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Second-order correlation function of a phase fluctuating Bose-Einstein condensate
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The coherence properties of phase fluctuating Bose-Einstein condensates are studied both theoretically and
experimentally. We derive a general expression for theN-particle correlation function of a condensed Bose gas
in a highly elongated trapping potential. The second-order correlation function is analyzed in detail, and an
interferometric method to directly measure it is discussed and experimentally implemented. Using a Bragg
diffraction interferometer, we measure intensity correlations in the interference pattern generated by two
spatially displaced copies of a parent condensate. Our experiment demonstrates how to characterize the second-
order correlation function of a highly elongated condensate and to measure its phase coherence length.
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I. INTRODUCTION

Among the various topics related to the exciting field
Bose-Einstein condensation~BEC! @1#, the analysis of coher
ence properties of degenerate Bose gases has attracted
interest. Coherence plays a key role in the understandin
the fundamentals of BEC and has a crucial importance
many promising BEC applications, such as matter wave
terferometry, guided atomic beams, and atom lasers. The
herent character of trapped three-dimensional~3D! conden-
sates well below the BEC transition temperatureTc has been
confirmed by several experiments, using interferome
@2,3# and spectroscopic methods@4#.

However, recent theoretical and experimental devel
ments have shown that phase coherence is far from bein
obvious property of BEC. In particular, a phase fluctuat
BEC at equilibrium has been theoretically predicted in o
dimensional@5#, two-dimensional@6,7#, and even in highly
elongated, but still three-dimensional@8# trapped Bose gases
Interestingly, in these cases the density distribution does
differ from the usual BEC profile, since density fluctuatio
are largely suppressed by the repulsive mean-field poten
These systems are commonly called quasicondensates. P
fluctuations can be induced either by quantum@9# or by ther-
mal fluctuations@10#. For typical experimental temperature
quantum phase fluctuations can safely be neglected as
as the system remains in the weakly interacting regime@11#.
The amplitude of phase fluctuations, therefore, depe
strongly on temperature and trapping geometry. In this se
a nearly phase coherent BEC in a highly elongated trap
be achieved only far belowTc , imposing severe limitations
on experiments in constrained geometries. Phase-fluctua
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BECs have been the subject of recent theoretical efforts,
cluding the development of a modified mean-field theo
valid in all dimensions and all temperatures below the cr
cal point @12,13#, the analysis of dynamic correlation func
tions @14#, and the extension of Bogoliubov theory to low
dimensional degenerate Bose gases@15#.

The phase-fluctuating nature of highly elongated BE
was first experimentally demonstrated in Ref.@16#. During
the ballistic expansion, phase fluctuations transform i
density modulations. The appearance of phase fluctuat
and their statistic nature were studied and the dependenc
their average value on experimental parameters was cha
terized @16,17#. Moreover, the results obtained from me
surements of the energy released during the expansion
firmed the absence of density fluctuations in the trapp
cloud @18,19#. Recently, the physics of quasicondensates
been studied by means of Bragg spectroscopy, showing
the existence of phase fluctuations leads to an observ
broadening of the momentum distribution@19,20#. A further
experiment has analyzed the phase coherence length of
equilibrium BECs by means of a condensate-focusing te
nique @21#.

In this paper, we present the theoretical foundation of
studies on coherence properties of phase-fluctuating con
sates. We analyze the behavior of the second-order cor
tion function for our experimental conditions and provide
detailed discussion of the experimental technique used
Ref. @22# to measure it. This technique is based on the ana
sis of density correlations in the interference pattern gen
ated by a matter wave Bragg interferometer. The general
is similar to the original Hanbury-Brown and Twiss expe
ment @23,24# in which the spatial second-order correlatio
function of a light source is characterized by measuring
correlations of intensity fluctuations in the wave field. O
method can be used to measure the phase coherence l
of the condensate.

This paper is organized as follows. In Sec. II, we brie
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©2003 The American Physical Society12-1



e
f
w

se
es
e

e
rd
th

h
n
rn
en

c
lsi

e

t

.
-

th

ua
or
n
r

a

ne
o

av

co-
of

the

ree
p is
infi-
he
ed

ith

-

s-
-
-

CACCIAPUOTI et al. PHYSICAL REVIEW A 68, 053612 ~2003!
review the theory of phase fluctuating Bose-Einstein cond
sates in 3D elongated traps@8# and analyze the evolution o
the phase pattern during the ballistic expansion. The kno
edge of the free dynamics of the phase is important to clo
model the BEC evolution during the measurement proc
In Sec. III, we study the coherence properties of the cond
sate and derive a general expression for theN-particle corre-
lation function of highly elongated 3D BECs. In Sec. IV, th
experimental technique used to measure the second-o
correlation function and the phase coherence length of
condensate is reviewed in detail.

II. PHASE FLUCTUATING CONDENSATES

In this section, we present the phase operator of a hig
elongated condensate@8# and develop an analytic descriptio
for the ballistic expansion of the fluctuating phase patte
These results, when combined with the free evolution of d
sity modulations presented in@16,17#, provide a full under-
standing of the order parameter dynamics during the time
flight.

