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Abstract

To ensure security of supply in the presence of highly volatile generation of renewable
electric energy, extensive storage is required. In this thesis the application of mathematical
optimization methods to gas transmission networks with electricity driven compressor stations,
operated as electricity storage, is discussed.

Therefore, a transient network model that incorporates the gas dynamics described by the
isothermal Euler equations as well as technical network elements is introduced and reviewed
as coupled systems of hyperbolic balance laws. For optimization problems on networks these
PDEs are commonly discretized by finite differences using an implicit box-scheme. The
comparison with finite volume simulations, obtained using a high order ADER method, shows
that the finite difference approximations represent sufficiently well the gas dynamics for
typical flow situations on transmission networks while requiring much less computational
effort.

The optimization model is then applied to realistic test problems abstracting parts of the
German gas transmission network. The results for different price scenarios, which are used
as indicator for the availability of renewable energy, show the potential of using pipelines as
short term storage for electric energy but also the limitations.

The thesis is concluded by a discussion of the recently proposed distributed optimization
algorithm ALADIN and its application to the structured gas network optimization problems.
Therefore, an implementation of this algorithm as well as the experiences applying it to
the introduced model are presented. Compared to a general purpose interior-point method,
this approach of exploiting the problem structure shows promising performance for simple
examples but fails for more complicated model instances.

Keywords: gas transmission networks, nonlinear optimization, hyperbolic balance laws
on networks, finite volume schemes, distributed optimization algorithms
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Kurzzusammenfassung

Um die Versorgungssicherheit auch bei stark fluktuierender Stromerzeugung aus regenerativen
Quellen sicherzustellen, werden umfangreiche Speicher benötigt. In dieser Arbeit wird die
Anwendung mathematischer Optimierungsmethoden auf Gasnetze mit elektrisch betriebenen
Verdichtern diskutiert, die als Stromspeicher eingesetzt werden sollen.

Dafür wird ein transientes Netzmodell, das sowohl die Gasdynamik in Form der isother-
men Euler-Gleichungen als auch weitere technische Netzelemente umfasst, eingeführt und
anschließend im Kontext von hyperbolischer Erhaltungsgleichungen auf Netzen besprochen.
Für Optimierungsprobleme auf Netzen werden diese partiellen Differentialgleichungen übli-
cherweise mit Finiten Differenzen eines impliziten Boxschemas diskretisiert. Der Vergleich mit
den Ergebnissen von Finite-Volumen-Simulationen, die mit einem ADER-Verfahren höherer
Ordnung bestimmt werden, zeigt, dass diese Finite-Differenzen-Approximationen die typische
Dynamik in Gastransportnetzen genügend genau darstellen und dafür erheblich weniger
Rechenaufwand benötigen.

Dieses Optimierungsmodell wird dann auf realistische Testprobleme angewendet, die Teile
des deutschen Gastransportnetzes abstrahieren. Die Ergebnisse für verschiedene Preissitua-
tionen, die als Indikator für das Angebot an erneuerbarer Energie genutzt werden, zeigen
das Potential der Nutzung von Gasleitungen als kurzfristiger Stromspeicher aber auch die
Einschränkungen.

Zum Abschluss dieser Arbeit werden der kürzlich vorgestellte, verteilte Optimierungsalgo-
rithmus ALADIN und seine Anwendung auf die strukturierten Gasnetzoptimierungsprobleme
diskutiert. Dazu werden eine konkrete Implementation des Algorithmus und die Erfahrun-
gen aus deren Einsatz für die vorgestellten Netzmodelle präsentiert. Im Vergleich zu einem
Standardverfahren zeigt dieser Vorschlag einer Struktur ausnutzenden Lösungsmethode
für einfache Beispiele ein vielversprechendes Verhalten, scheitert jedoch für kompliziertere
Modellinstanzen.

Schlagworte: Gastransportnetze, Nichtlineare Optimierung, Hyperbolische Erhaltungs-
gleichungen auf Netzen, Finite-Volumen-Verfahren, Verteilte Optimierungsalgorithmen
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Chapter 1

Introduction

1.1 Gas Pipelines as Storage for Renewable Energy

The activities to face climate change and the decision on the nuclear power phaseout in
Germany have necessarily led to the extension of electric energy generation from so-called
renewable sources. The generation from alternative sources like wind and solar energy is
highly volatile and difficult to control such that the necessity for big and reliable short-
and midterm storage has increased in similar manner. The requirements of huge storage
evoked a variety of ideas. The use of natural gas infrastructure has undergone big popularity.
Among the most advanced approaches is to convert electric energy into hydrogen or even
methane by water electrolysis possibly followed by a methanation. The synthesized gas can be
induced into the natural gas systems or used by special engines directly. Despite the relatively
low efficiency of these approaches and the problems of introducing for example molecular
hydrogen into the natural gas infrastructure, there are already working test plants[19].
In this work we discuss an alternative approach that considers the existing natural gas

infrastructure as electricity storage presented by our project partners Derlien and Müller-
Kirchenbauer [18]. Electric compressor drives in gas transmission networks could couple gas
and electricity networks. They are able to use a surplus of renewable electricity generation
to increase the pressure in subsequent pipelines. This operation policy will be called “power-
to-compression” in the spirit of the above mentioned “power-to-gas” technologies. The
compression with electric drives in time periods of high availability of renewable energy is a
direct alternative to these technologies because the electric energy is stored in terms of the
saved natural fuel gas that would otherwise have been used in gas turbines for compression.
Like the synthesized gas, the saved fuel gas can be used by domestic and industrial customers
or in modern gas power plants to generate electric energy in times of insufficient renewable
energy generation. Additionally to this temporal separation of generation and utilization of
electric energy a spatial shift by gas transport is included in this approach, too.
Derlien and Müller-Kirchenbauer [18] show the potential of this approach based on the

1



2 Chapter 1 Introduction

observation that about 0.8% of the annual gas consumption in Germany in 2010 is consumed
for the compression in gas transmission networks. They also state that the new approach has
a considerably higher efficiency compared to the “power-to-gas” approach. Nevertheless, in
Germany almost all compressor in gas transmission networks are gas driven. Beside historic
reasons, a handicap for electric drives due to the German tax legislation is mentioned, too.
This might explain why in other countries more electric drives have already been installed.
However, it is also mentioned that the implementation of the “power-to-compression” approach
is restricted to existing and planned gas compressor stations and therefore not arbitrarily
scalable.

On the other hand, the “power-to-compression” approach can also be interpreted as
so-called line packing operation policy. In times of lower demand the compressors are
operated above the mandatory, pushing more gas into subsequent pipelines. This policy is
usually employed to be prepared for volatile and unexpected withdrawal of natural gas from
the transmission networks. The electric drives could be operated considering the current
generation of renewable electric energy by increasing the pressure in subsequent pipelines in
periods of high availability. In exchange, in periods of less availability of renewable energy the
compressor operation can be reduced or even stopped. This electricity induced load shift can
also be interpreted as short- or mid-term storage for renewable electric energy using already
existing infrastructure. To rate the compressor operation with respect to the objective to
store electric energy in periods with an overage of renewable electric energy in the network,
an indicator for these periods is required. We assume a strong correlation between the high
generation of renewable energy and the electricity price (see [26] for associated statistics)
and utilize the electricity market price to weight the availability. Hence, we expect that high
availability usually implies lower energy prices and higher prices correspond to periods with
less generation of renewable energy.

This motivation of this thesis has been part of the joint research project “Development of
optimization methods for compressor operation in gas infrastructure for the storage of renew-
able energy” (German: „Entwicklung von Optimierungsverfahren für den Verdichtereinsatz
in der Erdgasinfrastruktur zur Speicherung regenerativer Energien“) with the authors of the
above mentioned article, at that time part of the workgroup for Gas Supply Systems of the
Institute of Oil and Gas Technology at Technical University Clausthal. The objective of the
project was to evaluate this potential benefit of the presented approach using methods from
mathematical optimization to provide foundations for the investigation on related economic
questions.
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1.2 Mathematical Optimization of Gas Networks

The idea to couple gas and electricity networks is a popular approach to address the new
challenges in the presence of volatile energy generation. Just like changes in regulatory rules
on the European gas market this implies more and more actors with different goals in the gas
transmission network operation. The operation corresponding to these new goals might be far
away from known operations. Hence, it becomes more difficult to find a feasible operation of
the gas transmission network by procedures based on the experience of the network operators.
Therefore, the usage of numerical optimization techniques to automatically determine a
feasible or even optimal network operation without explicit knowledge is a very appealing
approach.

The flow of natural gas in networks has been subject of scientific investigation at the
interface between mathematics and engineering in the last decades. There are also early
approaches to use mathematical optimization on gas networks that use strong simplifications
on simple tree structured networks [12, 74, 75] while pure simulation results already included
more realistic gas dynamics and network elements. Established simulation software like
SIMONE [47, 46] or PSIGANESI [72, 60], that is commonly employed by network operators,
evolved from these investigations.

More recently, the detailed models are also considered for mathematical optimization. There
have been two branches using different simplifications, since the direct full mixed-integer
nonlinear programming approach is not tractable. One branch assumes fixed discrete decisions
but uses detailed nonlinear models for the transient [22, 23, 64] and the stationary case [57,
69, 76]. The other branch includes discrete decisions directly but handles nonlinearities by
approximations, e.g. [30, 50].

A joint research project of different German universities, industry and public institu-
tions merged these branches for the stationary case, addressing problems originated in the
deregulation process in the European gas market. In particular, this project aimed for an
automatic procedure which provides feasible controls with respect to the gas network model
used in simulations. The results of this project, published in [44], document the progress in
optimization of the stationary case. We refer to this publication and others related for more
details on this particular issue as well as for a more comprehensive overview on gas network
operation in general.

A related theoretical approach to the flow on networks deals with the stability and
controllability of the governing isothermal Euler equations [34]. There are published results
assuming smooth solutions [32, 33, 35] as well as general weak solutions in the context of
hyperbolic balance laws [1, 8, 14, 14, 34]. The incorporation of these theoretical results in
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numerical optimization has been presented in [37] for a semilinear simplification of the Euler
equations.

Outline and Contributions

This thesis is structured as follows. Chapter 2 is devoted to the model for a transient
description of gas flow on networks. After introducing the most important model relations
the analytic solution structure is analyzed generalizing well known results for ideal gases to
the more complicated description as real gases. Built on this basis, eventually high order
finite volume discretization schemes as well as a finite difference discretization scheme are
presented.
In Chapter 3 a survey on the theory and algorithmic concepts for nonlinear optimization

problems is given.
For the mathematical optimization on gas networks the introduced finite difference scheme

is one of the most detailed descriptions commonly considered for the dynamics on the pipes.
However, in comparison with high resolution finite volume schemes this approach is still very
coarse. In the first part of Chapter 4 we present a novel comparison of the optimization
solution corresponding to the finite difference approximation with simulation results using a
high order finite volume scheme. Comparing the discretized solutions for typical dynamics
on a gas transmission pipeline provides information on the required discretization technique
for the description of complete transmission pipelines. In a second part of this chapter we
discuss the potential of the proposal to use gas networks as electricity storage as introduced
in Section 1.1. These investigations are based on numerical case studies for simple networks
abstracted from real German gas transmission networks.
In this thesis up to that point the numerical optimization results are computed by a

general purpose nonlinear optimization solver. In Chapter 5 we introduce a solver tailored to
structured nonlinear problems like the cost optimization problem on gas networks. We describe
our implementation of the distributed algorithm proposed in [39] and discuss advantages and
shortcomings based on our computational experiences.



Chapter 2

Modeling Gas Flow on Networks

To evaluate the potential of the approach introduced in Section 1.1 of using the gas transmis-
sion networks as storage, a description of the transient dynamics on the networks is required.
This is in contrast to the models investigated in [44] which are restricted to the stationary
case.
First, in Section 2.1 the considered physical and technical aspects of the basic model

used through the thesis are stated. To get an insight to the structure of analytic solutions
to this model we discuss briefly questions of existence of solutions and optimal network
controls in Section 2.2. Section 2.3 is devoted to the discretization of the governing partial
differential equations (PDE) with respect to the coupling algebraic equations as well. Using
the analytic solution structure, in Section 2.3.1 we present the basic ideas of a high order
finite volume scheme to discretize the dynamics on the network. This chapter is concluded
by the presentation of a finite difference scheme in Section 2.3.2.

2.1 Physical and Technical Model

In this section the model aspects investigated through this thesis are presented. For the
modeling of flow on gas networks there exist already a huge number of proposals and
investigation on different scales. From a three dimensional modeling (in space) of the gas
dynamics inside the pipeline to approximations for the stationary flow there are a wide range
of scales and model aspects as well as mathematical and technical fields to be covered. For
the flow on complete transmission networks it is commonly accepted to base the model on
a one dimensional view on pipes which are, at least in comparison to its diameter, long
one-dimensional objects. The model presented here follows directly the lines of the previous
investigation [23, 62] and is a selection of the modeled aspects as described in the Chapters [27]
and [63] of the already mentioned book [44]. We refer also to the book of Cerbe [13] for
details about gas transport and storage from an engineer’s point of view.

We only consider an isothermal model for the gas flow. The inner energy of the gas, usually

5



6 Chapter 2 Modeling Gas Flow on Networks

expressed in terms of temperature, introduces further difficulties to the model like nonsmooth
relations for the temperature mixing. Additionally, the temperature is strongly influenced by
the surrounding temperature. Hence, a good data basis is required to compute meaningful
results. To avoid these and other difficulties, we concentrate on the isothermal case.

A further decision to make is if the model should explicitly include discrete decisions. The
state of the art optimization methods are not able to solve the resulting problems so far.
In [44] there have been various approaches towards a solution procedure for the stationary
case but investigation for the transient case, to the best of our knowledge, have not yet
advanced sufficiently. We therefore externally prescribe the discrete decisions like switching
compressors on or off as well as changes of the topology modeled by closing or opening valves.
This can be justified up to some point by the assumptions that the general flow situation
over the time horizon to consider is known and therefore the discrete decisions can be made
in advance, for example by a solution for the stationary case using one of the procedures
presented in [44].
For the short time horizons we also assume the boundary profiles for flow and pressure

which represent the customer and provider behavior, to be deterministic and do not consider
any stochastic. Clearly, it would be preferable to include all these effects directly into the
model to get rid of these assumptions which in many situation are at least questionable.
However, an integrated algorithm would probably consist of some sort of alternating solution
of simplified subproblems. Therefore, optimization models with simplifications similar to
ours have to be considered anyway.

2.1.1 Characterizing Gas Flow

Given a fixed gas network topology and the assumed fixed in- and outflow profile the task, for
the network operation is to find a control for all controllable network elements such that the
physical and technical relations as well as the prescribed boundary conditions are satisfied.
Under the given assumptions the flow on the network is mainly described by the amount of
gas present at a given time inside a space interval. Hence, the gas density ρ and the mass
flow q are chosen as main characterizing quantities in this thesis to characterize the gas flow
through the network. For clearer presentation not all relations are directly expressed in
these quantities but for example via the related pressure. The model relations include the
influence of gas composition and the gas temperature which are both assumed to be constant.
Table 2.1 gives an overview on the main quantities used to describe the state of the network.

Equation of State One of the most important aspects is the relation between the thermo-
dynamic quantities pressure p, temperature T and density ρ. The most simple approximation
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Quantity Symbol Unit
Density ρ kg/m3

Mass flow q kg/s
Pressure p Pa = 10−5 bar
Temperature T K
Universal gas constant R 8.314 462 1 J/(mol K)

Table 2.1: Principal quantities and constants

is the ideal gas law

p = RsTρ, (2.1)

characterizing a so-called ideal gas with homogeneous composition. The specific gas constant
Rs = R/m as proportionality constant is only dependent on the molar mass m of the gas
mixture whereas R = 8.314 462 1 J/(mol K) is the universal gas constant. The deviation of the
behavior of a real gas from relation (2.1) for ideal gases can be described by a compressibility
factor

z = pV

RsT
.

The standard equation of state for real gases

p = RsTρz. (2.2)

then includes ideal gases by z ≡ 1. In [27] a power series expansion for the compressibility
factor is introduced which can be used for the derivation of approximate formulas. Moreover,
there exist a great number of possibilities to describe the characteristics of real gases. In this
thesis, additional to the ideal gas approximation two common empirical relations are used
that only depend on pressure, temperature and the pseudocritical point of a gas mixture,
that is characteristic for each gas composition. The equation of Papay [56] stated in terms of
the reduced pressure pr = p/pc and reduced temperature Tr = T/Tc

z(p, T ) = 1− 3.52 pr exp(−2.26Tr) + 0.274 p2
r exp(−1.878Tr) (2.3)

can be applied reasonably up to 150 bar, whereas the formula of the American Gas Association
(AGA)

z(p, T ) = 1 + 0.257 pr − 0.533 pr
Tr

(2.4)
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Figure 2.1: Comparison of compressibility factors at T = 283.15 K

is known to be sufficiently accurate only in a smaller pressure range up to about 70 bar. In
Figure 2.1 a comparison for these three different models is illustrated by an example for a
typical natural gas composition at fixed temperature.

2.1.2 Network Model

The above selected quantities have to be tracked over the network. The network is divided in
logical units representing technical facilities like pipelines or compressors. Additionally, some
virtual elements are added to the model that help to state the model in a clearer fashion. The
network itself is formally represented by a directed graph G = (V,A). The set of nodes or
vertices V comprise interior nodes V0 as well as entries V+ and exits V− as boundary nodes.
The pipelines Api, compressor stations Acs and control valves Acv together with virtual short
pipes Asc form the set A of network arcs or edges. In order to state the model, we fix some
conventions. For the models associated with edges any quantity describing a movement along
the edge a = ij, for example the velocity vij or mass flow qij , is defined to be positive if it
is directed from node i to j. The outgoing or negative incident arcs to node i are denoted
by δ−i = {a ∈ A : a = ij} and the ingoing or positive incident arcs by δ+

i = {a ∈ A : a = ji}.
An index to denote the association of a quantity to an arc or node class is only added when
necessary for the presentation and suppressed otherwise. The following paragraphs provide
the models for each of these network element types.
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Quantity Symbol Unit
Velocity v m/s
Friction acceleration λ m/s
Length L m
Diameter D m
Integral roughness k m
Dynamic viscosity η m s/kg

Table 2.2: Pipe model: Additional model quantities and parameters

Pipeline Model

Pipelines are the fundamental part of gas transmission networks connecting customers and
providers of natural gas over possibly large distances. Pipelines are typically build from
preconstructed pipeline segments that are connected on site and installed underground. The
flow in pipes is mainly pressure driven. Hence, the gas usually moves from higher to lower
pressure. The pipe walls have to resist the high pressure values in the pipelines.

