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Second-order correlation function of a phase fluctuating Bose-Einstein condensate
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The coherence properties of phase fluctuating Bose-Einstein condensates are studied both theoretically and
experimentally. We derive a general expression forNkgarticle correlation function of a condensed Bose gas
in a highly elongated trapping potential. The second-order correlation function is analyzed in detail, and an
interferometric method to directly measure it is discussed and experimentally implemented. Using a Bragg
diffraction interferometer, we measure intensity correlations in the interference pattern generated by two
spatially displaced copies of a parent condensate. Our experiment demonstrates how to characterize the second-
order correlation function of a highly elongated condensate and to measure its phase coherence length.
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I. INTRODUCTION BECs have been the subject of recent theoretical efforts, in-
cluding the development of a modified mean-field theory
Among the various topics related to the exciting field of valid in all dimensions and all temperatures below the criti-
Bose-Einstein condensatidBEC) [1], the analysis of coher- cal point[12,13, the analysis of dynamic correlation func-
ence properties of degenerate Bose gases has attracted mdjons [14], and the extension of Bogoliubov theory to low-
interest. Coherence plays a key role in the understanding afimensional degenerate Bose gakEs.
the fundamentals of BEC and has a crucial importance for The phase-fluctuating nature of highly elongated BECs
many promising BEC applications, such as matter wave inwas first experimentally demonstrated in REff6]. During
terferometry, guided atomic beams, and atom lasers. The cehe ballistic expansion, phase fluctuations transform into
herent character of trapped three-dimensid8al) conden-  density modulations. The appearance of phase fluctuations
sates well below the BEC transition temperatiigehas been and their statistic nature were studied and the dependence of
confirmed by several experiments, using interferometricheir average value on experimental parameters was charac-
[2,3] and spectroscopic methof4]. terized [16,17]. Moreover, the results obtained from mea-
However, recent theoretical and experimental developsurements of the energy released during the expansion con-
ments have shown that phase coherence is far from being dinmed the absence of density fluctuations in the trapped
obvious property of BEC. In particular, a phase fluctuatingcloud[18,19. Recently, the physics of quasicondensates has
BEC at equilibrium has been theoretically predicted in onebeen studied by means of Bragg spectroscopy, showing that
dimensional[5], two-dimensional6,7], and even in highly the existence of phase fluctuations leads to an observable
elongated, but still three-dimensiori&l trapped Bose gases. broadening of the momentum distributiph9,20. A further
Interestingly, in these cases the density distribution does naxperiment has analyzed the phase coherence length of non-
differ from the usual BEC profile, since density fluctuationsequilibrium BECs by means of a condensate-focusing tech-
are largely suppressed by the repulsive mean-field potentiahique[21].
These systems are commonly called quasicondensates. Phasén this paper, we present the theoretical foundation of our
fluctuations can be induced either by quanf@jor by ther-  studies on coherence properties of phase-fluctuating conden-
mal fluctuationd 10]. For typical experimental temperatures sates. We analyze the behavior of the second-order correla-
quantum phase fluctuations can safely be neglected as longn function for our experimental conditions and provide a
as the system remains in the weakly interacting rediidi¢  detailed discussion of the experimental technique used in
The amplitude of phase fluctuations, therefore, dependRef.[22]to measure it. This technique is based on the analy-
strongly on temperature and trapping geometry. In this sensgijs of density correlations in the interference pattern gener-
a nearly phase coherent BEC in a highly elongated trap caated by a matter wave Bragg interferometer. The general idea
be achieved only far belovii,, imposing severe limitations is similar to the original Hanbury-Brown and Twiss experi-
on experiments in constrained geometries. Phase-fluctuatingent [23,24] in which the spatial second-order correlation
function of a light source is characterized by measuring the
correlations of intensity fluctuations in the wave field. Our
*Present address: BNM-SYRTE, Observatoire de Paris, 61 Avinethod can be used to measure the phase coherence length
enue de I'Observatoire, 75014 Paris, France. Email addres®of the condensate.
Luigi.Cacciapuoti@obspm.fr This paper is organized as follows. In Sec. Il, we briefly
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review the theory of phase fluctuating Bose-Einstein condenwhere Pl(l'l) are Jacobi polynomials. Equatiof®) and (2)
sates in 3D elongated trap8] and analyze the evolution of show that the phase operator depends only on the axial co-
the phase pattern during the ballistic expansion. The knowlerdinatez. In Sec. Ill, we analyze the coherence properties of
edge of the free dynamics of the phase is important to closelshe condensate by studying the correlation functions of the
model the BEC evolution during the measurement procesg,peratorg(r).