A. Phase operator

In the following, we consider a cylindrically symmetri
condensate in the Thomas-Fermi regime, where the repu
mean-field interaction exceeds the radial (\vr) and the axial
(\vz) trap energies. AtT50, the density profile has th
well-known shapen0(r,z)5n0m(12r2/R22z2/L2), where
n0m5m/g denotes the maximum density of the condensa
m is the chemical potential,g54p\2a/m the interaction
constant,m the atomic mass, anda.0 the scattering length
Under the conditionvr@vz , the radial size of the conden
sate, given by the Thomas-Fermi radiusR5(2m/mvr

2)1/2, is
much smaller than the axial size, which corresponds to
Thomas-Fermi lengthL5(2m/mvz

2)1/2.
Due to the repulsive mean-field energy, density fluct

tions are strongly suppressed in a trapped BEC. Theref
the field operator describing the condensate can be writte
the formĉ(r )5An0(r )exp@if̂(r )#, where the phase operato
is defined by~see, e.g., Ref.@25#!

f̂~r !5@4n0~r !#21/2(
j 51

`

f j
1~r !â j1H.c. ~1!

Here â j represents the annihilation operator of the quasip
ticle excitation with quantum numberj and energye j ; f j

1

5uj1v j is the sum of the excitation wave functionsuj and
v j , obtained from the corresponding Bogoliubov–de Gen
equations. The low-energy axial modes, which are resp
sible for the long wavelength axial phase fluctuations, h
the energy spectrume j5\vzAj ( j 13)/4 @26#. The wave
functions f j

1 of these quasiparticle modes have the form@8#

f j
1~r !5A~ j 12!~2 j 13!gn0~r !

4p~ j 11!R2Le j

Pj
(1,1)S z

L D , ~2!
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where Pj
(1,1) are Jacobi polynomials. Equations~1! and ~2!

show that the phase operator depends only on the axial
ordinatez. In Sec. III, we analyze the coherence properties
the condensate by studying the correlation functions of
operatorĉ(r ).

B. Evolution of the phase fluctuating pattern

Starting from the results presented in Refs.@16,17#, we
analyze the evolution of phase fluctuations during the f
expansion of the degenerate Bose gas. Since the tra
highly elongated, we can assume the condensate as an
nite cylinder and use the local density approximation. T
time-of-flight dynamics of the order parameter is describ
by the scaling law@27,28#

c~r,z,t !5
k~r̃,z,t !

lr~ t !
ei (ml̇r/2\lr)r2

e2 im t̃ /\, ~3!

where (ml̇r/2\lr)r2 is the quadratic phase associated w
the expansion dynamics,lr

2(t)511vr
2t2 is the scaling co-

efficient, t̃ 5* t dt8/lr(t8)2 is the rescaled time, andr̃
5r/lr(t) is the rescaled radial coordinate. Letk05An0 be
the solution of the following equation:

F2
\2

2m
¹r̃

2
1

mvr
2

2
r̃21guk0u22mGk050. ~4!

If we definek5An exp(if), with n5n01dn, and substitute
the scaling law of Eq.~3! into the corresponding Gross
Pitaevskii equation, after linearizing indn andf we obtain

]~dn!

]t
5

ĵf

lr
2~ t !

2
\

m

]2

]z2
~n0f!, ~5!

]~n0f!

]t
52

ĵ~dn/n0!

4lr
2~ t !

1
\

4m

]2

]z2
~dn!2

gn0

\lr
2~ t !

~dn!,

~6!

where ĵ52(\/m)@n0¹r̃
2
1“ r̃n0“ r̃#. The first term on the

right hand side of Eq.~6! can be neglected in the Thoma
Fermi regime. Following Ref.@26#, we average over the ra
dial coordinates. LetnI be the radially integrated unper
turbed density anddnI the radially integrated density
fluctuations. From Eq.~6! we obtain

f~ z̃,t!5f~ z̃,0!1
1

8l2z

]2

] z̃2 F E0

t dnI~ z̃,t8!

nI~ z̃,t8!
dt8G

2
z

2E0

t 1

lr
2~t8!

dnI~ z̃,t8!

nI~ z̃,t8!
dt8, ~7!

with t5vrt, z̃5z/L, z5m/\vr , andl5vr /vz . Equation
~7! can be evaluated from the known expression@16#
2-2
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dnI~ z̃,t!

nI~ z̃,t!
5(

j
cj Pj

(1,1)~ z̃!sinS ajt

12 z̃ 2D t2bj , ~8!

wherebj5(e j /\vr)2, aj5bj /z, and

cj5F ~ j 12!~2 j 13!g

4pR2Le j~ j 11!
G 1/2

~a j1a j* !