For many problems the relations between flow and pressures at the pipeline endpoints are
of interest and have to be properly described by the model. Clearly, the pipe length L plays
an important role in the description of the gas dynamics. In transmission networks pipe
length can be more than 100 km but also quite short pipes of only about 10 m can occur.
The longer the pipe is, the larger will be the pressure drop along the direction of flow. The
pressure drop along the pipe is mainly due to friction effects. Hence, the diameter D of the
cylindrical pipe and the integral pipe roughness k summarizing the effects of the pipe surface
material and imperfections, for example dirt or pipe curvature, also have strong impact in
the gas flow relations.
The flow inside the pipeline is obviously on a three dimensional domain and can be

investigated as it. The detailed flow situation is, for example, topic in computational fluid
dynamics. Since the pipe diameter of the, in our case always cylindrical, cross sectional area
of the pipeline is small in comparison to the typical pipe length we only consider a model in
one space dimension. Three-dimensional dynamic effects like turbulence and nonhomogeneous
flow over the cross section are combined in a friction source term to represent their effect in
the 1-D model.
The mathematical description of the gas dynamics is then expressed in terms of velocity

v(x, t), density ρ(x, t) and pressure p(x, t). The set of hyperbolic balance laws often referred
to as isothermal Euler equations

∂ρ

∂t
+ ∂(ρv)

∂x
= 0, (2.5a)
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∂(ρv)
∂t

+ ∂(ρv2)
∂x

+ ∂p

∂x
+ gρs+ λ̃(v) |v|v2D ρ = 0, (2.5b)

where s = ∂h
∂x denotes the constant slope of the pipeline segment, is deviated from conservation

of mass and momentum in the pipeline. The above mentioned friction relation λ̃(v) will
be addressed below. Using the constant cross sectional area A = πD2

4 the equations can be
expressed in terms of the mass flow q = Aρv. Scaling the second equation with A then leads
to:

∂ρ

∂t
+ 1
A

∂q

∂x
= 0, (2.6a)

∂q

∂t
+ 1
A

∂

∂x

(
q2

ρ

)
+A

∂p

∂x
+ gAρs+ λ(q) |q|q2ADρ = 0. (2.6b)

The qualitative behavior of this system of hyperbolic PDEs is discussed in more detail in
Section 2.2. The full set of Euler equations as presented for example in [27] contains a further
PDE originating from energy conservation which is neglected here since we use the isothermal
simplification, i.e. constant gas temperature.

Friction Model and Approximation The pressure function λ(q) has to cover all the effects
of interior and boundary friction. All common descriptions are empirical physical laws and
depend on the current flow situation. Laminar flow shows much less friction influence than
turbulent flows. The transition between these two regimes depends on the flow velocity as
well as on the fluid properties, especially the viscosity. The point of transition is not sharp
but however characterized by the so-called Reynolds number

Re(|q|) = D

Aη
|q|, (2.7)

where η is the dynamic viscosity of the gas. If the Reynolds number of the flow state is below
the critical value Recrit ≈ 2320, then laminar flow can be assumed. In this state the friction
can be characterized by the exact physical law of Hagen-Poiseuille

λHP(q) = 64
Re(q) . (2.8)

For bigger Reynolds numbers Re(|q|) > Recrit the flow is turbulent. There is no exact
physical law for the friction in that case. The implicit equation of Prandtl-Colebrook which
relates the friction with the pipe diameter D and integrated pipe roughness k

1√
λPC(q)

= −2 log10

 2.51
Re(q)

√
λPC(q)

+ k

3.71D

 (2.9)
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is usually considered as most exact in this situation. Combining the formula (2.8) for laminar
flows and equation (2.9) we obtain the piecewise defined friction function

λHP-PC(q) =

λ
HP(q), Re(q) ≤ Recrit,

λPC(q), Re(q) > Recrit.
(2.10)

This can be directly extended to negative flows by

λHP-PC(−|q|) := λHP-PC(|q|). (2.11)

The resulting friction term
λHP-PC(q) q|q|2AD (2.12)

has discontinuities at the transitions between the two cases. Additionally, there is a jump in
the second derivatives w.r.t. q at q = 0 due to the absolute value function. Burgschweiger et
al. [9] proposed for drinking water networks the global smooth approximation

φ(q) = r

(√
q2 + a2 + b+ c√

q2 + d2

)
q, (2.13)

which has been adapted to the gas case [62]. The constants a, d > 0 have to be chosen related
to the approximation around q = 0 and the further parameters are then computed according
to

r = λ̃

2AD, λ̃ = (2 log10 β)−2 , b = 2δ, c = (ln β + 1) δ2 − a2

2 ,

α = 2.51Aη
D

, β = k

3.71D, δ = 2α
β ln 10 .

It is shown in [9] that this approximation is asymptotically correct for large |q|. Resuming
the above we have

φ(q) ≈ λHP-PC(q)
2AD q|q|. (2.14)

Further simplifications Depending on the observed situation, more assumption or sim-
plification are commonly applied to get simpler systems of partial differential equations.
For example, the first terms of the momentum equation (2.6b) could be neglected in some
situations since in earlier studies [73] it has been observed that their contribution to the
momentum balance equation is often very small:

∂ρ

∂t
+ 1
A

∂q

∂x
= 0, (2.15a)
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Symbol Explanation Unit
Had Adiabatic head J/kg
n Compressor speed 1/s
P Compressor input power W
ηad Adiabatic efficiency 1
κ Isentropic exponent 1

Table 2.3: Compressor model: Physical and technical quantities

A
∂p

∂x
+ gAρs+ φ(q)

ρ
= 0. (2.15b)

In this case the hyperbolic behavior is replaced by a parabolic one as already remarked in
[72].

For the stationary case there exist even an explicit solution and a well known quadratic
approximation (cf. [27]) for the pressure drop along the flow direction. We will not use this
approximation in this study but it clearly helps as rule of thumb for a first check of the
results.

Compressor Model

The pressure loss in pipelines due to the friction is balanced by compressor machines which
increase the pressure from a lower incoming pressure to high outflow pressure, making
gas transmission over long distances possible. Real-world compressor facilities, which may
be composed of different elements installed in complicated subnetwork structures, can be
characterized on different levels of abstraction. In this work we will only consider a basic
compressor modeling. For more complex versions and a comprehensive overview on aspects
to model in compressor stations we again refer to the general modeling chapter [27] in [44].

There are different types of compressors used in the gas transmission networks but we
restrict ourselves to the most common turbo compressors. The gas is accelerated increasing
the kinetic energy which is then converted into a pressure increase by a diffuser. Every turbo
compressor is modeled in combination with a gas turbine or an electric motor as drive. The
compressor model describes the feasible combination of pressure increase in terms of the
increase of adiabatic enthalpy

Had(Tin, Tout, pin, pout) = zinTinRs
κ

κ− 1

((
pout
pin

)κ−1
κ

− 1
)
, (2.16)
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and the gas flow through the compressor expressed as volumetric flow

q = Qρin, (2.17)

as well as the required power
P = qHad

ηad
. (2.18)

Here ρin and zin denote the incoming density and associated compressibility, respectively.
The isentropic exponent κ(Tin, Tout, pin, pout) is here approximated by the constant value
κ = 1.296 whereas the adiabatic efficiency ηad ∈ (0, 1] depends on the operation state in
general.

Ideal Compressor The most simple model choice to describe the feasible operation range is
denominated ideal compressor. This model assumes a constant adiabatic efficiency ηad ∈ (0, 1]
independent of the operation point. Additionally, only simple bounds on the operation range
are assumed. The energy consumption rate of the drive is also modeled as constant efficiency
factor

b(P ) = cdriveP, (2.19)

while the maximal drive power is given by a constant upper bound:

P ∈ [0, Pmax] (2.20)

Characteristic Diagrams Clearly, the ideal compressor is a very coarse description of the
feasible operation range and the energy consumption of the drive. Technically the turbo
compressor can be controlled by manipulating the rotation speed n that has an impact on
flow as well as enthalpy increase. The operation range of a compressor is usually given by
so-called characteristic diagrams. Figure 2.2 gives an example for such a visualization of the
feasible operation range.
These relations are characteristic for each compressor machine and usually given only in

terms of different measurements. To get a continuous description of the operation range and
the efficiency function, the mentioned measurements are used to derive least squares based
quadratic or biquadratic approximations. Analogously, the energy consumption and maximal
drive power are often also given in that form. We refer once more to [27] for the complete
model including the characteristic diagrams.

Operation costs and further compressor station model elements For a given energy cost
profile e(t), i.e. the electric energy or gas price profile, the operation cost over a time horizon
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Figure 2.2: Example of a characteristic diagram of a turbo compressor( Source: [62]); straight
lines for constant rotation speed (increasing from bottom to top); dashed lines
for constant efficiency (increasing to the center); measurements given at ’+’.

[t, t̄] of the compressor is then computed as∫ t̄

t
e(t)b(P (t)) dt. (2.21)

The discrete control decision for compressor are modeled by three operation modes: closed,
bypass and active. The active mode is characterized by the relations introduced above. A
closed compressor acts like a closed valve, i.e. it decouples the two nodes connected by the
closed compressor station as if there were no connecting arc. If a compressor group is in
bypass mode, it is equivalent to a short pipe which couples directly via equality the flow and
pressure quantities at the edge endpoints. In this model the mode selection is assumed to
be externally prescribed. To model the compressor stations in more detail, in- and output
resistors representing the resistance of gadgets, filters and piping could be added to the
network.

Control Valves

At transition points between high pressurized transmission networks and distribution networks
on lower pressure levels the pressure has to be decreased technically. This takes place in
control valves which are usually part of larger control valve stations. These consist not only
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of control valves but also other gadgets, filters and especially preheaters providing heating
energy to balance the temperature loss due to the gas expansion. Again the discrete decisions
are modeled by the three modes closed, bypass and active which we assume to be externally
prescribed. We model the active control valves by a controllable pressure drop over the edge

pin − pout = ∆p ≥ 0 (2.22)

and a fixed flow direction q ≥ 0. The bypass and closed state for the control valves are
modeled like in the compressor model.

Short Pipes

Short pipes are artificial network elements used to simplify the presentation, e.g. by dividing
one physical node into various logical nodes. For that purpose there should be no pressure
loss over the short pipe:

pin = pout (2.23)

There are no further bounds on flow or pressures. We do not model any spatial extension by
short pipes.

Valves

The valve allows to model a change of the network geometry and is characterized by its two
discrete modes: open and closed. An open valve behaves like a short pipe while the closed
valve is described by

q = 0 (2.24)

which corresponds to a nonexisting edge.

Node model

The above presented edge models have to be connected at the nodes of the gas network. The
dynamics in the junctions is again simplified and characterized by the mass conservation

qext +
∑
a∈δ+

qa −
∑
a∈δ−

qa = 0, (2.25)

coupling the in- and outgoing mass flows of incident arcs, where qexti is the external in- or
outflow to the network. We remark that in- and outgoing edges are fixed by the network
structure as directed graph and not dependent on the actual flow direction. Interior nodes are
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characterized by the lack of external inflow. For entry and exit nodes the external mass flow
is bounded to nonnegative and nonpositive values, respectively. Additionally, the pressure at
the ends of the incident edges are set to be equal to the node pressure

p = pa, for all incident arcs a ∈ δ+ ∪ δ−. (2.26)

The first coupling equation for mass flow is directly related to the mass conservation in pipes
whereas the pressure equality conditions are a simplification of the dynamic processes in
junctions. Comparisons to other approaches to couple the dynamic energy of the gas flow
have been presented in [38] for junctions with three incident edges.

2.1.3 Measuring the State of the Network

To prepare the optimization problems built upon the introduced model for the gas network
we present here a selection of functionals that measure the current state of the network. One
possibility is to measure the deviation of the actual flow or pressure profile from prescribed
profiles qfix or pfix for the boundary values∫ t̄

t
|qext(t)− qfix(t)|dt or

∫ t̄

t
|p(t)− pfix(t)| dt, (2.27)

in the desired integral norm, respectively. Another possibility is to measure the distance to a
desired flow profile qext(x) at a particular time point t̃ in a pipe of length L∫ L

0
|q(x, t̃)− qext(x)| dx (2.28)

or the mass contained inside the pipeline at time point t̃∫ L

0
ρ(x, t̃) dx. (2.29)

Together with the operational costs of the compressors modeled as in equation (2.21) these
functionals are commonly used as possible objective functions for optimization tasks on gas
networks.

2.2 Transient Gas Network Model as coupled System of
Hyperbolic Balance Laws

The model presented above can be investigated from different points of view. To get
computational solutions to the modeling equations a discretized version is required. In
this section we will give a summary of results that are more emphasized in the qualitative
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behavior of the solutions for the Euler equations on gas networks. We first state the model
in the usual setting for coupled systems of hyperbolic balance laws on networks and then
present some statements on well-posedness and controllability. The section introduces the
general theoretical steps and applies it to our case of the isothermal Euler equations. The
presentation on the general theory of hyperbolic conservation laws follows the lines of the
textbooks of LeVeque [49] and Toro [66]. The results for the network case are extensions
to those for the ideal gas law that can be found in the survey of Bressan et al. [8] and the
references therein [14, 15, 33, 34]. In addition to a better understanding of the solution
structure, this section also provides the foundations for the numerical schemes presented in
the next section.

We set uT = (ρ, q) as model variable, the flux function as

f(u)T = (q/A, q
2

Aρ
+Ap(ρ)) (2.30)

and source term s(u)T = (0,−gsAρ− φ(q)
ρ ), where p(ρ) is the pressure function associated

with one of the three presented compressibility laws and φ(q) the friction approximation.
Then, the system of Euler equations (2.6) has the form of a general system of balance laws
in one spatial dimension

∂u

∂t
+ ∂f(u)

∂x
= s(u). (2.31)

As in our case, these systems are often derived from conservation principles and which can
be described more naturally by the integral form

d
dt

∫ xr

xl

u(x, t) dx+ f(u(xr, t))− f(u(xl, t)) =
∫ xr

xl

s(u(x, t)) dx (2.32)

for any space interval (xl, xu). If the solution is sufficiently smooth, this integral form is
equivalent to the differential form (2.31). Solution to the integral forms of the balance laws
are called weak solutions. They also admit solutions that are not differentiable, which thus
cannot be solutions to the differential form (2.31) in the classical sense. Integration of (2.32)
over a test volume in time, i.e. an interval (t, t̄), leads to a second integral form of (2.31):∫ xr

xl

u(x, t̄)− u(x, t) dx+
∫ t̄

t
f(u(xr, t))− f(u(xl, t)) dt =

∫ t̄

t

∫ xr

xl

s(u(x, t)) dx dt. (2.33)

Hyperbolicity of problem A system is called strictly hyperbolic if the Jacobian matrix of
the flux function J(u) = ∂uf(u) has two distinct real eigenvalues. It is well known and easy
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to compute that the eigenvalues of the Jacobian matrix of the flux (2.30)

J(ρ, q) =

 0 1
A

− q2

Aρ2 +Ap′(ρ) 2q
Aρ

 (2.34)

are given by
λ1/2(u) = q

Aρ
∓ a(ρ) = v ∓ a(ρ) (2.35)

where a(ρ) =
√
p′(ρ) denotes the speed of sound. The corresponding right eigenvectors are

given by

r1/2(u) =
(

1
Aλ1/2(u)

)
. (2.36)

The chosen model variables, density and mass flow, are called conservative variables in this
context since they correspond to the balance law in the form (2.31). For some calculations
it is more convenient to express the Euler equations in terms of density and velocity, the
so-called physical variables w = (ρ, v). We assume that the solution u is differentiable and
derive from (2.6) the quasilinear system of PDEs for the physical variables:

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0, (2.37a)

∂v

∂t
+ p′(ρ)

ρ

∂ρ

∂x
+ v

∂v

∂x
= −gsAρ− φ(Aρv)

ρ
. (2.37b)

The corresponding Jacobian

J(w) =

 v ρ
a2(ρ)
ρ v

 ,
has eigenvalues and corresponding right eigenvectors

λ1/2(w) = v ∓ a(ρ), r1/2(w)T = ( 1,∓a(ρ)
ρ

). (2.38)

Equation of state Before going on, we have a closer look on the selected equations of
state (2.2). As seen above, the equation of state has to be solvable as a function p(ρ). To
show that the isothermal Euler equations indeed form a hyperbolic system, the pressure
equation is required to have positive derivative p′(ρ) > 0. We will check this for our choices
and state some observations useful for the forthcoming computations. Taking the ideal gas
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law (2.1) as equation of state, we get

p

ρ
= a2 ⇐⇒ p(ρ) = a2ρ (2.39)

with speed of sound a2 = RsT . For the case of the AGA equation (2.4) we have

0 = p−RsTρz(p, T ) = p−RsTρ(1− c2p)

=⇒ pAGA(ρ) = a2ρ

1 + a2c2ρ
, (2.40)

with c2 = −0.257
pc

+ 0.533 Tc
Tpc

> 0. For Papay’s equations the pressure function can be
expressed as a solution of a quadratic equation:

0 = p−RsTρz(p, T ) = p−RsTρ(1− C2p+ C3p
2)

with positive constants C2 = 3.52
pc

exp(−2.26 T
Tc

), C3 = 0.274
p2
c

exp(−1.878 T
Tc

). Solving for ρ
yields

ρ = p

a2z(p, T ) = p

a2(1− C2p+ C3p2)

=⇒ ρ′(p) = 1− C3p2

a2(1− C2p+ C3p2)2

The inverse function exists on intervals with monotonicity, e.g.