In Sec. I, we study the coherence properties of the conden-
sate and derive a general expression forNkgarticle corre-
lation function of highly elongated 3D BECSs. In Sec. IV, the
experimental technique used to measure the second-order Starting from the results presented in Rdfs6,17], we
correlation function and the phase coherence length of thenalyze the evolution of phase fluctuations during the free
condensate is reviewed in detail. expansion of the degenerate Bose gas. Since the trap is
highly elongated, we can assume the condensate as an infi-
nite cylinder and use the local density approximation. The
time-of-flight dynamics of the order parameter is described

In this section, we present the phase operator of a highlpy the scaling law 27,28
elongated condensd|t@] and develop an analytic description ~
for the ballistic expansion of the fluctuating phase pattern. Wpz,t)= k(p,z,t) ei(mXp/mp)pze—iM/h 3)
These results, when combined with the free evolution of den- ks A, (D) ’
sity modulations presented [16,17], provide a full under-
standing of the order parameter dynamics during the time
flight.

B. Evolution of the phase fluctuating pattern

II. PHASE FLUCTUATING CONDENSATES

%Yvhere (m)'\plzmxp)p2 is the quadratic phase associated with
the expansion dynamica,’(t)=1+ w’t? is the scaling co-
efficient, T=['dt'/x(t")? is the rescaled time, ang

A. Phase operator =p/\ (1) is the rescaled radial coordinate. Lej= Jng be
In the following, we consider a cylindrically symmetric the solution of the following equation:

condensate in the Thomas-Fermi regime, where the repulsive

mean-field interaction exceeds the radiaks,) and the axial h? 2 mo? ) 5 _

(hw,) trap energies. AfT=0, the density profile has the “omVet T P +9lKol "~ | ko=0. )

well-known shapeng(p,z) =nom(1—p?/R?—2z%/L?), where

Nom= x/g denotes the maximum density of the condensatey; e define x = Jnexpl¢), with n=ny+ én, and substitute

u is the chemical potentialg=4qrﬁ2a/m the interaction the scaling law of Eq(3) into the corresponding Gross-
constantm the atomic mass, ana>0 the scattering length. - piraeyskii equation, after linearizing i#n and ¢ we obtain
Under the conditionw,> w,, the radial size of the conden-

sate, given by the Thomas-Fermi radRis (2u/maw?)'? is asn) i P

much smaller than the axial size, which corresponds to the = -

Thomas-Fermi length = (2u/mw?)*2, at o NAt) Moz
Due to the repulsive mean-field energy, density fluctua-

(No), ®)

tions are strongly suppressed in a trapped BEC. Therefore, 3 2

the field operator describing the condensate can be written in 9(Nog) =— & 52”]0) 4& ‘9_2 on)— 920 (on),
the formg(r) = Vno(r)exdid(r)], where the phase operator N AN (1) m oz ANL(D)

is defined by(see, e.g., Ref25)) (6)

A —1/2 - 02 Where§=—(ﬁ/m)[noV~2+ VinoV5]. The first term on the
$(r)=[4no(r)] ]2::1 fi(naj+H.c. @ right hand side of Eq(é) can be neglected in the Thomas-
Fermi regime. Following Ref.26], we average over the ra-
. dial coordinates. Len, be the radially integrated unper-
Herea; represents the annihilation operator of the quasiparturbed density andsn, the radially integrated density
ticle excitation with quantum numbgrand energye; ; fJ-Jr fluctuations. From Eq(6) we obtain
=Uu;+u;j is the sum of the excitation wave functionsand

vj, obtained from the corresponding Bogoliubov—de Gennes 1 5 - on(z,7)
equations. The low-energy axial modes, which are respon-  ¢(z,7)= ¢(z,0) + — = f L—’dTrl
sible for the long wavelength axial phase fluctuations, have 8N\°L dz7| Jo ny(z,7")

the energy spectrung;=7%w,j(j+3)/4 [26]. The wave ~
gjr 1  én(z,7")

functionsfj* of these quasiparticle modes have the f¢8h S R A dr', @
2Jo No(7) ni(z,7)
j+2)(2]+3)gng(r ~
fr(r= U )(_ ) )29 of )PJ(“)(E), (2 with 7=w,t, z=2/L, {=ulfiw,, and\=w,/w,. Equation
4m(j+1)RLe; L (7) can be evaluated from the known expresgibé]
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ony(z,7)

n(z,7)

~ A (#1(r)g(r2))=no(r)no(r,) expl— ([ 5¢(r1,12)1%)/2},

= EJ: c PJ(l'l)(Z)SIn( 1:.22) 70, (8) (12)
where 8¢(rq,r,)=a¢(r1)— ¢(r,) depends directly on the
phase operatoft) given in Egs(1). At equilibrium, the popu-