2
. ~9!

a j and a j* are random variables with a zero mean va
and ^ua j u2&5Nj , Nj being the occupation of the
quasiparticle mode j. Near the trap center,dnI /nI

.( j cj Pj
(1,1)( z̃)sin(ajt)t2bj and hence

f~ z̃,t!5f~ z̃,0!1(
j

cj H ~ j 13!~ j 14!

32zl2
Pj 22

(3,3)~ z̃!

3E
0

t

dt8 sin~ajt8!~t8!2bj2
z

2
Pj

(1,1)~ z̃!

3E
0

t

dt8
sin~ajt8!~t8!2bj

11t82 J . ~10!

For largel and sufficiently short times of flight, the signifi
cant contribution to the phase fluctuations is due to
modesj such thatt!l2z/@ j ( j 13)/4# andbj5 j ( j 13)/4l2

!1. Then, using Eq.~1! for f( z̃,0), we obtain

f~ z̃,t!.(
j

cj H 12
1

2
arctan~t!

j ~ j 13!

4l2 J Pj
(1,1)~ z̃!.

~11!

The second term in the brackets is the correction to the ph
contribution of thej th mode due to the ballistic expansio
For typical times of flight~tens of milliseconds!, this correc-
tion term is very small (.1025) and the phase pattern can b
assumed as completely frozen. Using Eq.~10!, we have veri-
fied that, for our typical experimental parameters~see Sec.
IV C!, the phase change due to the free evolution of
condensate is less thanp/10.

III. CORRELATION FUNCTIONS OF A
PHASE FLUCTUATING CONDENSATE

The coherence properties of a condensate are describe
the correlation functions of the field operatorĉ. The impor-
tance of correlation functions becomes clear if we consi
that most experimental signals can be modeled by using
formalism. For example, the first- and second-order corr
tion functions, describing the single-particle and two-parti
correlation properties of the system, are connected to
visibility of fringes in an interference experiment and to t
two-body collision rate in the condensate, respectively.

As discussed in Ref.@8#, the single-particle correlation
function of a highly elongated degenerate Bose gas can
expressed in terms of the mean square fluctuations of
phase:
05361
e

se

e

by

r
is
-

e
e

be
he

^ĉ†~r1!ĉ~r2!&5An0~r1!n0~r2! exp$2^@df̂~r1 ,r2!#2&/2%,

~12!

where df̂(r1 ,r2)5f̂(r1)2f̂(r2) depends directly on the
phase operatorf̂ given in Eqs.~1!. At equilibrium, the popu-
lation of the j th quasiparticle mode,̂â j

†â j&, is a random
variable with mean valueNj , given by the Bose-Einstein
distribution function. The appearance of phase fluctuation
a stochastic process governed by the temperatureT of the
system. Since individual realizations are not predictable,
average over an ensemble of identically prepared cond
sates in thermal equilibrium at temperatureT. This average is
indicated bŷ •••&T . WhenkBT@\vz (kB is the Boltzmann
constant!, the population of thej th mode isNj.kBT/e j and
the thermal average of the mean square fluctuations of
phase becomes

^@df̂~z1 ,z2!#2&T5dL
2~T! f (1)~z1 /L,z2 /L !, ~13!

where

dL
2~T!5

32mkBT

15N0~\vz!
2

~14!

and

f (1)~z1 /L,z2 /L !5
1

8 (
j 51

`
~ j 12!~2 j 13!

j ~ j 11!~ j 13!

3FPj
(1,1)S z1

L D2Pj
(1,1)S z2

L D G2

, ~15!

N0 indicating the number of atoms in the condensate fr
tion. The first-order correlation function of the degenera
Bose gas is defined by~see, e.g.,@29#!

gT
(1)~r1 ,r2!5

^ĉ†~r1!ĉ~r2!&T

@^ĉ†~r1!ĉ~r1!&T^ĉ†~r2!ĉ~r2!&T#1/2
.

~16!

According to Eqs.~12! and ~13!, this results in

gT
(1)~z1 ,z2!5exp$2dL

2~T! f (1)~z1 /L,z2 /L !/2%. ~17!

For uz1u,uz2u!L, using the asymptotic expression of the J
cobi polynomials@30# and summing over the different mode
in the continuous limit, one obtains an approximated form
for the f (1) function valid around the center of the conde
sate@8#:

f (1)~z1 /L,z2 /L !5uz12z2u/L. ~18!

In that case,

gT
(1)~z1 ,z2!5exp$2dL

2~T!uz12z2u/2L%. ~19!

This result suggests the introduction of the phase cohere
length of the condensate
2-3
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Lf5
L

dL
2~T!