ρ′(p)
!
> 0 ⇐= p <

1√
C3

So for p ∈ [0, 1√
C3

] we have an inverse function. An explicit expression can be derived solving
the quadratic equation for p and selecting the “−” solution:

pPapay(ρ) = 1 + a2C2ρ−
√

(1 + a2C2ρ)2 − 4a4C3ρ2

2a2C3ρ

= 1 + a2C2ρ

2a2C3ρ
−
√

(1 + a2C2ρ)2

4a4C2
3ρ

2 − 1
C3
.

Using Vieta’s formulas we get the alternative formulation

pPapay(ρ) = 2a2ρ

1 + a2C2ρ+
√

(1 + a2C2ρ)2 − 4a4C3ρ2

= 2a2ρ

1 + a2C2ρ+
√
D(ρ)

, (2.41)
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Figure 2.3: Structural comparison of pressure functions and associated speed of sound

with abbreviation D(ρ) = (1 + a2C2ρ)2 − 4a4C3ρ2. These expression imply the condition
D(ρ) > 0 to ensure a real solution. For a typical gas compositions these bounds are beyond
the assumed valid range for the equation of Papay.

For later results it is convenient to observe that
√
D(ρ) < 1 + a2C2ρ. This implies a

comparison of the AGA and Papay type of pressure equation for fixed ρ:

pPapay(ρ) ≥ pAGA(ρ)

We emphasize that this is not an inequality on the real pressures since the constants are
computed in a different manner from the gas parameters and the temperature. The inequality
holds only for the algebraic relations as if both constants were the same. To illustrate this
Figure 2.3 compares the different functions for computation of pressure and speed of sound
as functions of density with coefficients C2, C3 computed by the formulas for the Papay case.
We again point out that this does not show real pressures computed by the AGA equation
(cf. Figure 2.1).

To finally decide if the isothermal Euler system is hyperbolic, we need the derivatives for
the three cases. For the ideal gas it holds

pideal(ρ) = a2ρ =⇒ p′ideal(ρ) = a2 > 0, (2.42)

i.e. in this case the system is clearly hyperbolic. For the AGA equation basic calculation
shows that

p′AGA(ρ) = a2

(1 + a2c2ρ)2 = pAGA(ρ)
t(ρ)ρ > 0, (2.43)
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p′′AGA(ρ) = − 2a4c2
(1 + a2c2ρ)3 = pAGA(ρ)

t(ρ)2ρ2 (1− t(ρ)− ρt′(ρ)), (2.44)

where the abbreviation t(ρ) = 1 + a2c2ρ is used. For the Papay equation we get

p′Papay(ρ) = 2a2√
D(ρ)(1 + a2C2ρ+

√
D(ρ))

=
pPapay(ρ)√
D(ρ)ρ

> 0, (2.45)

p′′Papay(ρ) =
pPapay(ρ)
D(ρ)ρ2 (1−

√
D(ρ)− ρ D′(ρ)

2
√
D(ρ)

). (2.46)

In both cases the first derivatives are positive which eventually proves that the system
is hyperbolic in all three cases. In the following we assume a subsonic flow situation, i.e.
|v| < a(ρ). Hence, the first eigenvalue is negative and the second positive.

Hyperbolic Balance Laws on Networks

So far, the results concentrate only on single pipelines. To extend these to networks we consider
a vertex coupling m pipes which are all modeled by the isothermal Euler equations (2.6).
We present the abstract coupling setting and show that the remaining model relations from
Section 2.1 fit into that form.

For a simpler statement of the system generalizing (2.31) to junctions we re-parametrize
the problem on each of the edge to the open real intervals (0,∞). Hence, all edges are
outgoing for the connecting vertex, on all these incident edges located at x = 0. The problem
of coupled systems of balance laws is then given by:

∂tu
1 + ∂xf

1(u1) = s1(u1)
...

∂tu
m + ∂xf

m(um) = sm(um)

 for x ≥ 0, (2.47a)

Ψ(u1(0+, t), . . . ,um(0+, t)) = Π(t), (2.47b)

for t ≥ 0, where the state on edge i ∈ {1, . . . ,m} is indexed as ui. For the isothermal
Euler equations on each pipe we have, just as before, ui = (ρi, qi), flux functions f i(ui)T =
(qi/Ai, qi

Aρi
+Aip(ρi)) and sources si(ui)T = (0,−gsiAiρi − φi(qi)

ρi
). The function Ψ contains

the coupling relations at the vertex.
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The coupling conditions (2.25) and (2.26) at a node coupling m pipes are directly adapted
as

Ψ(u1, . . . ,um) =


∑m
i=1 q

i

p(ρ2)− p(ρ1)
...

p(ρm)− p(ρ1)

 , Π(t) =


qext(t)

0
...
0

 , (2.48)

where the first component models mass conservation and the other m− 1 equations model
equality of the pressures at the vertex. The external flow qext(t) can be chosen to be zero on
interior nodes.

In contrast to the model introduced in Section 2.1, in publications on hyperbolic conservation
laws on networks the compressors are usually modeled as nodes coupling two pipes. An ideal
compressor is then modeled as a special vertex with coupling functions

Ψ(u1,u2) =
[

q1 + q2

q2/ηad ·Had
(
p(ρ2), p(ρ1)

) ] (2.49)

and right hand side

Π(t) =
[

0
P (t)

]
. (2.50)

where Had is the function given in Equation 2.16 for constant temperatures and P (t) the
given power consumption of the compression. The direction implied by the orientation of
the arc is fixed here by the enumeration of the two pipes. Since the function Had is not
symmetric in its inputs the coupling model is not symmetric, too.

In the same manner, an active control valve is also modeled as node coupling two pipes by
adapting directly the relation (2.22) and the mass conservation at its input and output node
as

Ψ(u1,u2) =
[

q1 + q2

p(ρ1)− p(ρ2)

]
, Π(t) =

[
0

∆p(t)

]
. (2.51)

The flow direction on the active control valve is again fixed by the enumeration of the incident
edges.

2.2.1 Existence of Solution and Well-Posedness

In this subsection we will review basic results on the well-posedness of the previously stated
model of coupled systems of hyperbolic balance laws. Again, we first concentrate on single
pipelines and then present the extensions to networks.
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It is well known that the solutions to nonlinear hyperbolic PDEs do not exist in the classical
sense of (2.54a) even if the initial data is smooth. The solution can become discontinuous
after finite time which makes other solution concepts necessary. In the case of physical
conservation or balance laws the PDE is often derived from the integral form first. Hence,
it is natural to search for solutions of the integral equation that admits nonsmooth and
even discontinuous solutions. It can be shown that this is equivalent to weak solutions in
the sense of distributions for the system of PDEs. To obtain uniqueness of solutions to the
integral equations, additional conditions are required that are usually referred to as entropy
conditions. Below a condition convenient for the isothermal Euler equations will be presented.

We start with the Rankine-Hugoniot condition that characterizes discontinuities of solutions
to the integral form (2.33) of the balance law. A jumps of the solution u+ − u− must satisfy

s(u+ − u−) = f(u+)− f(u−) (2.52)

where s is the speed at which the discontinuity is propagating in x-t-space. In the context of
hyperbolic balance laws discontinuities in the solution are often called shocks.

The structure of the solution to hyperbolic PDEs is easier understood for the case of
homogeneous linear systems of the form

∂tu+ J ∂xu = 0. (2.53)

Corresponding to a strictly hyperbolic system, the matrix J has n eigenvalues λ1, . . . , λn

with linear independent eigenvectors r1, . . . , rn. Using the transformed variables z = R−1u,
where R is the matrix of eigenvectors, the system can be equivalently rewritten as

∂tz + Λ ∂xz = 0,

where Λ is the diagonal matrix of eigenvalues. Since the system is now decoupled, the initial
value for each characteristic variable zp, p ∈ 1, . . . , n, is simply advected. In this case the
characteristic curves X(t) = x0 + λpt associated with eigenvalue λp, i.e. the curves of finite
and constant speed along which the information propagates unchanged, are straight lines.
The curves corresponding to λp and rp are often denominated pth characteristic family or
field.

In the general case the matrix of the quasilinear form J(u) = ∂uf(u) is a function of u and
as a consequence the corresponding eigenvalues λp and eigenvectors rp, too. However, the
solution structure is similar to the linear case. The information as well propagates along the
characteristic curves with finite speed associated to the eigenvalues of ∂uf(u). Since the slope
of the characteristics now depends on the solution u, the characteristic curves associated with
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different initial points can intersect or diverge leading to more difficult solution structures than
in the linear case. If the system is not homogeneous, the solution along each characteristic
curve is not constant any more but has to satisfy a nontrivial ordinary differential equation.
This information propagation with finite speed is commonly considered as wave-like. This
motivates the denomination wave for state changes in the solution traveling through the
x-t-space. Since the information moves at finite speed, the solution at a point (x̄, t̄) is only
influenced by the initial values on a bounded subset of the observed domain. We call all
points (x, t) whose image under u influences u(x̄, t̄), the (analytic) domain of dependency.

Riemann Problem

As a common building block for the investigation of a system of hyperbolic PDEs we will now
concentrate on the so-called Riemann problem. This denominates the initial value problem
for the homogeneous PDE associated with (2.31)

∂u

∂t
+ ∂f(u)

∂x
= 0, (2.54a)

equipped with the so-called Riemann initial conditions

u(x, 0) =

uL = (ρL, qL), x < 0,

uR = (ρR, qR), x > 0.
(2.54b)

These problems are principal ingredients for existence proofs and give further insight into
the solution strategy. For the general overview we take a look on the linear case (2.53) and
the depicted solution structure first. If there is an initial discontinuity in the transformed
variable zp, then this is transported with the constant velocity λp. The complete solution
is hence a set of constant states separated by n discontinuities or shock waves leaving the
origin at the speed given by the eigenvalues. Any jump has to satisfy the Rankine-Hugoniot
condition which means here that the jump u+ − u− corresponding to the pth wave needs to
be a multiple of rp.

Like in the linear case, the solution for the nonlinear Riemann problem consists of a set of
constant values connected by a transition or wave for each characteristic family. It is constant
on rays with fixed values for x/t. Such solutions are called self-similar. In contrast to the
linear case, the transitions are not all discontinuities but can be of one of the three possible
types: shocks, contact discontinuities or continuous rarefactions.

In Figure 2.4 a solution with two waves like for the isothermal Euler equations is visualized
in the x-t-space. In the so-called subsonic case (|v| < a(ρ) ) one wave is moving to the left
and the other wave to the right. The first step is to determine whether the characteristic
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Figure 2.4: Schematic overview of solution to Riemann problem

fields are genuinely nonlinear or linear degenerate. This helps to decide which of the three
transition types are possibly part of the solution structure.

Definition ([48] §7.3). A characteristic field associated with the pth family is called genuinely
nonlinear if

∇λp(u)T · rp(u) 6= 0, for all u (2.55)

where λp and rp are the eigenvalue and right eigenvector associated with the field. If for all
u the converse relation ∇λp(u)T · rp(u) = 0 holds then the corresponding field is said to be
linearly degenerate.

Genuine nonlinearity generalizes the convexity requirement on the flux function in one
dimension. It implies that the eigenvalue λ(u) is strictly monotone on integral curves of the
field associated with r(u). In a linearly degenerate field the eigenvalue is constant on these
integral curves. If the characteristic field is genuinely nonlinear, the associated transition
can only be a shock or rarefaction. If the field is linear degenerate, its transition is a contact
discontinuity. The consequences of these observations applied to the Euler equations are
formulated in the following lemma.

Lemma 2.1. The solution of the Riemann problem (2.54) for the isothermal Euler equations
with equation of state (2.2) and the compressibility factor calculated according to z ≡ 1 for an
ideal gas, by the AGA-formula (2.4) or by Papay’s formula (2.3), consists of three constant
states connected by shock or rarefaction waves.

Proof. To prove the lemma we only have to check the condition (2.55) for genuine nonlinearity
of the two characteristic fields for all three pressure expressions. Using the above computed
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eigenvalues in physical variables (2.38) the condition reads

∇λT1/2(w) · r1/2(w) =
(
∓a′(ρ)

1

)T  1
∓a(ρ)

ρ

 = ∓(a′(ρ) + a(ρ)
ρ

)

= ∓
(

p′′(ρ)
2
√
p′(ρ)

+
√
p′(ρ)
ρ

)
(2.56)

For the ideal gas this simplifies to

∇λT1/2(w) · r1/2(w) = ∓a
ρ
≶ 0.

For the AGA equation we get from (2.43), (2.44)

∇λT1/2(w) · r1/2(w) = ∓ 1
a(ρ)

(
p′′(ρ)

2 + p′(ρ)
ρ

)
= ∓p(ρ)

a(ρ)

(1− t(ρ)− ρt′(ρ)
2ρ2t(ρ)2 + 1

ρ2t(ρ)

)
= ∓p(ρ)

a(ρ)
1 + t(ρ)− ρt′(ρ)

2ρ2t(ρ)2 = ∓p(ρ)
a(ρ)

2
2ρ2t(ρ)2 ≶ 0.

Similar computations for the Papay equation yield

∇λT1/2(w) · r1/2(w) = ∓ p(ρ)
2a(ρ)D(ρ)ρ2

(
1 +

√
D(ρ)− ρ D′(ρ)

2
√
D(ρ)

)
.

The term in parenthesis is positive since by basic computation one gets

D(ρ)− ρ
2D
′(ρ) = 1 + a2C2ρ > 0.

This proves genuine nonlinearity for the Papay case and hence the statement for all three
choices for the compressibility factor.

Shock waves Next the wave structure is analyzed in more detail and we focus first on the
case of a discontinuous transition or shock wave. As already noted above, a jump in the
solution has to satisfy the Rankine-Hugoniot condition (2.52) which for the isothermal Euler
equation is given by

(ρv)− − (ρv)+ = s(ρ− − ρ+), (2.57a)

(ρv2 + p(ρ))− − (ρv2 + p(ρ))+ = s((ρv)− − (ρv)+). (2.57b)
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This condition can now be exploited to get a more detailed view on the solution of the
Riemann problem (2.54). Rearranging the first term to get an expression for s and plugging
this into the second equation yields after some simplifications

(v− − v+)2 =
(
p(ρ−)− p(ρ+)

) (
ρ− − ρ+)

ρ−ρ+

⇐⇒ v− − v+ = ±
√

(p(ρ−)− p(ρ+)) (ρ− − ρ+)
ρ−ρ+ . (2.58)

The set of all points (ρ, v) in phase space satisfying the Rankine-Hugoniot condition are
called Hugoniot locus.
For shock waves there are different conditions to distinguish admissible shocks from the

nonphysical ones. If all fields are genuine nonlinear, the physical shocks satisfy the Lax
entropy condition as stated in [48, §7.4]:

λ(u−) > s > λ(u+), (2.59)

where s is again the shock speed. A shock is physical only if the characteristics run into the
shock and disappear. There are no characteristics leaving the shock.

This entropy condition helps to identify the entropy-violating branches of the solutions to
the Rankine-Hugoniot conditions. We consider a 2-shock and use the above equation (2.58)
to get all velocities v(ρ) as functions of density such that the point u(ρ) = (ρ,Aρv(ρ))T is
connected by a 2-shock to the right initial state uR:

v(ρ) = vR ±
√

(p(ρR)− p(ρ))± (ρR − ρ)
ρRρ

Clearly u(ρ) and uR satisfy the Rankine-Hugoniot condition. Derivation of this condition
w.r.t. ρ and considering the parametrization via ρ we get that

u′(ρR) = αr2(uR), with α > 0.

It follows then from the genuine nonlinearity (cf. Lemma 2.1)

∇λT2 (uR)u′(ρR) = α∇λT2 (uR)r2(uR) > 0

which means that locally λ2(u(ρ)) increases with ρ around ρR. Because the Lax entropy
condition (2.59) requires that λ(u(ρ)) > λ(uR) only the part for ρ ≥ ρR gives physically
feasible post-shock states. It remains to determine which sign in (2.58) is the correct for
2-shocks. Using the first jump condition (2.57a), it follows that it has to hold v(ρ) ≥ vR if
ρ ≥ ρR which fixes the “+”- sign for the 2-shock. Summarizing the previous results we have
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for shocks associated to the second field

v(ρ) = vR +
√

(p(ρR)− p(ρ)) (ρR − ρ)
ρRρ

for ρ ≥ ρR. (2.60)

For a shock associated with the first characteristic field we get an analog parametrization for
all post-shock states for the left initial value uL by

v(ρ) = vL −
√

(p(ρL)− p(ρ)) (ρL − ρ)
ρLρ

for ρ ≥ ρL. (2.61)

Rarefactions While shocks are discontinuities satisfying the jump condition, rarefaction
waves are continuous and differentiable transitions between the two constant states to the left
and right of the wave. Parametrized by ξ = x/t, the self similar solution inside the transition,
associated with the pth wave, is a solution to the ordinary differential equation

ũ′(ξ) = g(ξ)rp(ũ(ξ)), (2.62)

where g depends on the parametrization. Solutions to initial value problems for this ODE
are called integral curves of the vector field rp since in each point the tangent to the curve is
a multiple of rp. Assuming that the constant states u− and u+ lie on one integral curve to
the pth field, the solution has the form

u(x, t) =


u− if x/t ≤ λp(u−),

ũ(x/t) if λp(u−) < x/t < λp(u+),

u+ if x/t ≥ λp(u+).

This definition is only useful if the characteristic curves diverge as the time advances. Hence,
it must hold

λp(u−) < λp(u+). (2.63)

To solve the Riemann problem, an explicit expression for two states on the same integral
curve is required. We again use the physical variables w = (ρ, v), set g(ξ) ≡ 1 to fix a
particular parametrization and solve

w̃′(ξ) = ri(w̃′(ξ)) =

 1
∓a(ρ(ξ))

ρ(ξ)

 , i = 1, 2.
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Clearly, ρ(ξ) = ξ + c is a solution to the first equation which enables us to parametrize the
solution in terms of the density ρ. The corresponding solution to second equation is:

v(ρ+)− v(ρ−) = ∓
∫ ρ+

ρ−

a(ρ̃)
ρ̃

dρ̃.