1’2(aj+ar) lation of the jth quasiparticle mode{aa;), is a random

5 (9  variable with mean valud\;, given by the Bose-Einstein

distribution function. The appearance of phase fluctuations is

* . . a stochastic process governed by the temperafuoé the

aj and aj ,are random variables with a zero mean valuégysiem  since individual realizations are not predictable, we

and (|aj|)=N;, N; being the occupation of the yerage over an ensemble of identically prepared conden-

quasiparticle modej. Near the trap center,dn/n  gatesin thermal equilibrium at temperatiiieThis average is

~3,¢;P{"Y(Z)sin(@n)7 " and hence indicated by(- - - ). WhenkgT>% w, (kg is the Boltzmann

constany, the population of th¢th mode isN;=kgT/¢; and

the thermal average of the mean square fluctuations of the

phase becomes

whereb;=(¢;/fiw,)?, a;=b;/{, and

(j+2)(2j+3)g
4mR%Le(j+1)

]

(j+3)(j+4)

320\ P2

j—2

&(z,7)= (2,00 + ; cj[

r ~ $(21,25) %) 1= LT (2, /L, 2, /L), 3
Xf dr Sin(ajT’)(T')ibi—gpj(l’l)(Z) ([0¢(21,29)]%)r= LT (21 /L,2,1L) (13
0

r H ! "\ —b;
y f dm] 10

0 1+7'2

where

32ukgT
F(T)=——— (14)
15Ny(% w,)
For largex and sufficiently short times of flight, the signifi-
cant contribution to the phase fluctuations is due to theénd
modesj such thatr<\2¢/[j(j+3)/4] andb;=j(j +3)/4\? 1 Z (1+2)(2)+3)
<1. Then, using Eq(1) for ¢(z,0), we obtain fO(z. /L2, /L) = = %
@L2I0=5 2 5D+

P}l’l)(ﬂ) — Pfl’l)(é) r, (15)

~ 1 iG+3) ~
¢(z,r)~—~; cj[ 1- Earctam 7) 4—)\2} pj(l,l)(z)_ « - -

(11)

) ) ) N, indicating the number of atoms in the condensate frac-
The second term in the brackets is the correction to the phasgyy The first-order correlation function of the degenerate
contribution of thejth mode due to the ballistic expansion. ggse gas is defined bigee, e.g.[29))

For typical times of flightitens of milliseconds this correc-

tion term is very small£ 10 °) and the phase pattern can be <l’2/T(r G )
assumed as completely frozen. Using Ef), we have veri- g™ (ry,rp)=— — ! - Al -
fied that, for our typical experimental parametésse Sec. [P (r)g(ro) (¢ (ra) e(ra))+]

IVC), the phase change due to the free evolution of the

condensate is less thanf10. According to Egs(12) and(13), this results in

Ill. CORRELATION FUNCTIONS OF A 90z, ,2)=expl— (T Dz L, 2,/L)I2}.  (17)
PHASE FLUCTUATING CONDENSATE

The coherence properties of a condensate are described Eng 2| '|ZZ|<.L’ using the asymptotic expression of the Ja-
. . . A . Cobi polynomiald 30] and summing over the different modes
the correlation functions of the field operatgr The impor-

; X _ ., _in the continuous limit, one obtains an approximated formula
tance of correlation functions becomes clear if we conside

; _ _ for the f(1) function valid around the center of the conden-
that most experimental signals can be modeled by using th'§ate[8]:

formalism. For example, the first- and second-order correla-
tion functions, describing the single-particle and two-particle f(z,IL,2,/L) = |z, z,|/L. (18)
correlation properties of the system, are connected to the
visibility of fringes in an interference experiment and to the|n that case,
two-body collision rate in the condensate, respectively.

As discussed in Refl8], the single-particle correlation 0$(z1,2,) =exp{ — 64(T)|zy— z,|/2L}. (19
function of a highly elongated degenerate Bose gas can be
expressed in terms of the mean square fluctuations of th€his result suggests the introduction of the phase coherence
phase: length of the condensate
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L
TR 29
defined as the distance at which the first-order correlation
function decreases to+lé. The approximate formula shown
in Eq. (18) can be extended to describe the behavior of the
f(1) function far from the center of the condensate. For
5f(T)>1, the coherence length,, is small compared to the
axial sizeL and the system is well described by means of the
local density approximatioh16,17,2Q. As pointed out in
Ref. [20], this limit is equivalent to the use of the approxi-  FiG. 1. §@)(z,/L,z,/L,z5/L,z,/L) as a function 06>0. The
mate formula for the Jacobi polynomials with larpé30].  complete expression in E425) (solid line) is compared with the