, ~20!

defined as the distance at which the first-order correla
function decreases to 1/Ae. The approximate formula show
in Eq. ~18! can be extended to describe the behavior of
f (1) function far from the center of the condensate. F
dL

2(T)@1, the coherence lengthLf is small compared to the
axial sizeL and the system is well described by means of
local density approximation@16,17,20#. As pointed out in
Ref. @20#, this limit is equivalent to the use of the approx
mate formula for the Jacobi polynomials with largej @30#.
Equation~15! can thus be written in the form

f (1)~z1 /L,z2 /L !5
uz12z2u/L

@12~z11z2!2/~2L !2#2
, ~21!

generalizing the result obtained in Eq.~18!.
We use a similar approach to calculate the two-part

correlation function of the condensate. Introducing the
erator d (2)f̂(r1 ,r2 ,r3 ,r4)5f̂(r1)1f̂(r2)2f̂(r3)2f̂(r4),
we obtain

^ĉ†~r1!ĉ†~r2!ĉ~r3!ĉ~r4!&

5)
i 51

4

An0~r i ! exp$2^@d (2)f̂~r1 ,r2 ,r3 ,r4!#2&/2%.

~22!

Using Eq.~1! for the phase operator, a straightforward c
culation yields

^@d (2)f̂~z1 ,z2 ,z3 ,z4!#2&

5(
j 51

`
~ j 12!~2 j 13!m

15~ j 11!e jN0
NjFPj

(1,1)S z1

L D1Pj
(1,1)S z2

L D
2Pj

(1,1)S z3

L D2Pj
(1,1)S z4

L D G2

. ~23!

In the limit kBT@\vz , the thermal average of Eq.~23! gives

^@d (2)f̂~z1 ,z2 ,z3 ,z4!#2&T

5dL
2~T! f (2)~z1 /L,z2 /L,z3 /L,z4 /L !, ~24!

where

f (2)~z1 /L,z2 /L,z3 /L,z4 /L !

5 f (1)~z1 /L,z3 /L !1 f (1)~z2 /L,z4 /L !

2 f (1)~z1 /L,z2 /L !2 f (1)~z3 /L,z4 /L !

1 f (1)~z1 /L,z4 /L !1 f (1)~z2 /L,z3 /L !. ~25!

Thus, the two-particle correlation function can be expres
as a product of one-particle correlation functions. Equati
~18! and~21! can be used to derive simplified expressions
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the f (2) function, valid in the limituzi u!L ( i 51, . . . ,4) and
in the local density approximation. Figure 1 shows the d
pendence off (2) calculated in

z̄15
s1d

2
, z̄25

2s2d

2
, z̄35

s2d

2
, z̄45

2s1d

2
~26!

as a function ofs.0. The full expression off (2) can be
compared with the two approximated formulas, the first va
in the condensate center, the second valid in the local den
approximation. The inset of Fig. 1 shows the same curves
different values ofd.0. This choice of variables follows the
particular experimental realization. In Sec. IV, we demo
strate how these curves can be characterized in a matter w
interferometry experiment by measuring density correlatio
in the interference pattern produced by two autocorrela
copies of a parent condensate. There,d is the displacemen
between the two interfering condensate copies ands is the
separation between the positions in the interference patte
which the particle densities are evaluated. A qualitative
derstanding of the behavior shown in Fig. 1 is possible if
consider that

^@d (2)f̂~ z̄1 ,z̄2 ,z̄3 ,z̄4!#2&T

5^@df̂~ z̄1 ,z̄3!#2&T1^@df̂~ z̄2 ,z̄4!#2&T

12^df̂~ z̄1 ,z̄3!df̂~ z̄2 ,z̄4!&T . ~27!

The first and the second term are the thermal averages o
operator (df̂)2, calculated in (z̄1 ,z̄3) and in (z̄2 ,z̄4); the last
term is proportional to the correlation function ofdf̂ at the
same coordinates. For a fixed displacementd, when the ex-
amined positions are close to the condensate centerd,s
!L), the first two terms of Eq.~27! do not depend on the
separations. However, ass rises from 0 tod, the third term
increases from22^@df̂( z̄1 ,z̄3)#2&T ~complete anticorrela-
tion! to its maximum value 0, resulting in an uncorrelat
phase difference for everys>d. In the interval 0<s<d, the

FIG. 1. f (2)( z̄1 /L,z̄2 /L,z̄3 /L,z̄4 /L) as a function ofs.0. The
complete expression in Eq.~25! ~solid line! is compared with the
approximated formulas derived from Eqs.~18! and~21!, valid in the
condensate center~dotted line! and in the local density approxima
tion ~dashed line!. The inset showsf (2) for different values ofd
.0.
2-4
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f (2) function depends linearly ons with slope 2. The second
order correlation function is defined as

gT
(2)~r1 ,r2 ,r3 ,r4!

5
^ĉ†~r1!ĉ†~r2!ĉ~r3!ĉ~r4!&T

@^ĉ†~r1!ĉ~r1!&T•••^ĉ†~r4!ĉ~r4!&T#1/2
.

~28!

Substituting Eqs.~22! and ~24! in Eq. ~28!, we obtain

gT
(2)~z1 ,z2 ,z3 ,z4!

5exp$2dL
2~T! f (2)~z1 /L,z2 /L,z3 /L,z4 /L !/2%.

~29!