Using that relation we get for all states that can be connected over a 2-rarefaction to the
right initial value:

v(ρ) = vR −
∫ ρR

ρ

a(ρ̃)
ρ̃

dρ̃, for ρ ≤ ρR. (2.64)

The restriction to the case ρ ≤ ρR follows from the principle of diverging characteristics (2.63)
using the genuine nonlinearity. For the 1-rarefaction the analog result holds:

v(ρ) = vL −
∫ ρ

ρL

a(ρ̃)
ρ̃

dρ̃, for ρ ≤ ρL. (2.65)

Lax curves Putting together the results (2.60)–(2.65) for each wave, we get

v(ρ) = vL −


√

(p(ρL)−p(ρ))(ρL−ρ)
ρLρ

, for ρ > ρL,

−
∫ ρL
ρ

a(ρ̃)
ρ̃ dρ̃ , for ρ ≤ ρL,

(2.66)

for the 1-wave and analogously for the 2-wave:

v(ρ) = vR +


√

(p(ρR)−p(ρ))(ρR−ρ)
ρRρ

, for ρ > ρR,

−
∫ ρR
ρ

a(ρ̃)
ρ̃ dρ̃ , for ρ ≤ ρR.

(2.67)

The Lax curve corresponding to the waves consists of all points that can be connected to the
left or right initial state, respectively, by an admissible shock or rarefaction. Parametrizing
the Lax curves, in this case by the density ρ, yields

L1(ρ,uL) = {u = (ρ, ρAv)T : v = v(ρ) by (2.66)}, (2.68)

L2(ρ,uR) = {u = (ρ, ρAv)T : v = v(ρ) by (2.67)}. (2.69)

Now two characterizations for the constant middle state of the solution for the Riemann
Problem are available. To solve the Riemann-Problem (2.54), one needs to find a state
um = (ρm, vm) which can be connected to uL by an 1-wave and to uR by an 2-wave, i.e.
such that both relations (2.66) and (2.67) hold. Thus, the question if the Riemann Problem
has a solution, reduces to the task of finding a density ρm such that the velocities computed
according to (2.66) and (2.67) coincide. Geometrically, we search for an intersection of
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(a) Solution in phase space; the dotted lines are
the nonphysical branches of the integral curves
or Hugoniot loci, respectively.

0
x

ρ

t = 0
t > 0

(b) Density part of solution at t = 0 and t1 > 0.

Figure 2.5: Solution of Riemann problem

the Lax curves in the phase space connected to the initial values uL and uR, respectively.
Figure 2.5 illustrates the solution of a Riemann problem for the isothermal Euler equation in
the phase space as sketched before. This can be expressed by finding a root for the auxiliary
function

ψ(ρ) = vR − vL + fL(ρ) + fR(ρ) (2.70)

with fK(ρ) =


√

(p(ρK)−p(ρ))(ρK−ρ)
ρKρ

, for ρ > ρK

−
∫ ρK
ρ

a(ρ̃)
ρ̃ dρ̃ , for ρ < ρK K ∈ {L,R}.

(2.71)

The functions fK(ρ) for K ∈ {L,R} are monotonically increasing, thus ψ(ρ) is monotonically
increasing. Hence, if there exist a root ρm, i.e. an intermediate state, then it is unique. To
show the existence of the root for each combination of initial values is not possible for all
cases. It can be shown that ψ(ρ) diverges to −∞ for ρ → 0. Hence, if vR − vL > 0 holds,
then there must exist a root of ψ. However, it is possible to construct examples of Riemann
problems at least for the Papay pressure equation that do not have a solution: Since ρ has to
be such that D(ρ) > 0, this implies an upper bound for ρ. If we assume vR − vL � 0 and
ρR = ρL / ρmax, the solution must have two shocks. Hence, ρm might leaves the feasible
range for ρ since it has to be greater than ρL. These cases seem to be far away from real
operation states of pipelines so we will not investigate further on these cases.
The initial value problem for general initial values is analytically treated by so-called

wave-front tracking techniques. The strategy starts with a piecewise constant approximation
of the initial state. Then Riemann problems are solved for any jump point. Whenever any of
the emerging waves interact, a new Riemann problem appears and has to be solved. Iterating



2.2 Hyperbolic Balance Laws for Gas Networks 31

this procedure gives the complete solution. To state results for the limit case for decreasing
initial approximation grid sizes, the number and strength of emerging Riemann problems have
to be controlled. For details on the analytic techniques we refer to [7] since these techniques
go much beyond the scope of this thesis. Instead, we continue with the extension of the ideas
of Riemann problems to connected pipes in networks.

Solution on Networks The first point to notice is that only a particular network with
just one vertex coupling various edges has to be discussed. Again the fact that the waves
propagate with finite speed can be used to extend the discussion to general networks. The
results necessary for this generalization can be found for the example of traffic networks in
[28].
Just like for the case of single pipelines, the theoretical treatment of hyperbolic systems

on networks uses wave-front tracking techniques based on solutions to Riemann problems.
Additionally to the classical Riemann problem on the edge domains (2.54), a Riemann
problem for the coupled problem at the junction (2.47) is therefore required and usually
defined as

∂tu
1 + ∂xf

1(u1) = 0,
... (2.72a)

∂tu
m + ∂xf

m(um) = 0,

Ψ(u1(0+, t), . . . ,um(0+, t)) = Π̄, (2.47b)

u1(x, 0) = u1
R, for x ≥ 0,

... (2.72b)

um(x, 0) = umR , for x ≥ 0,

with constant right initial states uiR and constant control Π̄. We set the image space of
the solution ui on edge i to be an open set Ωi ⊂ Rn, with n = 2 for the isothermal Euler
equations. The concatenation is denoted by u = (u1, . . . ,um) ∈ Ω = Ω1 × · · · × Ωm. To
solve the problem (2.72), we need to determine m intermediate states u1

G, . . .u
m
G such that

the coupling conditions are satisfied

Ψ(u1
G, . . .u

m
G ) = Π̄

and for all incident edges i the state uiG is connected by a feasible wave to the right initial
state uiR. This is a direct generalizing of solving the classical Riemann problems. Hence,
for the Euler equations it corresponds to the determination of parameters ξ1, . . . , ξm for the
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Figure 2.6: Riemann problem at simple junction coupling three pipes; first edge is ingoing,
second and third are outgoing edges.

2-Lax curves as introduced in (2.69) on each edge such that

Ψ
(
L1

2(ξ1,u1
R), . . . ,Lm2 (ξm,umR )

)
= Π̄. (2.73)

In Figure 2.6 the Riemann problem and its solution in phase space are illustrated for a
junction of one outgoing and two ingoing edges. We note that only 2-Lax curves appear
because of the local reparametrization.
The well-posedness result provided in [15] and [8] for systems of two unknowns for each

edge, which fits to our case, depends on two basic assumptions we discuss first.

(F) The flux function f i is smooth on each edge and every problem is strictly hyperbolic
with λi1(ui) < 0 < λi2(ui). Additionally, all characteristic fields of f i are either genuinely
nonlinear or linear degenerate.

(Ψ) This condition is said to hold in ū ∈ Ω if the function Ψ ∈ C1 satisfies

det
[
Du1Ψ(ū)r1

2(ū1), . . . , DumΨ(ū)r1
2(ūm)

]
6= 0 (2.74)

The condition (F) has been treated in the previous paragraph. We have shown that the
isothermal Euler equations with each of the three choices for the compressibility is genuinely
nonlinear. The condition on the eigenvalues means that the solutions stay in the subsonic
domain which we have assumed earlier in this thesis. In this context this especially means
that on each edge only the characteristic associated with the positive eigenvalue emerge from
the vertex and thus the number of leaving or entering characteristics does not change. It is
well known for boundary value problems for hyperbolic conservation laws that one boundary
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condition is required for any characteristic leaving the boundary. From the interpretation of
the coupling problem (2.47) as one big boundary value problem it follow that the number of
coupling conditions must equal the constant number of leaving characteristics.

The second condition (Ψ) offers some more insight in the local solvability of the coupling
Riemann problem at the junction. Considering the above sketched solution structure, this
condition ensures that the implicit function theorem can be applied to guarantee the local
solvability of the coupling conditions if the distance between the initial states is sufficiently
small. Additionally, the condition includes that no characteristic velocity can be zero leading
to badly posed boundary conditions.
In [34] it has been shown that the coupling conditions for gas nodes (2.48) as well as the

coupling relations for a 1-to-1 coupling representing a compressor (2.49) satisfy condition (Ψ)
in every subsonic state u. Similar computations show that this also holds true for vertices
representing a control valve.
To state the well-posedness result for the initial value problem to the coupled systems of

hyperbolic balance laws (2.47) in detail as given in the survey [8], we only need some more
notation. Solutions of hyperbolic PDEs for every time point t, considered as functions of the
space variable x ∈ Rm≥0 =: R+, are usually measured using the norm in L1(R+,Ω)

‖u‖L1 =
∫
R+
‖u(x)‖ dx

or by the total variation defined as

TV (u) =
∑
i

TV(ui)

with TV(ui) = sup
N∑
j=1
‖ui(ξj)− ui(ξj−1)‖,

where the supremum is taken over all subdivisions 0 ≤ ξ1 < · · · < ξN = ∞ of the positive
real axis.

Theorem 2.2 (Theorem 2.13. in [8], Well-Posedness). Let m ∈ N, m ≥ 2 and assumption
(F) hold. Fix a state ū0 ∈ Ω such that the Riemann problem (2.72) with initial values ū0

has as weak solution u = ū0. Let the coupling assumption (Ψ) be satisfied at point ū0. Then
there exist positive δ, L and a map S : [0,∞]×D → D such that

1. D ⊇ {u ∈ ū0 +L1(R+,Ω) : TV(u) ≤ δ};

2. for u ∈ D holds S(0)u = u and for s, t ≥ 0 the relation S(s)S(t)u = S(s+ t)u;

3. for u, ũ ∈ D and s, t ≥ 0 it holds ‖S(t)u− S(s)ũ‖L1 ≤ L
(
‖u− ũ‖[L1 + |t− s|

)
;
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4. if u ∈ D is piecewise constant, then for t < 0 sufficiently small S(t)u coincides with
the juxtaposition of the solution to Riemann problem centered at the points of the jumps
or at the junction.

Moreover, for every u ∈ D, the map t 7→ S(t)u is a weak solution to the initial value problem
for (2.47).

As we have remarked above the conditions of this theorem are satisfied for the gas flow in
pipelines with coupling by nodes, control valves and compressor station. Hence, the analytic
problems arising from the modeling are well-posed in this sense.
For the case of a compressor coupling two pipes Colombo et al. [14] extend this result

and show that the solution is also Lipschitz continuous w.r.t. the compressor control in
suitable function spaces. This ensures existence of minimizers in this setting if the initial
value problem is used as constraints for optimization. For the presentation of the details for
this result we refer to [14] as well as to [8].

2.3 Discretization Strategies

This section is devoted to the discretization of the isothermal Euler equation considering
the coupling algebraic equations. We start with finite volume discretization schemes that
are designed to capture the solution structure discussed in the previous chapter. Some of
the techniques are directly based on the theoretical ideas used for the analytic investigation.
To conclude this section, we present a simpler approaches to discretize the Euler equations
with finite differences. The introduced numerical schemes are compared in Section 4.2 for
examples of realistic flows in gas transmission networks. Both schemes approximate the
solution u(x, t) by a finite dimensional vector U where each entry is associated with finite
dimensional grids in time t0 < t1 < · · · < tM and space · · · < xi−1 < xi < xi+1 < · · ·.

2.3.1 Finite Volume Methods

In one spatial dimension finite volume methods are based on subdividing the spatial domain
into nonoverlapping subintervals and approximate the true solution by a piecewise constant
function representing the integral mean on each subinterval. Based on the integral form (2.32)
the approximation is then updated for each time step using the (numerical approximation of
the) flux on the subinterval boundaries. The discussion is first restricted to the homogeneous
case of a single infinite, one dimensional domain and then extended to the network structure,
higher order approximations and finally to source term treatment. We remark that only
a small selection of techniques and methods, used for the numerical computations later,
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is presented here. There is a huge number of related topics not covered in this surveying
section. For more details and a much more extensive overview we refer to the text books of
LeVeque [49] and Toro [66] from where this presentation is principally adapted, as well as to
the dissertation of J. Kall [43] for the results on higher order methods on networks.
The subintervals or cells are denoted by Ci = [xi−1/2, xi+1/2], i ∈ Z where the cell width

xi+1/2 − xi−1/2 = ∆x is assumed to be constant for all cells. We set tn+1 = tn + ∆t to
describe the time grid for the numerical approximation. The time step size ∆t can be chosen
uniformly for all time steps, but has often to be adjusted to satisfy a stability condition.
Each entry of the discrete solution

Un
i ≈

1
∆x

∫ xi+1/2

xi−1/2
u(x, tn) dx = 1

∆x

∫
Ci
u(x, tn) dx

is an approximation to the cell averages at the specific time point. Using the second integral
form (2.33) the exact update for the cell average is

1
∆x

∫
Ci
u(x, tn+1) dx = 1

∆x

∫
Ci
u(x, tn) dx− 1

∆x

∫ tn+1

tn
f(u(xi+1/2, t))− f(u(xi−1/2, t)) dt

+ 1
∆x

∫
Ci

∫ tn+1

tn
s(u(x, t)) dt dx. (2.75)

Concentrating on the homogeneous case (s ≡ 0) first, this leads to methods which update
the averages by

Un+1
i = Un

i −
∆t
∆x

(
F n
i+1/2 − F

n
i−1/2

)
, (2.76)

where F n
i−1/2 is an approximation to the mean flux at point xi−1/2:

F n
i−1/2 ≈

1
∆t

∫ tn+1

tn
f(u(xi−1/2, t)) dt.

The value of the solution at the cell boundaries is usually not constant and unknown, so the
flux integrals cannot be evaluated exactly in the general case. However, the conservation
property represented by the integral form (2.33) (again with s ≡ 0) is retained at discrete
level:

∆x
J∑
i=I
Un+1
i = ∆x

J∑
i=I
Un
i −∆t

(
F n
J+1/2 − F

n
I−1/2

)
, for all I ≤ J ∈ Z.

If, for example, the numerical fluxes are chosen to depend on the neighboring cell averages
only, i.e.

F n
i−1/2 = F (Un

i−1,U
n
i ), (2.77)
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the resulting update scheme gets

Un+1
i = Un

i −
∆t
∆x

(
F (Un

i ,U
n
i+1)− F (Un

i−1,U
n
i )
)
.

The new approximation only depends on three values of the old time step.

In his book [49] LeVeque names two types of conditions for the convergence of such a
method: consistency and stability. A scheme scheme is consistent if the solution is locally
well approximated. For numerical fluxes like in (2.77) this means that

F (ū, ū) = f(ū), for any constant state ū.

If the solution is constant at the last time step, then the solution over the cell boundary is
constant as well and the numerical flux should be just the evaluation of the flux function.

Stability means that small errors do not grow exceedingly. A necessary condition for stability
is the famous Courant-Friedrich-Lewy condition, usually abbreviated to CFL condition [17].
The numerical domain of dependency is given as the support of all numerical approximations
at the current time point that influence the numerical approximation for the next time
step. The CFL conditions connects stability with the analytic and numerical domains of
dependence.

Theorem 2.3 (CFL Condition). A numerical method can be stable only if the numerical
domain of dependency contains the analytic domain of dependency.

This relation can be measured by the CFL number

c = ∆t
∆xsmax, (2.78)

where smax is the maximal wave speed at which the information of the true solution moves in
x-t-space. Hence, in one time step the influenced domain expands by ∆t smax. For three-point
numerical schemes the CFL stability condition can then be expressed by the CFL number:
c ≤ 1.

One famous example of numerical flux functions is the Lax-Friedrich method. The associated
numerical flux function of type (2.77) is given by

F (Un
i−1,U

n
i ) = 1

2
(
f(Un

i−1) + f(Un
i )
)
− ∆x

2∆t
(
Un
i −Un

i−1
)
. (2.79)

This method is known to add large amount of numerical diffusion damping instabilities. This
leads to a stable method for CFL numbers up to 1.



2.3 Discretization Strategies 37
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xi−1 xi xi+1
(a) Riemann problem solutions at each cell interface with

CFL number c ≤ 0.5.
xi−1 xi xi+1

(b) Illustration of CFL condition c ≤ 1

Figure 2.7: Godunov’s method [49, Fig 15.1]

Godunov’s Method

The idea of Godunov’s method is to solve one Riemann problem, as presented in the previous
section, for each cell boundary and place their solutions side by side (see Figure 2.7). Using
these solutions, the new cell averages can be computed. Choosing time and space discretization
with CFL number c ≤ 1/2 means that the waves of two neighboring Riemann problems will
not interact in that time interval. Thus, the solution at the next time step could be explicitly
computed and averaged to get the new cell averages. If the exact solution is not required,
CFL numbers up to nearly one can be used. This still ensures that the interacting waves of
the Riemann problem, that arises when two waves collide inside the cell, do not reach the cell
boundary. So the solution at the cell boundary remains constant for every time step. Hence,
the associated numerical flux function

F n
i−1/2 = f(uG). (2.80)

is the exact flow for piecewise linear states. Using this definition, Godunov’s method fits to
the setting of (2.76). The so called Godunov state uG here denotes the constant value of the
solution of the Riemann problem (2.54) with left initial value Un

i−1 and right initial value
Un
i along the ray x/t = 0. For the isothermal Euler equation in the subsonic domain the

Godunov state is always the unknown middle state connected to the initial values by feasible
1- and 2-waves in the phase space, respectively.

As stated, for Godunov’s method not the complete solution structure of the Riemann
problem is required. This provides the basis for approximate Riemann solvers computing
approximations for the Godunov state or the associated flux. Details and examples can
be found in [49] or any other textbooks on numerical solutions for hyperbolic conservation
laws. Godunov’s method has not been proved to be generally convergent for nonlinear
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systems of conservation laws but it and its variations are known to be often successful in
practice. However, if the solution sequence for refined grids has a limit function u(x, t) and
the Riemann solutions in the Godunov scheme satisfy an entropy condition, then the limit
function is a weak solution to the conversation law and satisfies the entropy condition, i.e.
the observed shocks are physically correct.