£@

Equation(15) can thus be written in the form approximated formulas derived from E@$8) and(21), valid in the
condensate centédotted ling and in the local density approxima-
N |z1—2z,|/L tion (dashed ling The inset shows(® for different values ofd
f( )(leL,Zz/L): > 272" (21) >0
[1-(z1+25)%/(2L)7] '

We use a similar approach to calculate the two-particldn the local d((za)nsity approximation. Figure 1 shows the de-
correlation function of the condensate. Introducing the op®Pendence of**’ calculated in

erator 8D G(ry,r,,r4,r2)=d(r,)+ ¢(r,) — d(ra)— d(ra),
erator o A(r,r2,r3,72) = d(r1) + d(ry) — d(rz) — ¢(ra) _ skd — -s-d ;zs—d ;z—Ser
3 2 l 4 2

(PP (ra)d(ra) d(ra)) (26)

4
B —— . as a function ofs>0. The full expression of® can be
N ,1:[1 No(ri) exp{ ([ 8 (r1,r2,13,14) 1?12}, compared with the two approximated formulas, the first valid
in the condensate center, the second valid in the local density

(22) approximation. The inset of Fig. 1 shows the same curves for
different values ofi>0. This choice of variables follows the
particular experimental realization. In Sec. IV, we demon-
strate how these curves can be characterized in a matter wave
interferometry experiment by measuring density correlations
in the interference pattern produced by two autocorrelated

Using Eq.(1) for the phase operator, a straightforward cal-
culation yields

([P (24,25,23,24)1?)

= (1+2)(2] +3) e 1| 22 copies of a parent condgnsate. Thetes the d_isplaqement
=2 WNJ P = P = between the two mterferlng_ _cond'ensat(.e copies sl the
=1 | o separation between the positions in the interference pattern at
Z5 ARG which the particle densities are evaluated. A qualitative un-
- PJ(M)(f —~ Pj(l'l)( f) (23)  derstanding of the behavior shown in Fig. 1 is possible if we
consider that

In the limitkgT>% w,, the thermal average of E(3) gives

([ 5(2)3’(21 122,23 124)]2>T
=([66(21,23) 1)1 +{[ 8¢(22,24) 1)1
+2(8¢(24,23) 6h(25,24) )7 (27)

<[5(2)€A1>(21122,Z3124)]2>T
=84(T)f@(z,/L,2,/L,23/L,24/L), (24)

where
The first and the second term are the thermal averages of the
operator §¢)2, calculated in ¢;,z3) and in (z,,2,); the last
=tW(zy/L,z5/L)+FD(z, /L, 24 /L) term is proportional to the correlation function 6§ at the
1 (1) same coordinates. For a fixed displacen@nivhen the ex-
— (211,25 /L) = 17(z5/L .24 /L) amined positions are close to the condensate cemter (
+f(l)(zllL,Z4/L)+f(1)(22/|_123/|_)_ (25) <L), the first two terms of Eq(27) do not depend on the
separatiors. However, ass rises from 0 tod, the third term
Thus, the two-particle correlation function can be expressethcreases from— 2([5&5(21,23)]2>T (complete anticorrela-
as a product of one-particle correlation functions. Equationgion) to its maximum value O, resulting in an uncorrelated
(18) and(21) can be used to derive simplified expressions forphase difference for evegzd. In the interval Gss<d, the

f)(z,/L,2,/L,25/L,24/L)
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(2 function depends linearly oswith slope 2. The second- oMdritize )
order correlation function is defined as

W) ) ) o))

g£|-2)(l’1,r2,l’3,f4) N [(’Aﬂ(rl){ﬂ(rl)h' . '<lAﬂT(r2N)lAﬂ(f2N)>T]llz
_ @) ) dra) d(ra))r (35
[P (r)g(ro)re (B (ra) g(ra))71"% and, from Eqs(31) and (32),
(28)
Substituting Eqgs(22) and(24) in Eq. (28), we obtain oM zhiz,. ) =exd -t (MIN{z/L}ioy, N)/é]é
9%2)(21122123124) (30

B 5 @) This general result shows thger) is completely character-
=exp{— oL (T (2 /1,2, /L,25/L,24/L)12}. ized by the parametei?(T) which, through Eq(20), defines
(29 L. Therefore, each correlation function contains full infor-
mation about the coherence properties of the sample and can
Note that, due to the suppression of density modulations, thee used to measure the phase coherence length of the con-
normalized density correlation function of the trapped con-densate.
densate is constarng{?)(z;,2,,2,,2;) =1.