Note that, due to the suppression of density modulations,
normalized density correlation function of the trapped co
densate is constant:gT

(2)(z1 ,z2 ,z2 ,z1)51.
The calculation we have described for the second-or

correlation function can be extended to obtain a general
pression for theNth-order correlation function. Defining th
operator

d (N)f̂~$r i% i 51, . . . ,2N!5f̂~r1!1•••1f̂~rN!2f̂~rN11!

2•••2f̂~r2N!, ~30!

the N-particle correlation function is given by

^ĉ†~r1!•••ĉ†~rN!ĉ~rN11!•••ĉ~r2N!&

5)
i 51

N

An0~r i !exp$2^@d (N)f̂~$r i% i 51, . . . ,2N!#2&/2%.

~31!

In general, the thermal average of the operator (d (N)f̂)2 can
be written in the form

^@d (N)f̂~$r i% i 51, . . . ,2N!#2&T5dL
2~T! f (N)~$zi /L% i 51, . . . ,2N!.

~32!

The f (N) function, depending on the Jacobi polynomia
Pj

(1,1) , can be expressed as a combination off (1) functions:

f (N)~$zi /L% i 51, . . . ,2N!5 (
1< l ,m<2N

P $ l ,m% f (1)S zl

L
,
zm

L D ,

~33!

where the coefficientP $ l ,m% is defined as

P $ l ,m%5H 11 if l<N,m,

21 if l ,m<N or l ,m.N.
~34!

The Nth-order correlation function is given by
05361
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gT
(N)~$r i% i 51, . . . ,2N!

5
^ĉ†~r1!•••ĉ†~rN!ĉ~rN11!•••ĉ~r2N!&T

@^ĉ†~r1!ĉ~r1!&T•••^ĉ†~r2N!ĉ~r2N!&T#1/2

~35!

and, from Eqs.~31! and ~32!,

gT
(N)~$zi% i 51, . . . ,2N!5exp@2dL

2~T! f (N)~$zi /L% i 51, . . . ,2N!/2#.

~36!

This general result shows thatgT
(N) is completely character

ized by the parameterdL
2(T) which, through Eq.~20!, defines

Lf . Therefore, each correlation function contains full info
mation about the coherence properties of the sample and
be used to measure the phase coherence length of the
densate.

IV. INTERFEROMETRIC MEASUREMENT OF THE
SECOND-ORDER CORRELATION FUNCTION

The coherence of a matter wave can be studied by u
interferometric methods. However, as standard interfere
experiments measure the first-order correlation function
the field operatorĉ, they are very sensitive to phase noi
introduced by the experimental apparatus. The method
sented here is analogous to the original Hanbury-Brown
Twiss experiment@23,24# in which the spatially resolved
second-order correlation functiong(2)(r1 ,r2 ,r2 ,r1) of a light
source is obtained from intensity correlation measureme
In the Hanbury-Brown and Twiss interferometer the intens
of a light source is measured by two spatially displaced p
todetectors. The information about the relative phase of
two light waves is therefore lost, while only correlations
their intensity fluctuations are recorded. The principle is ra
cally different from the usual Michelson interferomet
where the two waves interfere before the detection a
where their relative phase plays a crucial role. We use
method to characterize the second-order correlation func
of a matter wave. As discussed before, for a highly elonga
BEC gT

(2)(z1 ,z2 ,z2 ,z1)51. This result suggests that
simple measurement of density correlations in the cond
sate is not sufficient to describe the coherence propertie
the sample. Nevertheless, by measuring density correlat
in the interference pattern generated by two spatially d
placed copies of a parent BEC, it is possible to correlate
field operator ĉ at four different positions and extrac
gT

(2)(z1 ,z2 ,z3 ,z4). Compared to standard interference e
periments, the main advantage of this technique is the int
sic stability of the density correlation measurement aga
variations of the global phase between the interfering c
densates.

In this section, we show how a matter wave Bragg int
ferometer can be used to characterize the second-order
relation function of the condensate and to measure its ph
coherence length.
2-5
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A. Interferometric scheme

Our interferometric sequence is shown in Fig. 2. The c
densate is released from the magnetic trap and exp
freely for 2 ms. This short time of flight is important to lowe
the density, thus reducings-wave scattering processes occu
ring during the Bragg diffraction of the condensate@31#. The
interrogation sequence consists of twop/2 Bragg pulses.
Each pulse is composed of two counterpropagating la
beams of wave numberk, detuned from the atomic transition
The first Bragg pulse splits the condensate in the two m
mentum eigenstatesu2\k& and u0& along the axial direction
(z). After a timeDt, a secondp/2 pulse splits the conden
sates again, creating two interfering copies in each mom
tum state. The time intervalDt between the two pulses se
the spatial overlapd52\kDt/m between the interfering
BECs at the output ports of the interferometer. The relat
phase of the two counterpropagating Bragg beams is ex
nally controlled by an electro-optic modulator~EOM! and
can be changed between the two pulses. This allows u
imprint an extra phasew which can be precisely tuned. Con
trol of the EOM phase is crucial for our method, as describ
in Sec. IV B.