Extension to Networks

The idea of the Godunov method can be directly extended to networks by the ideas already
discussed for the theoretical results in the previous section. In addition to the numerical
flux at the interior cell interfaces, the only new topic is to define the flux at the coupling
junction. Considering for the presentation the same local re-parametrization with coupling
at x = x1/2 = 0 on every coupled edge, the left numerical flux function in the first cells is
derived from the solution of the Riemann problem at the junction (2.72). For coupled edge
j ∈ {1, . . . ,m} the numerical flux is defined as

F n,j
1/2 = f j(ujG), (2.81)

where the ujG satisfy the coupling conditions and are connected by feasible waves to the
Riemann initial states Un,j

1 . For the isothermal Euler equations in the subsonic case this
again corresponds to

ujG = Lj2(ξj ,Un,j
1 )

where Lj2 is the 2-Lax curve and ξj the coupling wave strength associated with edge j such
that (2.73) is satisfied.

Higher Order Approximation with ADER schemes

The Godunov scheme or any other scheme depending on the cell averages only is bound to be
of first order. There are various approaches to derive higher order schemes. We will present the
idea of so-called ADER schemes (Arbitrary high order using DERivatives). For alternatives
and more details we refer again to the text books [66], [49]. The ADER schemes on networks
are introduced by a short extract of the ideas presented in the dissertation[43]. For more
details, comparisons with other approaches and flavors as well as numerical experiments on
different test cases we refer to that thesis and to the related publication [5].
As before, the construction of the ADER method can be motivated starting with the

update formula for the cell averages (2.75) deduced from the integral form of the hyperbolic
balance law. The question again is how to approximate the flux integral via the numerical
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flux

F n
i−1/2 ≈

1
∆t

∫ tn+∆t

tn
f(u(xi−1/2, t)) dt, (2.82)

and potentially the source by a numerical source

Sni ≈
1

∆t

∫ xi+1/2

xi−1/2

∫ tn+∆t

tn
s(u(x, t)) dtdx. (2.83)

The basic idea is now to deduce on each cell a polynomial solution of the desired order in
time and use it to integrate the flux and source integrals. Having the solution, usually in
terms of its Taylor representation in time, flux and source integrals can be evaluated by
suitable quadrature rules or again by Taylor expansions of flux and source function. The
latter approach requires sufficiently smooth flux and source expressions which are in any case
required for the ADER procedure. For the numerical flux, like for the first order Godunov
method, we do not need the full solution but only the time evolution of the Godunov state
for any cell interface approximated as truncated Taylor series

uG(t) =
k∑
ν=0

aνG
(t)ν
ν! . (2.84)

There are different procedures to compute the coefficients of the Taylor series. Principal
building block of the strategy is the determination and solution of generalized Riemann
problems for any cell interface defined as

∂tu+ ∂xf(u) = s(u), (2.85a)

u(0, x) =

uL(x) = ∑k
ν=0 a

ν
L
xν

ν! , x < 0,

uR(x) = ∑k
ν=0 a

ν
R
xν

ν! , x > 0.
(2.85b)

In contrast to the classical Riemann problem, the left and right initial states are in general not
constant but polynomial. The polynomials, in more detail the coefficients aνL, aνR of its Taylor
representation centered in the interface, are obtained by local polynomial reconstructions on
cell Ci of order k using the cell averages on cell Ci and a certain number of neighbors. There
exist different approaches, e.g. the WENO (Weighted Essentially Non Oscillatory) polynomial
reconstruction procedure which uses a convex combination of polynomials to avoid large
oscillations. The solution to the generalized Riemann problem (2.85) and computation of the
coefficient for the representation (2.84) is done by the following steps:

1. Solution of the nonlinear classical homogeneous Riemann problem with initial data of
zeroth order.
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2. The derivation and solution of linear Riemann problems for each of the k space
derivatives.

3. The Cauchy-Kowalewski (CK) procedure to convert the space derivatives into time
derivatives.

Both steps 2 and 3 are using the derivatives of the governing system of equations. This
procedure requires sufficiently smooth flux functions and possibly source terms. We remark
that within the Cauchy-Kowalewski procedure the effect of source terms is incorporated
whereas for the determination of the Riemann problems for the derivatives only the homo-
geneous system is considered. This is usually justified by the argumentation that only the
first-instant interaction is needed where source terms are assumed to have only neglectable
effect. A slightly different method is obtained changing the order of steps 2 and 3, solving
linear Riemann problems for the time derivatives instead of for the spatial derivatives. This
procedure provides then directly the coefficients of (2.84).

Source Terms

The ADER procedure can be extended to balance laws with source terms. We have already
mentioned that the source term is incorporated in the CK-procedure while the rest of the
solution procedure for the generalized Riemann problem is not depending on the source term.
The source term has to be considered in the update formula, additionally. To compute the
numerical source (2.83) again a Taylor approach is used. From the solution at the interfaces
and the polynomial initial data Taylor polynomials are computed and integrated over the
time-space cell. Again, Taylor expansion based quadrature rules like for the numerical flux
are employed. Choosing different centering points for the Taylor series, result in slightly
different methods. Again we refer to the references mentioned before for more details and
other approaches to incorporate source terms, like splitting techniques.

ADER on Networks

In this paragraph, we present the extension of the ADER ideas to the network case using
the coupling conditions of type (2.47b). Since the nodes are assumed to have no spatial
extension, we cannot derive coupling conditions for the spatial derivatives which would be
required for an direct extension of the procedure sketched above. Similar to the extension of
the Godunov method to networks, only the numerical fluxes at the interfaces connected at
junctions have to be defined additionally. Using a quadrature rule given by weights wµ and
quadrature points cµ, µ = 0, . . . , k, the numerical flux at the coupled boundary of edge j can
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be approximated as

F n
1/2 =

k∑
µ=0

wµf
j(ujG(tn + cµ∆t)). (2.86)

Instead of the complete time evolution of the Godunov states for each edge, only the values
at the quadrature points are required. Therefor, on every edge the reconstructed spatial
polynomial centered at the coupling interface is determined and converted into a polynomial
ujR(t) in time via the CK-procedure of Step 3. For any quadrature point µ the solution of
the Riemann problem at junction (2.72) with initial data ujR = ujR(tn + cµ∆t), j = 1, . . . ,m
provides the Godunov states ujG(tn + cµ∆t). For the isothermal Euler equations in the
subsonic case on pipe j the required value can be expressed as

ujG(tn + cµ∆t) = Lj2(ξj ,ujR(tn + cµ∆t)),

where ξj is the coupling wave strength like in the first order case (2.81). If a suitable
quadrature rule is chosen, this procedure yields an approximation to the integral in (2.82) of
order k for the boundary flux.

2.3.2 Finite Difference Approximation

The finite volume schemes introduced above are designed to provide high resolution of
the solution structure of hyperbolic balance laws. The conservation property and precise
capturing of shock and rarefaction effects are to be reproduced by the numerical solution.
These features come at the cost of small time steps. To depict that we consider a pipeline
of 100 km length with 200 equal cells of width ∆x = 0.5 km. Assuming a typical speed
of sound for natural gas of about s = 300 m/s, CFL number c ≤ 1 requires time steps
∆t ≤ 0.6 s. If, for example, the model has to be simulated or optimized over time horizons of
a day or even a weak, this requirement implies a very high effort. In this section a simpler
discretization strategy is presented based on finite differences, replacing the derivatives in the
isothermal Euler equations. The entries of the solution vector Ui are now associated with
point evaluations

U l
i ≈ u(xi, tl) (2.87)

corresponding to the time grid 0 = t0 < t1 < · · · < tM and the spatial grid for any pipe
x0 = 0 < x1 < · · · < xN = L.
In the publication of Ehrhard and Steinbach [23] the isothermal Euler equation, more

precisely the simplification (2.15), is discretized in a comparable context using an implicit
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Euler discretization in time, which permits bigger time steps, and one sided finite difference
for the spatial derivatives.

In this thesis we use an implicit box scheme proposed by Kolb et al. [45] that yields a
similar direct finite difference discretization of the system of isothermal Euler equations using
an implicit time step. On the other hand, this scheme also offers properties typical for finite
volume scheme. For example, it has been shown that the scheme preserves the conservation
property of the balance law (2.33) on the discrete level. For the general balance law (2.31)
the scheme reads

U l
i +U l

i−1
2 =

U l−1
i +U l−1

i−1
2 − ∆tl

∆xi

(
f(U l

i )− f(U l
i−1)

)
+ ∆tl

s(U l
i ) + s(U l

i−1)
2 (2.88)

for any space-time cell [xi−1, xi]×[tl−1, tl] with ∆tl = tl−tl−1 and ∆xi = xi−xi−1. The scheme
can be interpreted based on the integral formulation of the balance law just like the finite
volume schemes. Assuming that the state is piecewise constant u(x, t) = u(xi, t) =: Ui(t)
on the shifted cells x ∈ [xi − 1

2∆xi, xi + 1
2∆xi+1], the integral form of the general balance

law (2.32) for the test interval [xi−1, xi] gets

∂t
∆xi

2 (Ui(t) +Ui−1(t)) + f(Ui(t))− f(Ui−1(t)) = ∆xi
2 (s(Ui(t)) + s(Ui−1(t))) . (2.89)

Approximation of the time derivatives by the implicit Euler scheme, i.e. backward finite
differences, yields the proposed scheme (2.88). The implicit time discretization implies higher
cost for the computation of the new time step but allows to weaken or even drop the upper
bound for the time step length implied by the CFL condition. Actually, it has been shown in
[45] that the implicit box scheme requires a lower bound on the time step to guarantee that
the method is well defined, i.e. that the corresponding system of equations can be uniquely
solved for the values at the next time step tl.

The implicit box scheme applied to the isothermal Euler equations in conservative form (2.6)
is then given by

ρli + ρli−1
2 =

ρl−1
i + ρl−1

i−1
2 − 1

A

∆tl
∆xi

(
qli − qli−1

)
, (2.90)

qli + qli−1
2 =

ql−1
i + ql−1

i−1
2 − 1

A

∆tl
∆xi

(q2

ρ

)l
i

−
(
q2

ρ

)l
i−1

−A∆tl
∆xi

(
pli − pli−1

)

−Ags∆tl
ρli + ρli−1

2 −∆tl
(
φli
ρli

+
φli−1
ρli−1

)
, (2.91)

for any space-time cell [xi−1, xi]× [tl−1, tl]. We have additionally introduced the abbreviations
φli = φ(qli) and pli = p(ρli) to shorten the notation.
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Discretization of other equations

For the finite difference approximation the extension to networks and the other equations
modeled in Section 2.1 is more direct. Since the values at the pipe boundaries are explicitly
included in the set of unknowns, the coupling relations can be evaluated directly. All quantities
not related to pipes can be approximated by one value for each time point defined by the
time grid of the PDE discretization because they only depend on time and not on space. We
abbreviate the evaluation by

ζ l ≈ ζ(tl) (2.92)

for all presented quantities. Accordingly, the algebraic relations introduced in Section 2.1 are
only considered at the time grid points. This leads to one algebraic relation for each time
point and modeling equation. A more detailed summary of the complete model discretized
by finite differences is given in Section 4.1 to fix the considered optimization model.

For comparisons and the suitable approximation of integrals, e.g. the operation costs (2.21),
we need a reasonable interpretation of the values of the modeling variables between two
points of the time grid. Therefor, we take the semidiscretized version of the PDE (2.89) and
the associated differential-algebraic system as starting point and deviate the interpretation
from the implicit Euler discretization. As commonly accepted for quantities discretized by
an implicit Euler scheme, we assume every differential variable, i.e. every variable whose
derivative appears in the DAE system, to be piecewise linear on the time subintervals
defined by the discretization grid. For this particular model all other variables, sometimes
also called algebraic variables in the context of differential-algebraic systems, appear in at
least one algebraic equation coupling directly or indirectly the algebraic variable to one
of the differential variables. A part of these algebraic relations is nonlinear and a direct
interpretation via these couplings is therefore not possible in many cases. Nevertheless, we
interpret all algebraic variables to be piecewise linear and use this as a approximation for the
intermediate values.





Chapter 3

Optimization Basics and Methods

The search for solutions for optimization problems built on the network model presented in
Section 2.1 opens a wide range of areas of investigations although fixing discrete decisions
already rules out the wide area of combined continuous and discrete control problems. Clearly
at some point of the solution process, a solution or more likely an approximation to the partial
differential equations, here the isothermal Euler equations, is required. The level at which
the discretization is employed characterizes two approaches for the solution of optimization
problems constrained by differential equations.

The first-optimize approach uses a function space representation of the model and then
investigates the solution in this context. If possible, necessary conditions are stated which
are usually not analytically solvable but approximated via discretization techniques. Some
basic algorithms for this approach are given in the textbook of Troeltzsch [67]. Herty and
Sachers [37] presented an approach for gas networks using a semilinear simplification of the
Euler equations, neglecting the advection term in the momentum balance equipped with the
ideal gas law.

The other approach, denominated first-discretize, as first step replaces all differential
equations by finite dimensional discretizations and then employs established algorithms for
the finite dimensional problem defined by algebraic relations only. We follow this approach
and compute approximate solutions to the original problems using a fully discretized version
of the gas network model. In this chapter important theoretical results for this type of
nonlinear, restricted, finite dimensional optimization problems are summarized. Finally,
we sketch some algorithmic ideas for the numerical solution in Section 3.3. We principally
follow the presentation of the textbook of Nocedal and Wright [54]. We refer to this or other
textbooks like e.g. [29] for more details and especially for the corresponding proofs which are
omitted here.

45
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3.1 Problem Statement and Optimality Conditions

For the theoretical summary we will assume the optimization problem in the following
formulation

min
y∈Rn

f(y) s.t. ci(y) = 0, ∀i ∈ E , (3.1a)

ci(y) ≥ 0, ∀i ∈ I, (3.1b)

with finite index sets E and I denoting equality and inequality constraints, respectively. To
shorten the notation, sometimes cE = 0 and cI ≥ 0 is used where the “≥” is to be read
componentwise. We note that all other types of continuous restrictions like for example
simple variable bounds are included or can be equivalently reformulated to this form. All
points y ∈ Rn satisfying all constraints form the feasible set

F = {y ∈ Rn : cE(y) = 0, cI(y) ≥ 0}. (3.2)

We call y∗ an local minimizer or local solution of (3.1) if there exist an open neighborhood
N 3 y∗ with

f(y∗) ≤ f(y), ∀y ∈ F ∩N . (3.3)

Accordingly we call y∗ an strict local minimizer or solution if the inequality (3.3) holds
strictly. In the general case it is much more difficult to find global minimizers, i.e. feasible
points where the inequality (3.3) holds for all y ∈ F .
A descriptive geometrical necessary condition for a local solution y∗ is given by the

observation that any feasible step direction must not be a direction of descent. To state this
condition in terms of the algebraic relations defining the feasible region, some assumptions
are required. First, for the theoretical overview and the numerical algorithms we assume that
all model functions are twice continuously differentiable, i.e. f, cE , cI ∈ C2. In addition a
so-called regularity condition or constraint qualification is needed. These ensure that the
linearized constraints provide a sufficiently exact description of the feasible directions. To
state here the well known Linear-Independence-Constraint-Qualification (LICQ), we first
need the notion of active constraints:

Definition (Active Set). A constraint ci, i ∈ E ∪ I, is called active in y if ci(y) = 0
The indices of all active constraints in y form the active set belonging to y:

A(y) = {j ∈ E ∪ I : cj(y) = 0}
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Definition (LICQ). We say that the LICQ holds in a point y if the set of all gradients of
constraints active in y, {∇cj(y) : j ∈ A(y)}, is linear independent.

This is directly equivalent to the Jacobian matrix of active constraints having full row-rank.
For an easier statement of the optimality conditions we introduce the Lagrangian function

L(y,λ) = f(y)−
∑
i∈E

λici −
∑
i∈I

λici (3.4)

As done for the constraints before, we abbreviate by λE and λI the vectors of (Lagrange)
multipliers associated with equations and inequalities, respectively. Finally, we have all
definitions at hand to state the first-order necessary conditions for optimality for problem (3.1).

Theorem 3.1 (KKT-conditions). Let a point y∗ be a local solution to the minimization
problem (3.1) with functions f and ci, i ∈ E ∪ I, continuously differentiable. Assume further
that the LICQ holds in y∗. Then there exist a vector of Lagrange multipliers λ∗ ∈ R|E|+|I|

satisfying the conditions

∇yL(y∗,λ∗) = 0, (3.5a)

λ∗I ≥ 0, (3.5b)

cE(y∗) = 0, (3.5c)

cI(y∗) ≥ 0, (3.5d)

λ∗i ci(y∗) = 0, for all i ∈ I. (3.5e)

These conditions are also known as KKT1-conditions and any point y that fulfills them
is denominated KKT-point or (KKT-)stationary. The conditions (3.5a),(3.5b) are usually
called dual feasibility or stationarity. The former introduces the concept of dual optimization
problems also reflected in the common denomination of the multipliers λ as dual variables.
We will discuss some aspects of duality later in this chapter. The algebraic description of
the (primal) feasible set of the problem description reappears as so-called primal feasibility
conditions (3.5c), (3.5d), whereas the complementarity condition (3.5e) ensures that only
multipliers associated with active constraints may be nonzero. The statement can be proven
using weaker constraint qualifications as well. However, the LICQ together with the dual
feasibility (3.5a) guarantees uniqueness of the Lagrange multipliers.

Definition (Strict complementarity). In a primal-dual KKT point (y,λ) it holds strict
complementarity if

λi > 0, for all i ∈ I ∩ A(y).
1honoring their publishers Karush as well as Kuhn and Tucker
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In the general case, not every KKT-point is a local minimizer to the NLP. The feasible
directions that have to be considered with more attention, are collected as critical cone in
(y, λ).

Definition (Critical cone). The critical cone in (y, λ) is defined as

C(y,λ) =

d ∈ Rn :
∇cTi (y)d = 0,∀i ∈ E ∪ {i ∈ I : λi > 0},

∇cTi (y)d ≥ 0,∀i ∈ I ∩ A(y)

 .
Using the dual feasibility conditions we get for the directional derivative

∇f(y)Td =
∑

i∈A(y)
λi∇cTi (y)d = 0

for all d ∈ C. Thus, these are the linearized feasible direction for which no conclusions about
ascent or descend can be made from the first order information.

