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Abstract

Modern monitoring systems in machine tools are able to detect process errors promptly. Still, the application of monitoring 
systems is restricted by the complexity of parameterization for save monitoring. In most cases, only specially trained personnel 
can handle this job at multi-spindle machines or turn-mill centers. The aim of the research project “Proceed” is to figure out in 
which extent a self-parameterization and independent optimization of monitoring systems in industrial series production can be 
realized. Therefore, the complete parameterization of the processing chain, consisting of the choice of signal sources, character 
extraction, the monitoring- and decision making strategy, shall be automated. This paper deals with the self-parameterization of a 
multi-criteria monitoring system based on a genetic algorithm.
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1. Introduction

Monitoring systems in cutting machine tools shall observe the manufacturing process and identify process errors 
such as critical wear or breakage of the used tool. Therefore, the motor current of spindle and feed drives as well as 
additional sensor signals such as acceleration, force or acoustic emission signals are monitored [1]. A large part of 
monitoring strategies used in series production are attributable to time dependent monitoring limits, which are based 
on the initial manufacturing process [2, 3]. If a monitored signal exceeds its threshold, the monitoring system sends 
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an error message to the machine control. These can cause an immediate stop or a tool change. Thus, secondary 
damage can be avoided and the availability of the machine tool increases. In order to configure the monitoring, 
signal sources as well as extraction methods and monitoring strategies have to be defined. Thereby, time effort and 
complexity increase with the number of monitored signals and the extent of the machining. So the monitoring 
parameterization for a process with six-side machining in a turn-mill center is a time consuming task which can only 
be handled by specially trained staff. Previous approaches to reduce manual effort use statistic confidence limits to 
derive monitoring limits automatically [4, 5].

Fig. 1. Information flow of the complete processing chain of the self-adjusting approach.

However, the parameters of feature extraction, like cut-off frequency and filter order, have not been regarded for 
online parameterization. In [6] an approach for a pre-process design of monitoring systems is presented. At this 
point the project Proceed wants to figure out, in which extent a self-parameterization and independent optimization 
of monitoring systems in industrial series production based on historical data can be realized. Figure 1 gives an 
overview about the information flow in the complete approach. The aim of the project is to develop a self-adjusting 
and self-tuning process monitoring system, based on multi-criteria sensor signal evaluation, which is able to assess 
monitoring quality quantitatively. This is intended to ensure reduction of manual parameterization and improvement 
of monitoring quality. This paper deals with the issue of the self-tuning. In a first approach it is assumed, that the 
signal sources and feature extraction methods are already defined. In the application scenario signals and feature 
extraction methods are selected based on analyses of the signal characteristic from previous manufacturing 
processes [7]. Thus the parameters of feature extraction and threshold building are target of optimization. In the 
application the monitoring starts with a default setting and stores the sensor data. The scattering of the sensor around 
their long term mean value corresponds to the t-distribution [5]. The data sets are delivered to the optimization 
algorithm as soon a defined number of data sets are collected. A suitable number is between 10 and 30 datasets. For 
more than 30 datasets the t-distribution can be replaced by the normal distribution. For less than 10 datasets the 
uncertainties become too large for representative results. Based on this historical data the monitoring system is 
tuned. Assuming that the number of considered data is significantly smaller than the number of work-pieces 
manufactured with one tool set, an optimization can be performed with historical data. At the beginning the 
monitoring task is performed with default values. At the same time the optimization algorithm searches for an 
improved setup. Whenever a better setup is found the old one is replaced at the start of the next manufacturing 
process. The structure of the used monitoring system is shown in Figure 2. From n signals m features were 
extracted. Based on the single signal evaluation of these features, the process is monitored. The optimization 
problem can be described generally as follows. The features f are extracted with the extraction methods E from the 
signals s. The properties of the extraction method, such as cut-off-frequency and order in case of a low pass filter, 
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are defined in the parameter vector x. The feature signal itself is a sum of two components, the true signal sequence 
g and noise e (1). 