Using the results derived in Sec. II, the atoms detecte
the output portA ~see Fig. 2!, after a total time of flightt, are

FIG. 2. ~a! The matter wave Bragg interferometer: The conde
sate is released from the magnetic trap and, after 2 ms of
evolution, is interrogated by the two-pulse sequence. The firstp/2
Bragg pulse splits the parent BEC into two copies with moment
and 2\k. After a timeDt, the secondp/2 Bragg pulse splits the
condensates again and allows them to interfere. The time inte
Dt defines the displacementd between the two interfering BECs
~b! A typical line density profile at the output ports of the interfe
ometer: The distance between the two autocorrelated copied
546 mm) is comparable to the phase coherence length of the
ent condensate (Lf543 mm). In the schematic of the matter wav
Bragg interferometer, the distanced has been exaggerated for cla
ity.
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described by the order parameter

c~r ,d,t !5
1

2
Ah~r 8,t !1

1

2
Ah~r ,t ! exp$ i @df~z,z8,t !

1a~z,z8,t !1b~z,z8!1g~d!#%, ~37!

wherer 85r2dẑ andh(r ,t) is the time-evolved density pro
file normalized to the total number of atoms in the pare
condensate. The relative phase between the interfering
densates contains several contributions.df(z,z8,t)5f(z,t)
2f(z8,t) describes the phase difference betweenz and z8
that evolves from the phase fluctuations in the parent c
densate. The term

a~z,z8,t !5
ml̇z

2\lz
~z22z82! ~38!

represents the nonuniform spatial phase profile develo
during the mean-field-driven expansion. The mean-field g
dient between the interfering BECs is responsible for a fo
repelling the centers of mass of the two clouds. This effec
described by the phase term

b~z,z8!5
mdv
2\

~z1z8!, ~39!

proportional to the relative repulsion velocitydv between
the interfering condensates@32#. After the first Bragg pulse,
the relative phase of the atoms in theu2\k& momentum state
evolves with a characteristic frequencydBragg, given by the
detuning of the lasers from the resonance of the two-pho
transition@33#. Therefore, the last term

g~d!5dBraggDt1w5dBragg

md

2\k
1w ~40!

represents a global phase depending on the detuning from
Bragg transition and the externally controlled phasew.

The density of atoms at the output portA of the interfer-
ometer is given by

I ~r ,d,t !5
1

4
h~r ,t !1

1

4
h~r 8,t !

1
1

2
Ah~r ,t !h~r 8,t ! cos@df~z,z8,t !1a~z,z8,t !

1b~z,z8!1g~d!#. ~41!

The presence of strong phase fluctuations alters the inte
ence pattern generated by the two autocorrelated con
sates. In fact, whend.Lf the phase termdf can be com-
parable top, modifying drastically and in an unpredictab
way the position and the spacings of the interference fring

B. Method

Starting from Eq.~41!, we want to calculate the densit
correlation function of the interference pattern for an e
semble of identically prepared condensates at a given t

-
e

0

al

(
r-
2-6
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peratureT, averaged over all the global phase valuesw. This
averaging process is indicated by the symbol^•••&T,w . It is
therefore important that the phase delayw induced by the
EOM is uniformly changed between 0 and 2p. In Sec. II, we
showed that, for typical times of flight~tens of milliseconds!,
the evolution of the fluctuating phase of the condensat
basically frozen. This allows us to neglect the time dep
dence ofdf(z,z8,t). We also neglect the contribution o
density modulations induced by the initial phase pattern
the Thomas-Fermi profile of the condensate. The validity
this approximation is verified below. Under these assum
tions, we calculate the normalized density correlation fu
tion

g (2)~r1 ,r2 ,d,t !5
Š~ I 12^I 1&T,w!~ I 22^I 2&T,w!‹T,w

AŠ~ I 12^I 1&T,w!2
‹T,wŠ~ I 22^I 2&T,w!2

‹T,w

,

~42!

where I 1,25I (r1,2,d,t). After a lengthy but straightforward
calculation, the averaging process gives

g (2)~z1 ,z2 ,d,t !5cosFm

\
S l̇z

lz
d1dv D ~z12z2!G

3exp@2dL
2~T! f (2)

„z1 /L,~z22d!/L,

~z12d!/L,z2 /L…/2#. ~43!

g (2)(z1 ,z2 ,d,t) results from the product of two differen
terms: the first is a periodic function, whose argument is
contribution of the mean-field energy to the phase pro
~ballistic expansion and relative repulsion between the in
fering condensates!; the second is an exponential term whi
corresponds to thegT

(2) function of the parent phase fluctua
ing condensate@see Eq.~29!#. The decay constant of thi
function is given by the phase coherence length of the c
densate@see Eq.~20!#.