The calculation we have described for the second-order
correlation function can be extended to obtain a general ex-
pression for theNth-order correlation function. Defining the
operator The coherence of a matter wave can be studied by using

interferometric methods. However, as standard interference

SNG{ritice  a)=d(r)+ -+ (ry)— d(rysr) experiments measure the first-order correlation function of

. the field operatorfp, they are very sensitive to phase noise
= = h(ran), (30 introduced by the experimental apparatus. The method pre-
sented here is analogous to the original Hanbury-Brown and
the N-particle correlation function is given by Twiss experiment23,24 in which the spatially resolved
second-order correlation functig?)(r,r,,r,,r,) of a light
(PT(r) T (r ) P(rns ) - - (o) source is obtained from intensity correlation measurements.
\ In the Hanbury-Brown and Twiss interferometer the intensity
N of a light source is measured by two spatially displaced pho-
:iHl Vno(rexp{—([oM({ri}i-a,... a)1%)/2. todetectors. The information about the relative phase of the
two light waves is therefore lost, while only correlations in
(31)  their intensity fluctuations are recorded. The principle is radi-
cally different from the usual Michelson interferometer
In general, the thermal average of the operat)($)2 can  where the two waves interfere before the detection and
be written in the form where their relative phase plays a crucial role. We use this
method to characterize the second-order correlation function
CNo({r}ice a1 r=MIMN{zZ /LY ). of a ma(tgt)ar wave. As difcussed' before, for a highly elongated
(32) BEC 0y’(z1,2,2,,z;)=1. This result suggests that a
simple measurement of density correlations in the conden-
The f™) function, depending on the Jacobi polynomialssate is not sufficient to describe the coherence properties of
P(*D can be expressed as a combinatiorf @ functions: ~ the sample. Nevertheless, by measuring density correlations
. in the interference pattern generated by two spatially dis-
2z, placed copies of a parent BEC, it is possible to correlate the
fN{z LYoy, Z\l):l<|<2<2N P{"m}f(l)(t,f), field operator ¢ at four different positions and extract
e (33 0$¥)(z;,25,23,2,). Compared to standard interference ex-
periments, the main advantage of this technique is the intrin-

IV. INTERFEROMETRIC MEASUREMENT OF THE
SECOND-ORDER CORRELATION FUNCTION

where the coefficienP!"™ is defined as sic stability of the density correlation measurement against
variations of the global phase between the interfering con-
. densates.
pllm— +1 ff I<N<m, (34) In this section, we show how a matter wave Bragg inter-
-1 if I,m=N or I,m>N. ferometer can be used to characterize the second-order cor-
relation function of the condensate and to measure its phase
The Nth-order correlation function is given by coherence length.
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a) 0+ /2 described by the order parameter
= 31\ &

/2 1 ! l H !
2+At-%> 7 D = ¢(r,d,t)=§\/77(r ,t)+§%7(r,t)exp{|[5¢(z,z 1)

\S)

+a(z,z' 1)+ B(z,2")+ y(d)]}, (37

wherer’ =r—dz and 7(r,t) is the time-evolved density pro-

d, file normalized to the total number of atoms in the parent
condensate. The relative phase between the interfering con-
densates contains several contributiofé(z,z',t) = ¢(z,t)

) B — ¢(z',t) describes the phase difference betweend z’

that evolves from the phase fluctuations in the parent con-

densate. The term

Time (ms)

b iy

) g) )\Z 2 2
3 08 a(z,z’,t)=2m\ (22-2'?) (39
£ 04 z
E 0.0 represents the nonuniform spatial phase profile developed
Té 200 0 200 400 600 during the mean-field-driven expansion. The mean-field gra-
S 2 (um) dient between the interfering BECs is responsible for a force

repelling the centers of mass of the two clouds. This effect is
FIG. 2. (a) The matter wave Bragg interferometer: The conden-described by the phase term

sate is released from the magnetic trap and, after 2 ms of free
evolution, is interrogated by the two-pulse sequence. The#itat
Bragg pulse splits the parent BEC into two copies with momenta 0
and k. After a time At, the secondr/2 Bragg pulse splits the
condensates again and allows them to interfere. The time intervgiroportional to the relative repulsion velociy between
At defines the displacemedtbetween the two interfering BECs. the interfering condensat¢32]. After the first Bragg pulse,
(b) A typical line density profile at the output ports of the interfer- the relative phase of the atoms in 2 k) momentum state
ometer: The distance between the two autocorrelated copies (evolves with a characteristic frequenéyragg, given by the

=46 um) is comparable to the phase coherence length of the padetuning of the lasers from the resonance of the two-photon
ent condensatel(,=43 um). In the schematic of the matter wave transition[33]. Therefore, the last term

Bragg interferometer, the distandehas been exaggerated for clar-
ity.

