material. Consequently, the measurement 
approach expands the available power range for investigations both, in the low power range resulting from a higher 
sensitivity and for intensities close to the damage thresholds because of the tolerance to nonlinear absorption effects.  For 
evaluation of the measured wave front curvatures, the optical matrix formulism is applied to model the Kerr-lens self-
focusing occurring in the measured sample. A special approach is used for the consideration of thick samples. The 
measured results show, that the method is suitable for the measurement of the nonlinear refractive index of optical bulk 
material as well as of deposited thin films. This will enable a more detailed knowledge of the nonlinear properties of 
coating materials and, in this way, allow a compensation or even exploitation of nonlinear effects in dielectric layer 
stacks. 
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