Proposition 3.2 (Second order conditions). Let (y∗,λ∗) be a primal-dual point satisfying
the KKT-conditions (3.5).

Necessary Condition: If y∗ is a local solution to problem (3.1) and LICQ holds in y∗, then
all d ∈ C(y∗,λ∗) satisfy

dT∇2
xxL(y∗,λ∗)d ≥ 0.

Sufficient Condition: Assume that for all d ∈ C(y∗,λ∗) it holds

dT∇2
xxL(y∗,λ∗)d > 0. (3.6)

Then y∗ is a strict local minimizer for problem (3.1).

In special cases one can show that the first order conditions (3.5) already characterize
global minimizers. We call a problem convex if the feasible set F is a convex set and the
objective function f a convex function over F . Thus, a problem as stated in formulation (3.1)
is convex if the objective f as well as the inequalities −ci, i ∈ I, are convex and all equalities
ci, i ∈ E are affine functions.

Proposition 3.3 (Convex problems). Assume the problem (3.1) to be convex. Then

a) the set of local solutions is convex,

b) every local solution is already a global solution,
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c) every KKT-point y∗, i.e. there is a vector of multipliers λ∗ such that conditions (3.5)
are satisfied, is a global solution.

If additionally the objective f is strictly convex, then the global solution is unique if it exists.

3.2 Lagrangian Duality

To conclude the theoretical base of optimization, in this section we state some well known
results on Lagrangian duality. These results can be found in almost every textbook on
optimization. The following presentation is mainly adapted from [3] and [59].

Interpreting the Lagrangian function (3.4) as function L : Rn×Λ→ R, with Λ = R|E|×R|I|≥0,
we can define the basic objects.

Definition (Primal and dual problem). The primal function LP : Rn → R̄ is defined as

LP(y) = sup
λ∈Λ
L(y,λ), (3.7)

and the dual function LD : Λ→ R̄ as

LD(λ) = inf
y∈Rn

L(y,λ), (3.8)

where the functions may take values in the extended real line R̄ = R ∪ {∞} ∪ {−∞}. The
associated primal problem is defined as

min
y∈Rn

LP(y), (3.9)

whereas the dual problem is defined as

max
λ∈Λ
LD(λ). (3.10)

First it has to be noticed that the primal problem (3.9) is equivalent to the original
problem (3.1) since from the definition of the primal function it follows immediately

LP(y) =

∞, y 6∈ F

f(y), y ∈ F
.

Such a closed form for the dual function can not be derived in the general case. Another
basic observation is that the dual function (3.8) is always concave. Hence, all solutions of the
dual problem (3.10) are global maximizers.
Next the relations between the original and the dual problem are presented. Without

further assumptions it holds the following comparison.
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Lemma 3.4 (Weak duality). For any y ∈ F and λ ∈ Λ the weak duality relation holds:

LD(λ) ≤ f(y). (3.11)

The same relation is obviously still correct for solutions y∗ of the primal and λ∗ of the
dual problem. The difference f(y∗)− LD(λ∗) is called the duality gap. If there is no duality
gap, i.e. the duality gap is zero, it holds strong duality. In this case the most useful duality
results hold, providing an additional characterization of global optimal solutions to the primal
problem.

Proposition 3.5 ([59, Theorem 4.10.]). Assume that there is no duality gap. If λ∗ ∈ Λ is
such that LD(λ∗) > −∞ then every primal point y∗ ∈ Rn satisfying

L(y∗,λ∗) = min
y∈Rn

L(y,λ∗),

y∗ ∈ F ,

λ∗i ci(y∗) = 0, for all i ∈ E ∪ I,

is a global solution to the primal problem (3.1).

The conditions clearly implies that λ∗ is a solution to the dual problem and that in this case
we could aim for the primal solution y∗ searching for feasible solutions of miny∈Rn L(y,λ∗).

It is left to state a situation which guarantees that the duality gap is zero.

Proposition 3.6. Assume the problem (3.1) to be convex. If y∗ is a KKT-point satisfying
conditions (3.5) with multipliers λ∗, then λ∗ is a solution to the dual problem (3.10) and
there is no duality gap.

Above, we have already stated that y∗ is an optimal solution to the primal problem in
that case and that all primal solutions where LICQ holds, are also KKT-stationary.

We finish this discussion on duality with some consideration on how to compute derivatives
for the dual function. The evaluation of the dual function in general requires to compute a
solution yλ of the inner problem in the definition of the dual function (3.8). The following
result (cf. [3]) shows that the gradient is obtained without extra cost.

Lemma 3.7. Assume that for every λ ∈ R|E|+|I| the problem infy∈Rn L(y,λ) is solved by an
unique minimizer yλ. Then the dual function LD is everywhere continuously differentiable
with

∇LD(λ) = c(yλ), for all λ ∈ R|E|+|I|.
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If the problem is convex and its objective in addition strictly convex, then the assumptions
of the previous Lemma are satisfied. If the involved functions additionally are, as assumed
before, twice continuously differentiable, one can employ the implicit function theorem to
compute the Hessian of the dual function

Lemma 3.8. Let the assumptions of lemma 3.7 hold and assume additionally that the
Hessian ∇2

y,yL(yλ,λ) is positive definite. Then the second derivative of the dual function is
given by

∇2LD(λ) = −∇c(yλ)T∇2
y,yL(yλ,λ)−1∇c(yλ).

These results handle all constraints the same way introducing a Lagrange multiplier.
Sometimes it is convenient to handle different types of constraints differently. Since we
encounter this procedure later in this thesis, we prepare here some of the results for problems
of the form

min
y∈Y

f(y) s.t. Ay = b. (3.12)

We introduce multipliers λ for the linear equality constraints and get the corresponding
Lagrangian by

L̄(y,λ) = f(y)− λT (Ay − b). (3.13)

The associated dual function is then defined as

L̄D(λ) = inf
y∈Y
L̄(y,λ). (3.14)

For general constraints of the form y ∈ Y there also exist necessary conditions as well as
constraint qualifications which are both beyond the scope of this thesis. We will assume that
the set constraints can be written as solutions to a set of algebraic equations as before

y ∈ Y ⇐⇒
ci(y) = 0, ∀i ∈ E ,

ci(y) ≥ 0, ∀i ∈ I,

and generalize the results of lemmas 3.7 and 3.8 to this case. The Lagrangian function for
the inner primal problem of (3.14) is then given by

L(y,λ,κ) = L̄(y,λ)− κTE cE(y)− κTI cI(y).

We use again favorable assumptions supposing that for any multiplier λ̄ the inner problem
of (3.14) has a unique solution y∗. Let the LICQ with respect to the set constraints hold
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in y∗, assume strict complementarity and the second order sufficient conditions (3.6) to
hold. We denote the active constraints by cA(y∗) and the corresponding multipliers with κ∗.
Note that κ∗i 6= 0 for all i ∈ A(y∗). Then all constraints that are not active, as well as the
corresponding multipliers, can be neglected due to the strict complementarity assumptions.
The KKT conditions for the reduced equality constraint problem are

∇yL(y∗, λ̄,κ∗) = ∇yL̄(y, λ̄)− CTκ∗ = 0 (3.15a)

cA(y∗)(y∗) = 0, (3.15b)

where by C =
[
∇yci(y∗)T

]
i∈A(y∗)

we denote the Jacobian matrix of active constraints.
Next step is to check if the implicit function theorem can be applied to the system of
equations (3.15). Its first derivative w.r.t. y and κ in (y∗, λ̄,κ∗) reads[

∇2
yyL(y∗, λ̄,κ∗) C(y∗)T

C(y∗) 0

]
.

The regularity of the derivative follows directly from the LICQ and second order sufficient
conditions. Hence, the implicit function theorem can be applied which guarantees the existence
of a neighborhood of λ̄ where y(λ) and κ(λ) are continuously differentiable functions of
λ and solutions to (3.15). Note that this neighborhoods have to be possibly restricted to
maintain the same active set as for y(λ̄). Then y(λ) and κ(λ) are KKT-Points for the inner
minimization problem of (3.14).

Using the strict complementarity, the gradient for the dual function can now be computed:

LD(λ̄) = min
y∈Y
L̄(y, λ̄) = L̄(y∗, λ̄) = L(y∗, λ̄,κ∗)

=⇒ ∇LD(λ̄) = ∇λy∗∇yL(y∗, λ̄,κ∗)︸ ︷︷ ︸
=0

−(Ay∗ − b)−∇λκ∗ cA(y∗)(y∗)︸ ︷︷ ︸
=0

= b−Ay∗ (3.16)

=⇒ ∇2LD(λ̄) = −∇λy∗AT

Thus, to get the Hessian of the dual function, an expression for ∇λy∗ is needed. The fact
that for every λ in the neighborhood of λ̄ the parametrized solutions y(λ) and κ(λ) are
KKT-Points with the same active set is exploited:

0 = dλ
(
∇yL(y∗, λ̄,κ∗)
cA(y∗)(y∗)

)
=
(
∇λy∗ ∇2

yyL(y∗, λ̄,κ∗)−A−∇λκ∗ C
∇λy∗ CT

)

⇐⇒
[
∇2
yyL(y∗, λ̄,κ∗) CT

C 0

](
(∇λy∗)T

(−∇λκ∗)T

)
=
(
AT

0

)
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Solution of this linear system by standard Null-Space method gives

(∇λy∗)T = Z(ZT∇2
yyL(y∗, λ̄,κ∗)Z)−1ZTAT

and hence

∇2q(λ̄) = −AZ(ZT∇2
yyL(y∗, λ̄,κ∗)Z)−1ZTAT , (3.17)

where Z is a matrix whose columns form a basis of kerC. It is clear that ∇2q(λ̄) ≤ 0 since
ZT∇2

yyL(y∗, λ̄,κ∗)Z > 0 because the second order sufficient optimality conditions have been
assumed.

3.3 Sketch of Algorithmic Ideas

To conclude this chapter on the basics of nonlinear optimization, a very short review of
basic concepts of numerical algorithms for problem (3.1) is given. We concentrate mainly
on algorithms for general nonlinear, potentially nonconvex, optimization problems with a
smooth objective function and constraints, as assumed before. For an extensive overview of
available software and comparisons we refer to the “Decision Tree for Optimization software”
[51] that provides information not only about solvers for this problem class. The following
paragraphs follow the lines of the textbook [54] again which presents much more details
including overviews on existing implementations. Solution techniques for problem (3.1)
include interior-point methods (IPM) and sequential quadratic programming (SQP).

Interior-point methods use an iterative search based on Newton’s method for perturbed
KKT conditions. General inequalities are reformulated by a vector of slack variables:

min
y∈Rn

f(y) s.t. ci(y) = 0, ∀i ∈ E , (3.18a)

ci(y)− si = 0, ∀i ∈ I, (3.18b)

si ≥ 0, ∀i ∈ I (3.18c)

The search directions are then computed as Newton direction for the nonlinear system of
equations given by the KKT conditions (3.5) applied to the log-barrier problem:

min
y∈Rn

φµ(y) = f(y) + µ
∑
i∈I

log(si) s.t. ci(y) = 0, ∀i ∈ E ,

ci(y)− si = 0, ∀i ∈ I
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This corresponds to a solution of a symmetric linear system with general structure[
H CT

C −M

](
∆y
−λ

)
=
(
g

h

)
. (3.19)

These systems are often referred to as KKT-systems or more generally as saddle-point
problems. The matrices H and C are usually approximations or the exact Hessian of the
Lagrangian respectively the Jacobian matrix of the constraints. The Matrix M is positive
semidefinite and includes the influence of the barrier parameter µ. The system is uniquely
solvable if C has full row rank and H is positive definite. Using exact derivatives, this
corresponds to the LICQ and the second-order conditions stated above. The update of the
iterates has to ensure that these stay in the strict relative interior of the feasible region
w.r.t. the slacks, i.e. si > 0 for i ∈ I. This procedure is repeated for a sequence of
parameters µ that finally converges to zero. If the solutions of the log barrier problems
converge for µ↘ 0, then the limit point satisfies the KKT conditions for the original problem.
Using sophisticated update strategies IPMs aim to drive the iterates towards first order
stationary points. Popular implementations of interior-point methods include LOQO [68],
KNITRO/DIRECT [71], KNITRO/CG [11] as well as the open source code Ipopt [70] and are
among the most efficient solvers for nonlinear nonconvex problems.

SQP methods, the other promising approach, are based on the observation that computing
a Newton step for the KKT conditions (3.5) for the equality constraint problem, i.e. solving
a system of form 3.19 with M = 0, is equivalent to the solution of a quadratic problem
(QP). This QP arises as minimization of the quadratic approximation of the Lagrangian
function subject to the linearized constraints. Generalizing this idea to inequality constrained
problems, a SQP method computes new search directions in each iteration as (approximate)
solutions to quadratic subproblems of the form

min
∆y

1
2∆yTH∆y + gT∆y s.t. CE∆y + cE = 0,

CI∆y + cI ≥ 0.

SQP methods may differ in terms of the inequality constraints treatment. The inequality
constraint problem can be passed to the QP solver directly or, as an alternative, the SQP
framework determines an estimate for the current active set, often denominated as working
set and only passes the corresponding equality constraint problem to a QP solver. Among
the most successful implementations of SQP frameworks are SNOPT [31], KNITRO/ACTIVE
[10] and CONOPT [20].

Both SQP and IPM frameworks have usually to be complemented by so-called globalization
strategies. The Newton-type steps are not sufficient for convergence to KKT stationary
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points, especially when starting far away from the solution. Such strategies to ensure global
convergence, often generalized from unconstrained programming techniques, add additional
conditions for the update of the iterate rating if the new step provides an improvement.
Whether a step provides sufficient progress, is measured by penalty or merit functions as well
as by filter techniques. All these approaches try to balance the generally competing targets
of smaller objective values and smaller infeasibility measures.
As preparation for the following Chapter 5 we also sketch the Augmented Lagrangian

approach here for problems fitting to the form (3.12). The approach is based on the
assumption that the problem is much easier solved without considering the linear constraints
Ay = b. The Augmented Lagrangian iteration then consists of alternating between solving
the problem

y+ = arg min
y∈Y

f(y)− λT (Ay − b) + µ

2 ‖Ay − b‖
2
2 (3.20)

and updating the multiplier estimate according to

λ+ = λ+ µ(Ay+ − b). (3.21)

For more details and more general formulations we refer additionally to the book of Bertsekas
[2]. Solver that implement Augmented Lagrangian techniques include MINOS [52] and
LANCELOT [16].

If the problem is separable, i.e. has the following special form of constraints

y ∈ Y ⇐⇒ (y1,y2) ∈ Y1 × Y2

and objective f(y) = f1(y1)+f2(y2), then a slight modification of the Augmented Lagrangian
procedure yields the basic Alternating Direction Method of Multipliers (ADMM) iteration.
In this case, the augmented Lagrangian is given by

L(y1,y2,λ) = f1(y1) + f2(y2)− λT (A1y1 +A2y2 − b) + µ

2 ‖A1y1 +A2y2 − b‖22.

Instead of solving

(y+
1 ,y

+
2 ) = arg min

y∈Y
L(y1,y2,λ)

as it would correspond to an Augmented Lagrangian iteration, the two problems

y+
1 = arg min

ȳ1∈Y1
L(ȳ1,y2,λ),

y+
2 = arg min

ȳ2∈Y1
L(y+

1 , ȳ2,λ)



56 Chapter 3 Optimization Basics and Methods

are solved sequentially before the multiplier is updated as before by (3.21). The algorithm
alternates between updating the two variable vectors and especially already uses the new
result y+

1 for the update of y2. We refer to the survey paper of Boyd et al. [6] for more
details on ADMMs and their applications.



Chapter 4

Numerical Results: Gas Pipelines as Storage

This chapter is devoted to numerical results for the optimization of gas transmission networks
for the storage of electric energy. Before the numerical results are presented, we state the
concrete optimization model such as it will be used for the remainder of this thesis. The
principal modeling equations and its discretization with the implicit box scheme have already
been explained in Chapter 2 and are summarized in the first section. The second section
provides a comparison of the solutions, obtained as optimization results, with a higher order
finite volume simulation using an ADER scheme as explained in Section 2.3.1. The finite
volume solutions are known to resolve the solution with better accuracy especially in the
presence of shock waves. Based on the principal case studies, we compare the solutions
to get an indication if for the dynamics on gas transmission pipelines a high resolution
approximation is required or if otherwise a coarser discretization covers the principal effect
sufficiently well. The third section of this chapter is eventually dedicated to the application
of using pipelines as storage as introduced in Section 1.1. The optimal compressor operation
to store electric energy in networks is presented for realistic networks. For different scenarios
we discuss potential and limitations of this approach.

4.1 Transient Gas Network Optimization

The optimization model is based on the modeling equations stated in Section 2.1 and
especially on the implicit box scheme discretization for the isothermal Euler equations posed
in Section 2.3.2. We will now state the model using the notation introduced in Chapter 3.
Arranging the optimization variables and constraints according to their associated time
discretization point and network element, we get an optimization model that preserves these
underlying structures. Accordingly, the variable vector is structured globally by the time
steps

yT =
(
y1T y2T . . . yM

T
)
, (4.1)

57
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where the corresponding variable vector for each time point tl, l ∈ {1, . . . ,M} is composed
by variables associated with network elements. By convention, we assume that the model
for each node i comprises a variable pli associated with the node pressure while the model
for arc a ∈ A has variables for (structural) in- and outgoing flow qlin,a, q

l
out,a, for each time

point l ∈ {1, . . . ,M}. The models are first stated for the different edge and arc types and
eventually combined in the complete optimization model. We state the constraints only with
those variables as function parameters that are required for the presentation. Evaluation
of these constraints on the whole variable vector is supposed to include the selection of the
corresponding arguments.