From the experimental point of view, the averaging p
cess described above is equivalent to the following pro
dure. The radially integrated density profileI 5I (z,d,t) at
the output portA of the interferometer is measured for di
ferent values of the global phase, uniformly distributed in
range 0<w,2p; then, the average value^I &T,w is calculated
and used to determineI 2^I &T,w for each experimental real
ization. These profiles, averaged according to Eq.~42!, give
a measurement ofg (2)(z1 ,z2 ,d,t). For simplicity, we choose
symmetric positions around the center (z5d/2) of the inter-
ference pattern and evaluate density correlations as a f
tion of the separations5z22z1. According to Eq.~26!, this
particular choice corresponds toz15(s1d)/25 z̄1 and z2

5(2s1d)/25 z̄4 ~see also Fig. 2!. Substituting in Eq.~43!
and taking into account Eqs.~26! and ~29!, we obtain

g (2)~s,d,t !5cosFm

\
S l̇z

lz
d1dv D sG

3exp@2dL
2~T! f (2)~ z̄1 /L,z̄2 /L,z̄3 /L,z̄4 /L !/2#

5cosFm

\
S l̇z

lz
d1dv D sGgT

(2)~ z̄1 ,z̄2 ,z̄3 ,z̄4!. ~44!
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The method described here allows us to characterize the
pendence of the correlation function on the separations for
any fixed displacementd between the interfering conden
sates.

C. Experimental results and numerical simulations

We perform the experiment with87Rb condensates in th
F51, mF521 state. The atoms are confined in a high
elongated magnetic trap with cylindrical symmetry, the lo
axis lying in the horizontal plane. The confining potential h
an axial frequencyvz52p33.4 Hz and a radial frequenc
vr which is varied between 2p3300 Hz and 2p
3380 Hz. Further details on the experimental apparatus
be found in@18#. After the BEC formation, we let the system
thermalize in the magnetic trap for typically 4 s in thepres-
ence of radio frequency shielding@34#. That time is impor-
tant to reach an equilibrium condition in which any quadr
pole oscillation has been damped down. As shown in Fig
our matter wave interferometer consists of twop/2 Bragg
diffraction pulses. Each of them is composed of two cou
terpropagating laser beams, detuned by about 3 GHz f
the atomic transition. This detuning suppresses spontan
scattering of photons during the interrogation time. T
Bragg pulse duration of 100ms is sufficiently short not to
resolve the momentum distribution of the atoms in the c
densate and long enough to avoid higher-order Bragg diffr
tion processes. A fixed frequency difference is set betw
the two counterpropagating beams to match the Bragg c
dition. The condensate is released from the magnetic trap
after 2 ms of time of flight is probed by the two-pulse s
quence of the interferometer. The atomic cloud is detec
after the ballistic expansion by resonant absorption imag

Figure 2~b! shows a typical line density profile of an in
terference pattern in which the distance between the two
tocorrelated copies (d546 mm) is comparable to the phas
coherence length of the parent condensate (Lf543 mm).
Because of the stochastic nature of phase fluctuations,
fringe spacing is not regular and differs in each experimen
realization. This demonstrates that the phase of the con
sate can significantly change on distances comparable
the phase coherence length of the sample. Even if each s
image shows high contrast, the interference pattern is c
pletely washed out when we average a significant numbe
realizations.

The results of standard interference experiments are
lated to the correlations of the wave function and theref
are very sensitive to phase instabilities. Figure 3 shows
interference signal obtained by measuring the number of
oms in an interval of width 0.2L around the center of the
interference pattern (z5d/2) at the output portA, as a func-
tion of the global phasew controlled by the EOM. This sig-
nal is normalized to the corresponding number of atoms
the parent condensate. The two plots correspond to diffe
displacementsd between the interfering condensates. A sm
displacement is related to a short time interval between
two interrogation Bragg pulses. In that case, the contribut
of phase fluctuations and the effect of technical phase n
introduced by the experimental apparatus are both negligi
2-7
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Therefore, according to Eq.~41!, when d!Lf and Dt is
small compared to the characteristic time stability of o
Bragg pulses, the normalized signal oscillates sinusoid
with high contrast. Ford approachingLf , the random phase
introduced by phase fluctuations washes out the oscillat
On average, when external disturbances can be neglected
contrast of the oscillations is directly related to the first-ord
correlation functiongT

(1) at a given displacementd. However,
as d increases, the external disturbances@35# also increase
and produce a random phase noise which destroys the o
lating behavior and hides the effect of phase fluctuations
the detected signal.