mov
B(z,2')= ﬁ(zﬁtz’), (39

md

) y(d)= 5BraggAt+ ¢= 5Braggm +o (40)
A. Interferometric scheme

Our interferometric sequence is shown in Fig. 2. The conyepresents a global phase depending on the detuning from the
densate is released from the magnetic trap and expandiragg transition and the externally controlled phase
freely for 2 ms. This short time of flight is important to lower ~ The density of atoms at the output pértof the interfer-
the density, thus reducirggwave scattering processes occur- ometer is given by
ring during the Bragg diffraction of the condensgdd]. The
interrogation sequence consists of twd2 Bragg pulses.
Each pulse is composed of two counterpropagating laser
beams of wave numbéy detuned from the atomic transition.
The first Bragg pulse splits the condensate in the two mo-
mentum eigenstatd®7k) and|0) along the axial direction
(z). After a timeAt, a secondr/2 pulse splits the conden- ,
sates again, creating two interfering copies in each momen- +A(z.Z)+y(d)]. (4D)

tum state. The time intervalt between the two pulses Sets Thg presence of strong phase fluctuations alters the interfer-

the spatial overlapd=2fkAt/m between the interfering ence pattern generated by the two autocorrelated conden-
BECs at the output ports of the interferometer. The relativeias 1n fact whed=L , the phase terd¢ can be com-

phase of the two counterpropagating Bragg beams is extefaraple torr, modifying drastically and in an unpredictable

nally controlled by an electro-optic modulatdEOM) and 5y the position and the spacings of the interference fringes.
can be changed between the two pulses. This allows us to

imprint an extra phase which can be precisely tuned. Con- 5. Method

trol of the EOM phase is crucial for our method, as described '

in Sec. IVB. Starting from Eq.(41), we want to calculate the density
Using the results derived in Sec. Il, the atoms detected ircorrelation function of the interference pattern for an en-

the output poriA (see Fig. 2, after a total time of flight, are  semble of identically prepared condensates at a given tem-

1 1
I(r,d,t)= Zn(r,t)+ Zn(r’,t)

+ % n(r,t)n(r',t)cod d4(z,2' 1)+ a(z,2' 1)
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peratureT, averaged over all the global phase valgesThis  The method described here allows us to characterize the de-
averaging process is indicated by the sympol- )1 ,. Itis  pendence of the correlation function on the separasifor
therefore important that the phase delayinduced by the any fixed displacemend between the interfering conden-
EOM is uniformly changed between 0 and2In Sec. I, we  sates.

showed that, for typical times of fliglitens of milliseconds

the evolution of the fluctuating phase of the condensate is

basically frozen. This allows us to neglect the time depen- C. Experimental results and numerical simulations

dencg of6¢(z,z",t). Wwe also neglec;t 't.he contribution of We perform the experiment with’Rb condensates in the
density modulations induced by the initial phase pattern 01?:_1 m.=—1 state. The atoms are confined in a highly
=1, me= ]

the Thomas-Fermi profile of the condensate. The validity % lonaated maanetic trap with cvlindrical svmmetrv. the lon
this approximation is verified below. Under these assump- 9 gnet p with cylindrical sy Y, 9

tions, we calculate the normalized density correlation func XIS I¥ing in the horizontal plane. The confining potential has

tion an axial frequencyw,=27X 3.4 Hz and a radial frequency
o, which is varied between 2Xx300Hz and 2r
[, —{] [ —{] X 380 Hz. Further details on the experimental apparatus can
Y3(ry,ry,d,t)= (e 1>T’;)( 2 2>T’¢)>T’¢2 , be found in[18]. After the BEC formation, we let the system
(1= (1)1, )7.{(l=(12)1.6) 7.0 thermalize in the magnetic trap for typicalt s in thepres-

(42)  ence of radio frequency shieldin@4]. That time is impor-
wherely,=1(ry,,d,t). After a lengthy but straightforward tant to reach an equilibrium condition in which any quadru-
calculation, the averaging process gives pole oscillation has been damped down. As shown in Fig. 2,
our matter wave interferometer consists of twé2 Bragg
diffraction pulses. Each of them is composed of two coun-
terpropagating laser beams, detuned by about 3 GHz from
the atomic transition. This detuning suppresses spontaneous
xexd — op(T) P (zy /L, (z,—d)/L, scattering of photons during the interrogation time. The