Pipe Model

For each pipe a ∈ Api we have one variable for each evaluation of the modeling unknowns of
the Euler equations (2.6) for each point on the discretization time grid and the pipe specific
spatial grid 0 = x0,a < · · · < xN,a = La. As before, we use the abbreviations

qlk,a = q(xk,a, tl), ρlk,a = ρ(xk,a, tl)

for all l ∈ {1, . . . ,M} and k ∈ {0, . . . , Na} and additionally introduce the auxiliary variables
for pressure and friction terms plk,a, φlk,a. The contribution of pipe a ∈ Api to the set of
variables for time step l is

yla
T =

(
ql0,a, ρ

l
0,a, p

l
0,a, φ

l
0,a, . . . , q

l
Na,a, ρ

l
Na,a, p

l
Na,a, φ

l
Na,a

)
. (4.2)

To satisfy the convention presented above the flow variables at the boundary are also referred
to as qlin,a = ql0,a and qlout,a = qlNa,a. Choosing the implicit box scheme (2.90), (2.91) for
discretization of the Euler equations we get the constraints

0 = cl,conk,a

(
qlk,a, q

l
k−1,a, ρ

l
k,a, ρ

l
k−1,a, ρ

l−1
k,a , ρ

l−1
k−1,a

)
=
ρlk,a + ρlk−1,a

2 −
ρl−1
k,a + ρl−1

k−1,a
2 + 1

A

∆tl
∆xk

(
qlk,a − qlk−1,a

)
,

0 = cl,mom
k,a

(
qlk,a, q

l
k−1,a, ρ

l
k,a, ρ

l
k−1,a, p

l
k,a, p

l
k−1,a, φ

l
k,a, φ

l
k−1,aq

l−1
k,a , q

l−1
k−1,a

)
=
qlk,a + qlk−1,a

2 −
ql−1
k,a + ql−1

k−1,a
2 + 1

A

∆tl
∆xk

(q2

ρ

)l
k,a

−
(
q2

ρ

)l
k−1,a


+A

∆tl
∆xk

(
plk,a − plk−1,a

)
+Ags∆tl

ρlk,a + ρlk−1,a
2 + ∆tl

(
φlk,a
ρlk,a

+
φlk−1,a
ρlk−1,a

)
,
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for each time-spatial cell, i.e. for each l ∈ {1, . . . ,M} and k ∈ {1, . . . , Na}. The introduced
auxiliary variables for pressure have to satisfy the constraints

0 = cl,pressk,a

(
plk,a, ρ

l
k,a

)
= plk,a −RsTρ

l
k,az(plk,a, T ),

for l ∈ {1, . . . ,M} and k ∈ {0, . . . , Na}. Here T is the given, fixed temperature and the
function z one of the three presented choices of compressibility laws, i.e. an ideal gas
with z ≡ 1, the AGA (2.4) or Papay’s equation (2.3). If not stated otherwise, the most
exact equation of Papay is used for all computations. The friction variable has to be
computed according to the smooth approximation (2.13) for each point l ∈ {1, . . . ,M} and
k ∈ {0, . . . , Na}:

0 = cl,frictionk,a

(
φlk,a, q

l
k,a

)
= φlk,a − φ(qlk,a).

Together with additional pressure coupling to head node j ∈ V and tail i ∈ V

0 = cl,p-cpl,outa (plNa,a, p
l
j) = plNa,a − p

l
j ,

0 = cl,p-cpl,ina (pli, pl0,a) = pl0,a − pli,

for each time point l ∈ {1, . . . ,M}, the above presented constraints form the set of equality
constraints associated to the pipe a ∈ Api and time point l ∈ {1, . . . ,M}. Using the same
sorting as for the variables, we get for each time point l = 1, . . . ,M :

0 = cla

(
pli,y

l
a, p

l
j ,y

l−1
a

)
=



cl,p-cpl,ina (pli,yla, plj)
cl,press0,a (pli,yla, plj)
cl,friction0,a (pli,yla, plj)
cl,press1,a (pli,yla, plj)
cl,friction1,a (pli,yla, plj)
cl,con1,a (pli,yla, plj ,yl−1

a )
cl,mom

1,a (pli,yla, plj ,yl−1
a )

...
cl,pressNa,a

(pli,yla, plj)
cl,frictionNa,a

(pli,yla, plj)
cl,conNa,a

(pli,yla, plj ,yl−1
a )

cl,mom
Na,a

(pli,yla, plj ,yl−1
a )

cl,p-cpl,outa (pli,yla, plj)



.
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Ideal Compressor Model

The modeling equations characterizing an ideal compressor are evaluated at the time points
of the PDE discretization. For each active compressor a ∈ Acs and time point l ∈ {1, . . . ,M}
the associated set of variables is

yla
T =

(
qlin,a, q

l
out,a, H

l
ad,a, P

l
a

)
(4.3)

whereas the set of corresponding constraints (cf. (2.16),(2.18)) is given by

0 = cla

(
pli,y

l
a, p

l
j

)
=


cl,flowa (qlin,a, qlout,a)
cl,ad-enta (H l

ad,a, p
l
i, p

l
j)

cl,powera (H l
ad,a, P

l
a, q

l
out,a)

 (4.4)

=


qlin,a − qlout,a

H l
ad,a − z(pli)TinRs

κ
κ−1

((
plj
pli

)κ−1
κ

− 1
)

P la −
qlout,aH

l
ad,a

ηad,a

 .

Here we again denote with pli, plj the pressures at tail node i ∈ V and head j ∈ V. The model
for an ideal compressor is completed by simple bounds on flow and power variables

qlin,a, q
l
out,a ∈ [0, qmax

a ], P la ∈ [0, Pmax
a ].

For the more detailed model including the characteristic diagrams more auxiliary variables
for compressor and drive as well as the associated constraints have to be included into the
set of variables and constraints.

Control Valves Model

Analogously, for each active control valve a ∈ Acv the set of model variables is given by

yla
T =

(
qlin,a, q

l
out,a,∆pla,

)
,

for each time point l ∈ {1, . . . ,M}. Evaluation of the pressure coupling equation (2.22) and
mass conservation for every time point gives the set of associated equality constraints

0 = cla

(
pli,y

l
a, p

l
j

)
=
(
cl,flowa (qlin,a, qlout,a)
cl,pressa (∆pla, pli, plj)

)
=
(
qlin,a − qlout,a
pli − plj −∆pla

)
.
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In addition, an active control valve is characterized by simple bounds on the pressure drop
and the flow direction

qlin,a, q
l
out,a ∈ [0, qmax

a ], ∆pla ∈ [0,∆pmax
a ].

Short pipe model

The model for short pipes a ∈ Asc has only the minimal set of variables for each time point
to satisfy the convention for edges, i.e. one in- and one outflow variable

yla
T =

(
qlin,a, q

l
out,a

)
,

as well as one coupling equation for mass flow and pressure

0 = cla

(
pli,y

l
a, p

l
j

)
=
(
cl,flowa (qlin,a, qlout,a)
cl,pressa (∆pla, pli, plj)

)
=
(
qlin,a − qlout,a
pli − plj

)
.

The short pipe model is also used to describe compressor stations and control valves in bypass
mode.

Node models

For each interior network node i ∈ V0 there is one pressure value

yli =
(
pli

)
and one evaluation of the mass balance (2.25) without exterior flow

0 = cli (yl) =
(
cl,flow-bali (yl)

)
=
∑
a∈δ+

qout,a −
∑
a∈δ−

qin,a,

for every time point l ∈ {1, . . . ,M}. The pressure is restricted by simple bounds

pli ∈ [pmin
i , pmax

i ],

while the pressure equations (2.26) have already been implicitly considered by the choice of
the modeling variables and explicitly by the pressure coupling equations for pipes.

For entry or exit node i ∈ V+∪V− the set of modeling variables is extended by the exterior
mass flow

yli
T =

(
pli, q

l,ext
i

)
.
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Accordingly, the of mass balance equation is adapted

0 = cli (yl) =
(
cl,flow-bali (yl)

)
= ql,exti +

∑
a∈δ+

qout,a −
∑
a∈δ−

qin,a,

while the simple bounds on the mass flow are distinct for entries i ∈ V+

ql,exti ≥ 0,

and exits i ∈ V−

ql,exti ≤ 0.

Objective function

In Section 2.3.2 we justified the assumption of piecewise linear compressor powers. According
to this interpretation, we approximate the fuel cost integral (2.21) for every compressor
station and piecewise constant energy cost functions ea(t) = ea(tl) for t ∈ (tl−1, tl] by the
trapezoidal rule:

f cost(y) =
∑
a∈Acs

M∑
l=1

∆tlea(tl)
2

(
P l−1
a + P la

)
. (4.5)

Initial and boundary values

Initial values for the mass flow and the density have to be given for each spatial discretization
points on the pipes. To make the presentation simpler, we aggregate these in the vector y0

and note that it is not part of the optimization variable vector but has to be considered
as externally prescribed parameters. On the other hand, boundary values are explicitly
included as additional equality constraints fixing the mass flow or pressure variable of the
corresponding boundary vertex.

Operation cost optimization

All the constraints together form the vector of equality constraints

cT (y) =
(
c1(y0,y1)T c2(y1,y2)T . . . cM (yM−1,yM )T

)
,

where

cl(yl−1,yl) =
(
cle

(
yl−1,yl

))
e∈V∪A

.
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Only the equations from the discretized isothermal Euler system couple variables associated
with consecutive time points while all other constraints only depend on a subset of variables
associated to the same time point as the equation.

The complete optimization problem then formally reads

min
y
f cost(y) s.t. c(y) = 0 (4.6a)

y ∈ [ymin,ymax] (4.6b)

with the simple bounds introduced above. As usual, nonexistent bounds are set to ±∞ to
unify the notation.

Solvers and implementation

The model, in the form stated above, is a standard NLP that can be solved by established
solvers. The model has been implemented in C++ and is coupled to the interfaces of the
interior-point solvers Ipopt (cf. [70]) and Clean::IPM (cf. [61]). Both solvers are configured
to use the sparse linear solver MA57 (cf. [21, 41]) from the HSL Mathematical Software
Library [40] for the solution of the primal-dual systems. All optimization solutions given
in the remainder of this chapter have been computed with Ipopt in version 3.11 on a single
core of a Fujitsu Primergy RX4770 M2 with Intel Xeon e7-8867 v3 CPU @ 2.50 GHz (4
socket x 16 cores x 2 smt) and 512 GB RAM. The operating system is CentOS 7. The C++
code is compiled using g++ of GCC in version 7.1.0. Ipopt is configured using the basic
monotone barrier term update strategy. The optimization code has been compiled without
any optimization flags.

4.2 Comparison with High Order Finite Volume Simulation

This section is devoted to numerical experiments for a comparison of the two depicted
discretization strategies. The ADER schemes are constructed to resolve the dynamics of
hyperbolic balance laws also in the presence of shocks. The question is whether these
specialized techniques are required for the typical dynamics present in gas transmission
networks or if the simpler implicit box scheme leads to similar approximate solutions.

Simulation software and implementation

We compare the optimization solution with simulation results computed with the Matlab
code of J. Kall and R. Borsche from TU Kaiserslautern. It implements the ADER solution
strategies depicted in Section 2.3.1 in different variants and flavors. Some parts of the code
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have been adapted to the present problem for the gas transport. The simulations for the
fourth order approximation are computed using the following solver choices for subproblems.
The interior interfaces on each edge are handled by the basic ADER solution procedure for
generalized Riemann problems where the nonlinear Riemann problems of zeroth order are
solved using the approximate Riemann solver EVILIN (cf. [65]). The linear Riemann problems
for the higher spatial derivatives in Step 2 are solved exactly using the transformation to the
basis of eigenvectors (cf. Section 2.2.1 ). The fluxes at the boundary are evaluated numerically
by the described extension using a numerical quadrature rule with suitable Gauß-Lobatto
quadrature nodes. The nonlinear algebraic systems (2.47b) at the coupling junctions for each
of these nodes are solved by a Newton method with approximated derivatives. The numerical
integration of the rarefaction part of the used 2-Lax curves are computed with the Matlab
internal numerical integrator. For more details we once more refer to the dissertation of J.
Kall [43] and the references therein.
While the optimization solver can be used to compute an optimal compressor operation

under the present conditions, the simulation has to be fed with the control values. The
optimization solution provides the optimal control as one value for each time point on the
discretization time grid while the simulation requires one control value for every time step of
the simulation procedure which result to be much smaller. Following the last paragraph of
Section 2.3.2 we assume a piecewise linear control profile. Hence, the control values can be
obtained by linear interpolation from the optimization solution.
The simulations have been obtained in single core computations on the same hardware

and software setting used for the optimization runs. The used Matlab version is R2016b.
Since both codes are not optimized with respect to computation speed, the real computation
times do not suffice for a rigorous comparison but give an idea on the different effort for the
computations, anyway.

4.2.1 Comparison for Pipeline

The first test case for the optimization solution is the ‘OPAL’-pipeline („Ostsee-Pipeline-
Anbindungs-Leitung“, German for “Baltic Sea Pipeline Link”, cf. [55] ) which is one of
the biggest gas transmission pipelines in Germany. The pipeline which has a length of
about 475 km and a diameter of 1.4 m connects the sub sea pipeline for Russian gas with
the south and middle European gas transmission pipelines. It starts at the Baltic Sea coast
and goes south through eastern Germany where it ends at the Czech boarder. The basic
network structure consists of two pipeline segments with an intermediate compressor station
at about 2/3 of the pipeline length. A schematic overview and some essential data are given
in Figure 4.1. The optimization solution is computed for a constant outflow of 3× 106 m3/h
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• Length: 476.2 km
(= 285.4 km + 190.8 km)

• Diameter 1400 mm.

• Maximal pressure: 100 bar.

• Maximal compressor power ≈ 3×32 MW

Baltic Sea

CS

CZ
(a) Illustration of OPAL pipeline

Figure 4.1: OPAL: Basic structure of the OPAL network

under normal conditions which corresponds to about 85% of the maximal flow capacity. This
mass flow is fixed as boundary value at the exit point at the Czech boarder where additionally
a contractual minimal pressure level of 74 bar is imposed. At the entry a fixed pressure level
of the maximal 100 bar is given. The optimal control is computed for a varying electricity
price profile with hourly data for a week in October 2013. In [23] an additional terminal
constraint for the optimization problem has been introduced to ensure a reasonable state
at the end of the computation horizon. We avoid this by adding six hours with constant
energy price to the end of the considered time horizon. As initial state of the network we set
a stationary solution that satisfies the boundary values prescribed for the initial time point.
For the spatial discretization a grid length of about 10 km is chosen. We use smaller cell

sizes near the ends of a pipeline anticipating more dynamics in these parts of the pipe. The
time step is fixed to 900 s, i.e. the time horizon of seven days and six hours is divided in 696
intervals. The resulting optimization problem has 456 576 variables and 455 184 equation
constraints. Using the stationary solution as starting value, which is feasible in this case, the
problem is solved by Ipopt 3.11 with linear solver MA57 as described above in 28 iterations
requiring about 350 s. The optimal control for the compressor station and the corresponding
pressure profile inside the two pipelines are visualized in Figures 4.2 and 4.4a, respectively.
In the compressor power profile there appear some smaller and three major variations from
the constant base line of a stationary solution. The pressure profile visualization shows the
associated pressure increase in the second pipeline segment that moves with the time towards
the exit node. Conversely, sectors with lower pressure appear in the first pipe. In Section 4.3
the optimization solution is examined in more detail from the application’s point of view.
Here we concentrate on the comparison with the simulation.

The high order simulation procedure is fed with the same boundary values and additionally
with the computed optimal power profile for the compressor station. In this case the
compressor station indeed couples only two pipelines. Hence, the network model presented
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Figure 4.2: OPAL: Control profiles of compressor

in Section 2.2 can be applied directly without modifications. For the first pipeline segment
we choose 200 spatial cells with resulting cell width of about 1.4 km. Using a similar cell
width for the second pipe we need another 134 cells giving a total of 334 spatial cells. We
compute a fourth order approximation using the CFL number c = 0.8 which leads to more
than 175 000 time steps with 3.5 s average step size. The computation time with Matlab on a
single core has been almost 2 days.

To compare the solutions, we first concentrate on the boundary values, especially on the
not fixed external flow at the entry and the pressure at the exit node. Because the simulation
solution is given as cell averages for every time point of the simulation, we have to reconstruct
the corresponding boundary values. We choose the same approach that is also included in
the simulation procedure. Assuming only outgoing edges from the nodes, this means to find
the state that satisfies the coupling conditions and lies on the 2-Lax curve connected to
the reconstructed value at the boundary interface. Figures 4.3a and 4.3c illustrate that the
results for the boundary flow at the entry and for the pressure level at exit are very close.
To get a better impression of the differences, the distances between the two solutions are
computed explicitly. Since the discretized solutions correspond to different grids in time, we
have to choose a way to transfer the solutions from one grid to the other. For the boundary

Table 4.1: OPAL: Computing statistics
Optimization Simulation

average time step size 900 s 3.5 s
# time steps 696 177 449

cell size ≤10 km ≈1.4 km
# spatial cells 105 334

computation time 350 s 47.36 h
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Figure 4.3: OPAL: Comparison of uncontrolled boundary values

values we compare the values of an optimization time point topt with the simulation data of
the last time point tsim of the simulation time grid that is smaller then topt. This strategy is
consistent with the determination of the boundary values, described above.

The Figures 4.3b and 4.3d illustrate the differences of the uncontrolled boundary values
obtained by the procedures stated above. The vertical axes of the difference plots are scaled
to about 1% of the minimum flow or pressure, respectively, to get an idea of the relative errors
as well. Not surprisingly, the distances between the two solutions is larger for time points
around the greater variations in the compressor power. All peaks for the pressure at the exit
node seem to have a characteristic profile. First there are some time points with higher value
of the optimization solution which are followed by some times points with significantly higher
value of the simulation. Finally, again there follow some time points with a slightly higher
value of the optimization solution. The pressure changes at the exit node are induced by
a higher compressor operation. Hence, the increased pressure that is transported through
the second pipeline, at the exit is represented as a sharper pressure peak by the simulation
solution.
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(b) Pressure profile of simulation

Figure 4.4: OPAL: Pressure profiles

For a comparison of the complete time-spatial profiles we additionally need to map the
spatial points. This is done by simply choosing the spatial cell Cj that contains the grid
point xk of the finite difference approximation. The value of the box-scheme approximation
at time-space point (topt, xk) is then compared with cell average U tsim

j for the time point tsim
of the simulation time grid that has smallest distance to the topt. The pressure profile of the
simulation mapped to the optimization grid is shown in Figure 4.4b. The absolute differences
in pressure and flow profiles, mapped as indicated above, are given in Figure 4.5.