This problem can be solved by using the method
scribed in Sec. IV B. The measurement of intensity corre
tions, in combination with the subsequent averaging proc
has the major advantage of being insensitive to techn
phase noise introduced by the experimental apparatus. Fi
4 shows the correlation functiong (2)(s,d,t) extracted from a
set of 29 line density profiles corresponding to 5.03105 con-
densed atoms at a temperatureT5216 nK, detected after a
total time of flight t537 ms. The displacement between t
interfering BECs isd535 mm. The experimental data ar
compared with a numerical simulation which produces r
dom phase patterns according to the experimental condit
and uses Eq.~37! to describe the evolution of the order p
rameter. The numerically calculated points shown in Fig
are obtained by following the same averaging procedure
have applied to the experimental data. This kind of analy
includes the time dependence of the fluctuating phase an
density modulations induced by the initial phase pattern. T

FIG. 3. The number of atoms measured in the intervald/2
20.1L,z,d/210.1L, around the center of the interference pa
tern detected at the output portA, is plotted as a function of the
phasew controlled by the electro-optic modulator. The signal
normalized to the corresponding number of atoms in the pa
condensate. The two sets of data correspond to different disp
ments d between the overlapping condensates. The solid line
obtained by fitting the experimental data with a sinusoidal functi
The measurements refer to condensates with about 33105 atoms, a
typical axial size ofL5180 mm, and a temperatureT5170 nK.
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solid line is the result of a fit to the experimental data. A
cording to Eq.~44!, the model function

cos~as!exp@2b f (2)~ z̄1 /L,z̄2 /L,z̄3 /L,z̄4 /L !/2# ~45!

contains only two free parameters. The curves clearly sh
the damped oscillating behavior. The oscillation frequen
strictly defines the parametera, while the damping coeffi-
cient gives a measurement ofdL

2(T). From the fitting func-
tion it is possible to extract the spatial dependen
of the second-order correlation functiongT

(2)(s,d)

5gT
(2)( z̄1 ,z̄2 ,z̄3 ,z̄4) @see Eq.~44!#. The fit on the experimen-

tal data gives a phase coherence lengthLw
expt557610 mm,

compatible with the expected valueLw
theor55862 mm. The

good agreement between the experimental data, the num
cal simulation, and the model function of Eq.~45! demon-
strates that the free evolution of density modulations and
the fluctuating phase pattern does not influence the meas
ment of the second-order correlation function. This res
justifies the use of Eq.~44! to model the experimental dat
and to extract the coherence properties of the condensa

In Fig. 5, we show a direct comparison between the m
sured phase coherence lengths in the center of the BEC
the theoretical values calculated according to Eq.~20! by
using the measured numbers of atoms, temperatures,
trapping frequencies. The bars indicate the statistical er
both on the measured values and on the theoretical pre
tions. The dotted line with slope 1 highlights the good qua
titative agreement between experiments and theory.

V. CONCLUSION

In this paper we have studied the coherence propertie
phase fluctuating Bose-Einstein condensates. In highly e
gated BECs the thermal excitation of quasiparticle mo

nt
e-

is
.

FIG. 4. Open circles: Correlation functiong2(s,d,t) extracted
from a set of 29 line density profiles. The data correspond
samples with 5.03105 condensed atoms at a temperatureT
5216 nK, detected after a total time of flightt537 ms. The dis-
placement between the interfering BECs isd535 mm. The bars on
the experimental points represent the statistical errors. Crosses
merical simulation that takes into account the time dependenc
the fluctuating phase and of density modulations, modeled on
experimental parameters. Solid line: Fit to the experimental d
using the model function of Eq.~45!. Dashed line: Second-orde

correlation functiongT
(2)(s,d)5gT

(2)( z̄1 ,z̄2 ,z̄3 ,z̄4) extracted from
the fit to the experimental data. The phase coherence length o
sample is graphically indicated on the plot.
2-8
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SECOND-ORDER CORRELATION FUNCTION OF A . . . PHYSICAL REVIEW A68, 053612 ~2003!
can significantly reduce the coherence length of the syst
Starting from the results of Petrovet al. @8#, we have derived
a general formula for theN-particle correlation function. The
second-order correlation function has been studied in de
and its limits both around the center of the condensate an
the local density approximation have been analyzed. In
ticular, we have discussed a method to directly characte
the second-order correlation properties of the system.

FIG. 5. Direct comparison between the measured phase co
ence lengths and the theoretical values, calculated according to
~20! by using the measured numbers of atoms, temperatures,
trapping frequencies. The dotted line with slope 1 is used to c
pare experiment and theory. The bars on the plotted points ind
statistical errors. The relative systematic uncertainties on calcul
and measured phase coherence lengths are 26% and 15%, re
tively. This figure has previously been shown in@22#.
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analytic theory that describes the free evolution of the c
densate phase has been developed to closely model the
surement process. Using a Bragg diffraction interferome
we have measured the density correlations of the interfere
pattern generated by two spatially displaced copies of a
ent BEC. This kind of measurement allows a correlation
the field operatorĉ of the parent condensate in four differe
z positions. The averaging process directly gives the seco
order correlation function. The experiment confirms our th
oretical predictions and demonstrates a method to mea
the phase coherence length of the condensate. Compar
the usual interference experiments, this technique has
advantage of being insensitive to the global phase noise
troduced by the experimental apparatus. The method
sented here is in direct analogy to the original Hanbu
Brown and Twiss experiment and demonstrates
possibility of using density correlation measurements
study the coherence properties of Bose-Einstein condens
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