fm = sn·Em(xm) = gm + em (1)

Each feature is smoothed with a filter defined through the parameter vector y. The signal sequence itself can be 
described by its mean value over time and its variance (2). Each smoothed feature f´ is evaluated with a function E.
The characteristics of the evaluation results are dependent from the parameter vector z. It includes the parameter for 
the single signal evaluation, and the mean value and variance of the smoothed feature f´ (3). Finally all evaluations 
are combined to an overall assessment which represents the estimated condition of the manufacturing process (4).

fm` = fm·Hm(ym) = fm(mean(fm`), var(fm`)) (2)

Em = Em(mean(fm`), var(fm`), zm) (3)

A = A(E1, E2, E3, … Em) (4)

The characteristics of this overall assessment, sensitivity and robustness are the quality factor of the optimization.
So the quality factor is depending on the given characteristics of the sensor signals and the parameter of feature 
extraction, smoothing and single signal evaluation. The parameter vectors x, y, and z are the optimization object. The 
main challenge is the mathematical description of each single optimization problem. Due to the complexity and the 
number of variables an analytical solution is not practicable [8]. Thus an iterative numeric algorithm is preferred.
Since the procedure should be independent from the used extraction, smoothing or evaluation methods it is not 
possible to predict the amount of local optima of the cost function. Therefor a genetic algorithm, implemented in the 
MatLab global optimization tool-box, is used for the optimization procedure. A genetic algorithm is a population 
based optimization algorithm, which is inspired by biological evolution [9]. Since it is a meta-heuristics method the 
solution may not necessarily present a global optimum. But it allows to find a satisfying local optimum. As a result 
it is possible to optimize sensitivity and robustness of the monitoring approach to a given behavior. As signal 
sources, control internal information with typically low sample rates and external sensors with high sample rates are 
used. Testing machine is a CTX420l universal lathe.

2. Parameterization with genetic algorithm

The start setup for feature extraction and limit formation is generated randomly by the genetic algorithm for a 
number of 100 individuals. Each individual contains the whole parameter set for the monitoring chain. For each 

Fig. 2. Structure of the used monitoring system.
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individual the monitoring is performed for all data sets. According the fitness of this individual, the quality of 
monitoring, is assessed. The assessment for each individual is returned to the genetic algorithm which generates a
second generation of individuals through crossover of the individuals with a good assessment, which are assessed 
again. These steps are repeated, until a fixed generation number is reached, or no improvement is detected.

2.1. Used features and parameters

The suitability of this approach was analyzed regarding turning, milling and drilling processes. For all three kinds 
of machining, process data with and without error was included. Table 1 lists the processes with their parameters 
and the number of data sets for error free and faulty processes.

Table 1. Examined processes and number of variable parameters for optimisation.

Processes Number of processes Number of 
process errors

Cutting speed Feed rate Number of variable 
parameters

Cylindrical turning 9 2 500 m/min 0,35 mm/rev 7

Drilling 15 4 60 m/min 0,07 mm/rev 7

Face Milling 8 6 175 m/min 0,04 mm/z 19

The last column shows the number of parameters for optimization contained in each individual of one generation. 
A dataset is classified as faulty if it differs considerable from the majority. Within the turning and drilling processes 
the process errors are caused by critical tool wear. In the drilling process the tool failure influences four processes. 
In the milling process -face milling on a cylindrical surface- an error occurred because the tool was pulled out from 
the chuck about two to three millimeters. The depth of cut in the milling process is a half millimeter. The milling 
tool was a cutter with a diameter of 16 millimeter. The drill used in the drilling process has a diameter of 6.8 
millimeter. Table 2 lists the extracted features and their sources as well as the parameters applied for feature 
extraction. Used extraction methods are low- and band pass filters, time derivation, single-level wavelet 
decomposition and signal smoothing. For smoothing an EMA-Filter (exponential moving average) was applied.