Bragg pulse duration of 10@s is sufficiently short not to
(22— d)/L.2,/L)/2]. 43 resolve the momentum distribution of the atoms in the con-

v¥¥(z,,2,,d,t) results from the product of two different Qensate and long e_nough to avoid higher-orde_r Bragg diffrac-
terms: the first is a periodic function, whose argument is thdion processes. A fixed frequency difference is set between
contribution of the mean-field energy to the phase profileh€ two counterpropagating beams to match the Bragg con-
(ballistic expansion and relative repulsion between the interdition. The condensate is released from the magnetic trap and
fering condensatgsthe second is an exponential term which &fter 2 ms of time of flight is probed by the two-pulse se-
corresponds to thg!? function of the parent phase fluctuat- duénce of the interferometer. The atomic cloud is detected
ing condensatdsee Eq.(29)]. The decay constant of this after_ the ballistic expansion by resonant absorptlon imaging.
function is given by the phase coherence length of the con- Figure 2b) shows a typical line density profile of an in-
densatdsee Eq(20)]. terference pattern in which the distance between the two au-
From the experimental point of view, the averaging pro-t0C0ITelated copiesd(=46 nm) is comparable to the phase
cess described above is equivalent to the following procegoherence length of the parent condensdig=(43 um).
dure. The radially integrated density profile-1(z,d,t) at  Because of the stochastic nature of phase fluctuations, the
the output portA of the interferometer is measured for dif- fringe spacing is not regular and differs in each experimental
ferent values of the global phase, uniformly distributed in the/€alization. This demonstrates that the phase of the conden-
range O< p<2; then, the average valyé)r , is calculated sate can significantly change on distances comparable Wlth
and used to determine—(I); , for each experimental real- f[he phase cohe(ence length of th(_e sample. Even if eaqh single
ization. These profiles, averaged according to @@), give ~ 'Mage shows high contrast, the mterfere_ncglpattern is com-
a measurement of®)(z,,z,,d,t). For simplicity, we choose pletely washed out when we average a significant number of

symmetric positions around the center{d/2) of the inter-  realizations.

ference pattern and evaluate density correlations as a funf- T(;'e rehsults of lst{andari |Eterferenie ex_penmt—antﬁ ar? re-
tion of the separatios=z,— z;. According to Eq(26), this ated to the correlations of the wave function and therefore

icul hoi d B d)/2— q are very sensitive to phase instabilities. Figure 3 shows the
particular choice corresponds @ =(s+d)/2=2, and Z; e ference signal obtained by measuring the number of at-
=(—s+d)/2=z, (see also Fig. 2 Substituting in Eq(43)  oms in an interval of width 012 around the center of the

(21— 2,)

m( A
7(2)(21,22,d,t)=cos{%<)\—§d+ Sv

and taking into account Eqé26) and (29), we obtain interference patternz&d/2) at the output porA, as a func-
N tion of the global phase controlled by the EOM. This sig-
v?)(s,d,t)=cos m “Zd+ v s nal is normalized to the corresponding number of atoms in
AR the parent condensate. The two plots correspond to different

displacementd between the interfering condensates. A small

displacement is related to a short time interval between the
7 two interrogation Bragg pulses. In that case, the contribution

s 9%2)(21122,23.24)- (44) _of phase fluctuations ar_ld the effect of technical phase_np|se
] introduced by the experimental apparatus are both negligible.

Xexd — 82 (T)f@(z,/L,2,/L,25/L,24/1)/2]

s
|7

m de+5
N,
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1.0 1.0 d=35pm
0.8} L /2 t =37 ms
w2
0.6}
g
S 04}
o
5 02f
<
E 00 T T ey
2 . 0 50 100 150 200 250 300
'8 0.8} . o hd s (um)
N bl ] * °
s 06 s ° FIG. 4. Open circles: Correlation functiop?(s,d,t) extracted
E | . from a set of 29 line density profiles. The data correspond to
=) 04 . * PY ° ]
e o ¢ samples with 5.810° condensed atoms at a temperatufe
Z . . p p
02} i =216 nK, detected after a total time of flight 37 ms. The dis-
0.0 d = 23, pmg$°* placement between the interfering BECslis 35 um. The bars on
"3 2101 2 3 4 5 the experimental points represent the statistical errors. Crosses: Nu-
merical simulation that takes into account the time dependence of
¢ the fluctuating phase and of density modulations, modeled on the

experimental parameters. Solid line: Fit to the experimental data

FIG. 3. The number of atoms measured in the intem# ; - .
p Y I ! using the model function of Eq45). Dashed line: Second-order

—0.1L<z<d/2+0.1L, around the center of the interference pat- X I 2y — — —
tern detected at the output pok is plotted as a function of the Ccorrelation functiongy™(s,d)=g77(z1,2;,23,24) extracted from
phasee controlled by the electro-optic modulator. The signal is the fit to the experlmgntgl data. The phase coherence length of the
normalized to the corresponding number of atoms in the parent@Mple is graphically indicated on the plot.

condensate. The two sets of data correspond to different displace- == | . )
mentsd between the overlapping condensates. The solid line i$0lid line is the result of a fit to the experimental data. Ac-

obtained by fitting the experimental data with a sinusoidal functioncording to Eq.(44), the model function
The measurements refer to condensates with absi atoms, a N = = —
typical axial size ofL=180 um, and a temperaturé=170 nK. cogas)exy —bf@(z,/L,z,/L,2z3/L,24/L)/2] (45)

Therefore, according to Eq41), whend<L, and At is contains only twq frt_ae paramgters. The curves clearly show
small compared to the characteristic time stability of ourthe damped oscillating behavior. The oscillation frequency
Bragg pulses, the normalized signal oscillates sinusoidallgtrictly defines the parametey while the damping coeffi-
with high contrast. Fod approaching- ,, the random phase CI€nt gives a measurement 6f(T). From the fitting func-
introduced by phase fluctuations washes out the oscillatiorfion it is possible to extract the spatial dependence
On average, when external disturbances can be neglected, the the second-order ~correlation  functiorg$?(s,d)
contrast of the oscillations is directly related to the first-order= g?)(z, ,z,,25,2,) [see Eq(44)]. The fit on the experimen-
correlation functiorg(Tl) at a given displacemeunt However,  tal data gives a phase coherence lerigfff'=57=10 um,
asd increases, the external disturban¢8$] also increase compatible with the expected Vamégem: 58+2 um. The
and produce a random phase noise which destroys the 0scipod agreement between the experimental data, the numeri-
lating behavior and hides the effect of phase fluctuations oga| simulation, and the model function of E@t5) demon-
the detected signal. _ strates that the free evolution of density modulations and of
This problem can be solved by using the method dethe fluctuating phase pattern does not influence the measure-
scribed in Sec. IV B. The measurement of intensity correlament of the second-order correlation function. This result
tions, in combination with the subsequent averaging procesgystifies the use of Eqi44) to model the experimental data
has the major advantage of being insensitive to technicaing to extract the coherence properties of the condensate.
phase noise introduced by the experimental apparatus. Figure |n Fig. 5, we show a direct comparison between the mea-
4 shows the correlation functioff®)(s,d,t) extracted froma  sured phase coherence lengths in the center of the BEC and
set of 29 line density profiles corresponding to10° con-  the theoretical values calculated according to E2f) by
densed atoms at a temperatdre 216 nK, detected after a ysing the measured numbers of atoms, temperatures, and
total time of flightt=37 ms. The displacement between thetrapping frequencies. The bars indicate the statistical errors
interfering BECs isd=35 um. The experimental data are photh on the measured values and on the theoretical predic-
compared with a numerical simulation which produces rantions. The dotted line with slope 1 highlights the good quan-

dom phase patterns according to the experimental conditiongative agreement between experiments and theory.
and uses Eq37) to describe the evolution of the order pa-

rameter._The numerica_llly calculated points. shown in Fig. 4 V. CONCLUSION

are obtained by following the same averaging procedure we

have applied to the experimental data. This kind of analysis In this paper we have studied the coherence properties of
includes the time dependence of the fluctuating phase and gphase fluctuating Bose-Einstein condensates. In highly elon-
density modulations induced by the initial phase pattern. Thgated BECs the thermal excitation of quasiparticle modes
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analytic theory that describes the free evolution of the con-

;g 6o} jig ﬁﬁ densate phase has been developed to closely model the mea-

B o d=35um surement process. Using a Bragg diffraction interferometer,

§ 40r o d=46 ym % . we have measured the density correlations of the interference

5 3 pattern generated by two spatially displaced copies of a par-

£ 20 %{f‘f% ent BEC. This kind of measurement allows a correlation of

§ =le the field operator) of the parent condensate in four different

§ 00"" > m & Z positions. The averaging process d?rectly give.s the second-

g order correlation function. The experiment confirms our the-
calculated coherence length (um) oretical predictions and demonstrates a method to measure

FIG. 5. Direct comparison between the measured phase coherrhe phase coherence length of the condensate. Compared to

ence lengths and the theoretical values, calculated according to Eme usual 'nterfe_renf:e eXP‘?”me”tS’ this technique hf"‘s t.he
(20) by using the measured numbers of atoms, temperatures, argfvantage of being insensitive to the global phase noise in-
trapping frequencies. The dotted line with slope 1 is used to com{roduced by the experimental apparatus. The method pre-
pare experiment and theory. The bars on the plotted points indicatg€nted here is in direct analogy to the original Hanbury-

statistical errors. The relative systematic uncertainties on calculategrown and Twiss experiment and demonstrates the

and measured phase coherence lengths are 26% and 15%, respe@ssibility of using density correlation measurements to
tively. This figure has previously been shown[22]. study the coherence properties of Bose-Einstein condensates.
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