2.2. Single signal characteristics and overall assessment

To construct borders for the individual signal sequences 
three standard methods were used. These are dynamic
borders, part signatures [2] and statistic borders [5]. In the 
course of the analysis it became clear, that it is not possible 
to detect all errors existing in the datasets with dynamic 
borders. So, these were not considered further. At part 
signature limits the monitoring limits are based on the 
signal sequence of the first manufacturing process. 
Variables for the parameterization are the upper offset, the 
lower offset and the shift range. The offsets describe the 
distance between the first signal sequence and the upper 
and lower limit. The shift range describes the tolerance of 
the monitoring towards time mismatch. Statistic borders are 
based on the variance of the signal sequences over time. 
With the help of mean value, variance and confidence level 
confidence limits are calculated. Fig. 3. Overview over the parameters.
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Table 2. List of used features with their parameters included in the adjusting algorithm.

Processes Signal source Feature extraction Parameter Number of 
Parameters

Cylindrical 
turning

Torque 
main spindle Low pass filter Cut-off frequency 1

Torque  drive, 
feed direction Low pass filter Cut-off frequency 1

Torque  drive, 
passive direction Low pass filter Cut-off frequency 1

Drilling

Torque 
tool spindle

Low pass filter Cut-off frequency 1

Time derivative/smoothing Coefficient smoothing 1

Torque  drive, feed 
direction Low pass filter Cut off frequency 1

Face Milling

Torque tool spindle

Wavelet/smoothing Coefficient smoothing 1

Low pass filter Cut-off frequency 1

Torque  main 
spindle Time derivative/smoothing Coefficient smoothing 1

Acceleration sensor

Three band pass filters/smoothing

Rotational speed

Tooth engagement frequency

First harmonic of tooth engagement

Filter order,

Upper cut off frequency

Lower cut off frequency

Coefficient  smoothing

12

Unlike the method of [5], an upper and lower offset is used, which makes it possible, to generate asymmetric
limits. Altogether there are four combinations (Table 3) for the methods of monitoring and overall assessment, 
which were applied for optimization of monitoring of all processes. To get normed characteristics from each 
individual feature evaluation, based on its limits, the distance between expected value and actual value is divided by 
the distance between expected value and monitoring limit. The expected value is given by the mean value of the 
available signal sequences. This normed characteristic describes the amplitude of each feature with a value between 
zero and infinity. Zero means, that the feature data is equal to the expected value. A one -and each value above-
indicates, that the feature crosses the limit. For a transparent result two simple methods were used to get an overall
assessment from all single signal characteristics, the mean value and the product of the single feature evaluations.
The mean value is meant to represent a robust assessment and the product a failure tolerant assessment. The extreme 
value for the overall assessment is one. An assessment larger than one will be considered an error. Figure 4 shows 
the process of creating the overall assessment. In Figure 4a the signal sequences for the second feature in the drilling 
process with one error sequence is displayed. Figure 4b illustrates the calculation of the normed evaluation value. 
Figure 4c presents the statistic distribution for the overall assessment of all error free drilling processes.
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Table 3. Method combinations for monitoring strategy and used parameters, tested with the optimization.

Threshold value generation Overall assessment Parameters

Part signature Mean value Upper offset, lower offset , shift range

Statistic threshold Mean value Upper offset , lower offset , shift range, confidence level

Part signature Product Upper offset , lower offset , shift range

Statistic threshold Product Upper offset , lower offset , shift range, confidence level

2.3. Fitness Evaluation of the monitoring system

The method combinations were applied for all three kinds off machining given in Table 2 for the corresponding 
features. To evaluate the fitness of each individual, representing a setting, three requirements to the multi criteria 
optimization approach were defined:

false alarms must be avoided 
It should be possible to influence the monitoring sensitivity.

Fig. 4. Result of self-adjusting with a set-point of 0.2 for the overall assessment for part signature with mean value.
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errors should be detected as quick as possible

The first requirement -to avoid false alarms- was implemented by a penalty in the evaluation of the data set. In 
case of a false alarm the evaluation result for the setup is reduced. Similarly, in the evaluation of error free 
processes, a deviation of the overall assessment from the set point is penalized. As set point the quadratic mean of 
the assessment is given. So the optimization algorithm tries to find a solution were errors are detected and the 
assessment for error free processes tends to a set point. For an evaluation of the reaction time the time of occurrence
for each error was determined manually. Then, the time between error inception and error detection will be rated -
from zero milliseconds (immediately) to 500 milliseconds- with a value between zero and one. With these three 
values the fitness of each individual is evaluated. The mean of these three values builds the fitness evaluation for the 
genetic algorithm.

3. Results

The results of the parameterization are demonstrated by the drilling processes. The generated limits are close to 
the signal sequences. In the error free processes particular exceeding of the limits occur, but cause no false alarm in 
the overall assessment, because the overall assessment is lower than one. At the overall assessment with mean value, 
a set point of 0,2 for the assessment of error free processes was defined, for the threshold building with product a set 

Fig. 5. Overall assessment of error processes for all applied method combinations



620   B. Denkena et al.  /  Procedia Technology   15  ( 2014 )  613 – 620 

point of 0,05 was fixed. The setup with statistic border and mean value get a quadratic mean value of 0,18 and the 
setup with statistic borders of 0,25. The result for the overall assessment with product is 0,045 for part signature and 
0,0075 for statistic borders. The deviation for the last combination can be explained with the rating of the last error 
free processes. The rating for this process is considerably larger than the rating for the first processes. Since the 
penalty for a false-alarm weighs more than the penalty for the deviation from the set point in the overall assessment,
the genetic algorithm generates a solution, where the maximum value of this assessment is lower than the limit. The 
reason is that the penalty for an overstepping is a binary decision. The penalty for a deviation from the set point is a 
continuous function. In Figure 5 the assessment with the same setting for the error processes is shown. Generally all 
four combinations are able to recognize the errors. The degree of limit exceeding at the error processes rises from 
the first error till the last error. But because of the robustness of setting four, in consequence of the assessment of the 
last error free process, the solution found by the genetic algorithm seems to be a specific solution for only this case. 
The overstepping occurs at error one and two only for one time step. The genetic algorithm generates a proper 
solution to the fitness function, not for the aim of the requirements, which the fitness function should represent.

4. Conclusion and outlook

It has been shown that it is possible to construct a weighing function, which allows using the method of a genetic 
algorithm for optimization of the signal processing chain in multi-criteria monitoring systems for machine tools. For 
this research milling-, turning-, and drilling processes were considered. The potential of the presented approach were 
tested for rudimentary monitoring setups with three simple features and complex setups with a high number of 
features and sensor signals with high sample rates. The presented requirements, implemented in the fitness
evaluation seem to be suited to define the characteristics of the resulting monitoring. With the presented approach it 
is possible to realize a self-tuning multi-criteria monitoring system. This allows replacing time-consuming manual 
parameterization of monitoring systems in the series production by a self-tuning system. However, it is necessary to 
limit the variance at the assessment of the error free processes in future work. Furthermore, it seems important to 
include the dimension of overstepping in faulty processes in the assessment. In order to simplify the assessment for 
the reaction time, artificial errors will be used. To generate such errors, the signal sequences of error free processes 
are multiplied in a certain time window with special functions, such as steps, ramps or pulses. To reduce the amount 
of computation, known optimization solutions for frequently used signal processing methods should be 
implemented, for example self-tuning algorithms for signal smoothing [10]. At this point, the authors would like to 
thank the German Research Foundation (DFG) for its support of the research project Proceed (DE 447/96–1).
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