Like for the boundary values the biggest differences are observed in the areas of the
transported perturbation of the stationary solution due to the increase of the compressor
power. Even if their absolute difference is not that small it stays beyond 1% of the actual
value. Like for the boundary values the pressure peak is steeper than its representation in
the optimization solution. In the pressure profile plots the shortcoming of the grid mapping
approach is visible. A regular pattern in space is caused by the different step widths. The
used cell average is often commonly associated with the point value at the cell midpoint.
Since the coarser discretization grid size is not an integer multiple of the simulation grid size
the relative positions of the cell midpoints and the finite difference discretization points vary
and result in this particular pattern which could be probably avoided by a more sophisticated
comparison procedure. However, the results already show, that the differences are small,
even if the solutions show large variations.
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Figure 4.5: OPAL: Differences for optimization and simulation.

4.2.2 Comparison for Networks

In this section we compare the two discretization approaches for a slightly more complicated
gas transmission network that has been used for the illustrations in the article of Ehrhardt
and Steinbach [23]. An overview of the structure is given in Figure 4.6 which does not
represent correctly the pipe lengths. The network comprises three compressor stations and
one control valve as controllable elements. The gas is mainly transported from entry I1 to the
exit node O3. At entry node I2 as well as at exits O1 and O2 only much smaller amounts of
gas are passed to or taken from the network. The pipe segments have different diameters and
lengths in the range of 0.5 m to 1.1 m and 50 km to 120 km, respectively. Constant external
flows for entry I1 and exits O1, O2 are set as boundary values while at the principal exit O3 a
sinusoidal flow profile is prescribed. For the left entry I2 the optimization problem contains

I1
I2

CS A

O1

CS B CS C

O3

CV

O2
Figure 4.6: Test network
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Figure 4.7: Network: Control profiles of active elements

only bounds on pressure and external flow. Again the network is set to be at a stationary
state at time t = 0 that satisfies all boundary values. We use a constant price profile for the
compressor fuel costs and do not consider operation costs for the control valve. Like in the
original article the time horizon is chosen as 48 hours which we extend again by another 6
hours with constant outflow to diminish end effects of the optimization solution.

The optimization problem is assembled using the same fixed time step size of 900 s and
spatial grid size of about 10 km. This results in a total number of 216 time steps and 218 spa-
tial cells and eventually an optimization problem of 320328 variables and 319248 equality
constraints. The solution with the described model implementation and Ipopt as solver
requires 61 iterations and around 340 s of run time. As before we used the stationary solution
as starting vector, which is not feasible for this problem because of the varying prescribed
boundary values. The optimal controls of the compressor stations A– C and the control valve
for the minimal operation cost optimization with time constant energy prices are visualized in
Figure 4.7. The control valve almost all the time operates at its upper bounds of 10 bar while
the compressor powers follow the varying profiles of the main exit O3. The upper bounds for
powers are not active for any of the compressors. This result corresponds roughly to the test
case a) presented in the article [23].

For the simulation of this network operation we have to extend the already presented
node models to cover the nodes of this network. The edge set of the model for finite volume
simulations only consists of pipes. As before compressor stations have to be modeled as
coupling nodes. We have stated the model for compressor stations in this context only for
one in- and one outgoing pipe connected to the compressor. For this network the compressors
and the control valve have more than two connected pipes and hence, the present model
cannot be applied directly. The new coupling conditions of type (2.47b) are required to
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comprise all equations corresponding to the compressor station or control valve as well as
its tail and head node. We have to distinguish the edges that are connected to the tail and
those connected to the head node. The pipes are therefore enumerated such that the first l
of the m coupling pipes are connected to the tail while the last m− l pipes are connected
to the head of the compressor station or control valve. The coupling conditions suitable for
compressors B and C can then be stated as

ΨCS(u) =



∑m
i=1 q

i

p(ρ2)− p(ρ1)
...

p(ρl)− p(ρ1)
p(ρl+2)− p(ρl+1)

...
p(ρm)− p(ρl+1)∑m

i=l+1 q
i

ηad
Had

(
p(ρl+1), p(ρ1)

)



.

Analogously, the coupling for the control valve is extended. The compressor station A has
to be treated individually because we have to include the model associated with the entry
point I2 to the compressor model, too. This entry node is coupled by a simple short pipe
to the compressor entry node and thus has the same pressure value as the input node of
compressor A. For the optimization the boundary pressure and external flow at I2 are not
fixed. Nevertheless, one of these values has to be included as external control profile to
the simulation. For the simulation we fix the pressure at the compressor input because the
optimization solution for this node pressure is constant at the upper variable bound. The
coupling conditions for the compressor A and its neighboring nodes with that choice are given
by

ΨCSA(u1,u2,u3) =


p(ρI2)− p(ρ1)
p(ρ2)− p(ρ3)

q2+q3

ηad
Had

(
p(ρ2), p(ρI2)

)
 ,

where u1 corresponds to the ingoing pipe while u2,u3 are associated with the two outgoing
pipes. These additional coupling conditions are implemented as part of the ADER simulation
software. As before, these systems have to be solved for each time step and for each quadrature
point at every coupling node. A basic Newton method with approximated derivatives is used
for the numerical solution of these nonlinear systems. The extended software is then capable
to compute solutions for the small test network incorporating the compressor power of the
three compressors and the computed pressure drop in the control valve as additional input.



72 Chapter 4 Numerical Results: Gas Pipelines as Storage

Table 4.2: Network: Computing Statistics
Optimization Simulation

average time step size 900 s 2.6805 s
# time steps 216 72 523

cell size <10 km ≈1 km
# spatial cells 218 920

computation time 340 s 53.9 h

For the pipelines we choose a cell width of about 1 km. We use CFL number c = 0.8 for the
computation of the simulation of approximation order four. This leads to more than 72 500
time steps with 2.68 s average time step size. The computation time with Matlab has been
greater than 2 days.
The pressure profiles for the boundary nodes with uncontrolled pressure variables are

visualized in Figure 4.8. On a first glance the differences between the solution from the
optimization model and the simulation are quite small. However, there are some visible
differences that should be visualized more clearly. As example, we take a closer look on
the pressure profile in exit O3 and on the also uncontrolled flow profile for the input I2.
Figures 4.9a and 4.9b show that indeed the boundary pressures have some visible differences
but that these stay within a relative distance of 1%. The inflow values for the entry I2 show
slightly bigger differences with up to 2% relative errors. The boundary flow in the simulation
solution seems to vary much more and faster than the boundary pressures. In particular, the
external flow in I2 leaves the feasible range for some time points.
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Figure 4.8: Network: Comparison of boundary pressures
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Figure 4.9: Network: Comparison of uncontrolled boundary values

A comparison of the other boundary flows is not necessary because these have been included
as boundary values to the simulation and are therefore equal (up to the precision of the
included nonlinear solver for the couplings). Despite of the visible deviations, the differences
between the optimization solution and the fine simulation are remarkably small for this
network as well.

4.2.3 Comparison for simplified Euler Equations

As already mentioned before in Section 2.1 the isothermal Euler equations are often further
simplified by neglecting the advection term ∂x

q2

ρ . For the usual state of the flow in pipelines
it is commonly accepted that this term has a very small contribution to the momentum
equation. However, because of this term and the nonlinear pressure function the equation
obtains its nonlinear hyperbolic nature.
In this section we compare the optimization solution obtained for this simplified Euler

equations with the high order simulation of the full Euler equations. The simplified Euler
equations are discretized by the implicit box discretization scheme as applied for the full Euler
equations. Hence, we solve almost the model stated in Section 4.1 except the discretized
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Table 4.3: OPAL v2: Computing statistics
Optimization Simulation

average time step size 900 s 3.53 s
# time steps 696 177 452

cell size ≤10 km ≈1.4 km
# spatial cells 105 334

computation time 360 s 45.08 h

version of the advection term is missing in the momentum equations. We apply this model
on the already introduced OPAL transmission pipeline using the same spatial discretization
grid as in the previous section. The model is again assembled for the fixed time step size
of 900 s and finally is made of 456 576 variables and 455 184 equality constraints, which are
exactly the same as for the complete momentum equation. However, the system has less
nonlinearities which is reflected by the smaller number of nonzero entries in the Hessian
matrix of the Lagrangian (376 536 vs. 451 008). The model is solved by Ipopt in 28 iterations
using around 350 s.

Because the optimal optimization solution with this simplified version of the Euler equations
is slightly different from the basic case, we have to recompute the simulation as well. We use,
as before, the boundary values and the computed optimal compressor power profile as input
for the simulation. The simulation computes a fourth order approximation with CFL number
c = 0.8. Using the same spatial discretization again, this yields to more than 177 000 time
steps of average size 3.53 s. The Matlab computation requires almost 2 days.

Figure 4.10 shows the uncontrolled boundary profiles and the differences for this simplifi-
cation. As for the basic case, we can also compare the complete pressure and flow profiles
for the complete time and space domain by the depicted mapping. The results are given in
Figure 4.11. There are no big differences visible w.r.t. the experiments with the complete
model. The differences are again more significant around the areas of the large variation. Just
as remarked for the previous test case, the pressure difference for the boundary values again
changes its sign showing the above described characteristic profile. This can be interpreted
as better resolution of the pressure increase moving through the pipe in the finite volume
simulation. The small differences confirm the known hypothesis that the advection term can
be neglected without producing a big error as well for this test case. However, there is no
great difference in the solution statistics for the optimization neither. Hence, the advantage
of using the simplified version is not very big for this test case and the used discretization.
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Figure 4.10: OPAL v2: Comparison of uncontrolled boundary values
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Figure 4.11: Opal v2: Differences for optimization and simulation.
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Summary

All three test cases have shown that the finite box scheme is able to resolve the typical
dynamics in gas transmission pipelines. Only if there are large variations induced by the
compressor operation, there appear visible differences between the two solutions though
staying within a 1% margin. The used implicit box scheme can therefore be considered
suitable for the present flow regimes in gas transmission pipelines of this type.

For some time points the simulation solution shows the violation of simple variable bounds
only included in the optimization model. Even if these violations are not big, they can be
problematic for the real implementation. However, this problem is not only related to the
used discretization scheme, i.e. the quality of approximation. A solution to an optimization
problem will not include any safety margin, except the modeler includes it. Additionally, a
numerical algorithm provides solutions that satisfy the constraints up to a selected numerical
tolerance. Hence, constraints are possibly violated up to that tolerance if this helps to
decrease the objective.
All in all, the extensively higher effort using the finite volume discretization of higher

order is not reflected in a significantly higher solution quality for the present cases. The
computation times differ by orders of magnitude. Even if the computation times are not
comparable and there possibly is a lot of potential to accelerate the simulations, the difference
will remain significant. The simulation for the network requires more computation time then
the actual time horizon considered by the model. It is important to note here that we compare
the computational effort of two different tasks. Whereas the optimization provides an optimal
control for the compressor station, the simulation requires the control values to be externally
given. Hence, applying optimization methods, that usually require an evaluation of the
constraint system repeatedly, to the model assembled using the finite volume discretization,
the already excessive effort would be even larger.

The results using the simplified model without the advection term of the isothermal Euler
equations give similar results. For the simple setting of two pipelines there also appear only
very small differences compared to the finite volume simulation. But since the solution of the
corresponding optimization problem is not significantly faster, there is no advantage to use
the simplified model for our cases. Hence, we will use the complete optimization model as
presented in Section 4.1 for the remainder of this thesis.

4.3 Storage of Electric Energy

In this section we present and discuss results on the “power-to-compression” application
introduced initially in Section 1.1. We will inspect the computations of the last section
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Figure 4.12: OPAL: Control profiles of compressor for varying and constant electricity price

from an application point of view, starting with the previously discussed simple network
representing the OPAL pipelines (cf., Figure 4.1, [55]) of two subsequent pipelines and an
intermediate compressor station. It has been already stated in Section 1.1 that a strong
correlation between the availability of renewable energy in the electricity network and the
electricity market price is assumed for the discussions. Therefore, the optimal control for the
storage of electric energy in the pipeline is computed as cost optimization problem using the
above presented optimization model.
In Figure 4.12, which shows the same compressor control profile as Figure 4.2, it is

illustrated how the optimal compressor power profile fits as expected to the varying electricity
price profile sketched in the background. For a comparison we also compute the optimal
stationary operation of the compressor which is optimal assuming a constant electricity price
and represented by a thinner dashed blue line in the graphic. This control profile represents
the necessary operation to satisfy the boundary conditions without taking variations of the
price into account. There are three to four bigger variations in the compressor power. All
these events correspond to some time periods of low energy prices followed by a strong ascent
of the price. As expected in the times of lower energy prices the compressor operation is
increased significantly from the necessary. During the first period of ascended price the
compressor power is below the stationary case. Part of the stored energy is regained in
these periods. For this particular price profile of one week the energy consumption is about
107 % of the stationary case but the operation cost are only 96 % compared to the constant
operation.
The same computations for other weekly profiles of electric energy market prices are pre-

sented in Table 4.4 and show similar results with savings between 0.5 % and 32 %. The results
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Table 4.4: OPAL: Results for different price profiles
Profile Energy/MW h Energy rel. Costs/e Costs stat./e Costs rel.

1 1388.1 1.073 52 437.0 54 756.0 0.957
2 1337.0 1.034 74 189.0 75 368.0 0.984
3 1297.6 1.003 53 022.0 53 205.0 0.996
4 1693.5 1.309 43 417.0 50 964.0 0.851
5 1308.2 1.011 70 802.0 71 131.0 0.995
6 2058.4 1.592 21 893.0 32 147.0 0.681

for the fourth and especially the sixth price profile show much higher energy consumption
and very high savings. These profiles contain periods with even negative market prices. For
this optimization model this means that one actually gains money consuming energy by
higher compression powers. Hence, the compressor power is at its upper bound during these
time periods resulting in these significant savings or better earnings. In contrast, the third
profile offers only very small potential for savings which is reflected in the compressor energy
consumption that is at almost the same amount as in the stationary case. These test cases
only differ in the electricity profile while all other parameters are selected as described before
for the first profile. Hence, these results show the different financial benefit from storing
electric energy and regaining it by using less compression power afterwards. The present
state of the network, that is only fixed by the boundary values, should provide the same
capacity for all cases to store electric energy in the pipeline but the results driven by the
financial benefit differ a lot.

Considering subsequent pipes

Already for this very simple setting there is a potential saving. However, another view on the
pressure profile at the exit node at the Czech border shown in Figure 4.3c gives an indication
for further improvement. The pressure plot shows that the increased pressure in the pipe,
i.e. the stored energy, to a large extend is transported to the boundary and thus out of the
observed pipe segment. This is not too surprising but means that a large part of the stored
energy cannot be regained at the same location it has been stored. The effect of an extension
of the network and a hypothetical cooperation of two gas transmission operators is addressed
by the following example. Of course, the OPAL pipeline does not actually end at the border
but is connected to a subsequent pipeline of another 170 km which is operated by a different
company and transports the gas through the Czech republic. At its end another compressor
station is located which increases the pressure to the level of the subsequent network. The
structure of the extended network is sketched in Figure 4.13a. Considering this network,
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Figure 4.13: Extended OPAL network

the boundary values at the intermediate point at the Czech boarder are also relaxed. The
fixed outflow is now located at the connection point with the subsequent network behind
the second compressor station while the lower pressure bound at the border point is kept at
74 bar. To get a comparable effect of this extension, we only include the operation costs of
the first compressor station to the objective function.
The resulting optimal compressor controls are visualized in Figure 4.13b. The relaxation

of the flow value at the intermediate node at the Czech boarder enables a more efficient
operation. The events with higher and following lower compressor operation are of larger
time extend and also of bigger amplitude. Additionally, price variations that for the basic
case only produced a small change in the compressor operation, like, e.g. the one observed
after approximately the 76th hour of the considered time horizon, cause here a significant
event. This is reflected by the numbers for the first price profile as well. While the energy
consumption is about 114 % w.r.t. the stationary case the operation cost is at only 92.5 %
compared to the costs for the stationary operation.

For this extended view there is another possible benefit considering the second compressor
station. In the stationary case this station is required to increase the incoming pressure from
less than 60 bar to the assumed 80 bar of the subsequent network. For the varying price profile
the higher pressures, induced by the compressor operation, are transported to the second
compressor. The power plot shows the resulting periods where the compressor operation in
the second station required less power. The second station consumes only 0.96 % compared
to the energy consumption in the stationary case. This can be interpreted as regaining stored
energy, now at the second compressor station. Summing up the energy consumption for the
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Figure 4.14: NEL pipeline

two stations, the nonconstant operation requires only 99.5 % of the energy consumption in
the stationary operation. This is surprising on a first glance since in this case there seems
to be no energy loss storing and regaining the energy in terms of pressure. However, this
effect can be explained, because the relative pressure loss is lower at higher pressures which
provides a third saving effect in this setting.

4.3.1 Parallel Operation of Gas and Electric Drives

The previous example provides an idea of the additional potential using electric driven
compressors for gas transmission. We already remarked in Section 1.1 that the majority of
the compressors in Germany is driven by gas turbines. Planning a new compressor station,
different criteria influence the decision whether to build electric motors or gas turbines as
drives. To benefit from the advantages of both choices, it might be reasonable to build a
station using electric drives as well as gas turbines. The effects on the optimal control of such
a station is illustrated based on a possible extension of the flow through a pipeline in northern
Germany. Just like the OPAL pipeline, the here discussed ‘NEL’ ([53], „Nordeuropäische
Erdgas-Leitung“, German for “North European Natural Gas Pipeline” ) starts at the same
transfer station at the coast of the Baltic sea in north eastern Germany but then runs
westwards through northern Germany. It ends near to one of the biggest gas storage facilities
near Rehden, located south of Bremen, where the transported gas is stored or passed to the
subsequent transmission network.
We consider an extension to the real pipeline assuming an additional compressor station

after around 200 km. A compressor station had already been planned along the NEL but the
process is currently frozen. The network consists of two pipelines of diameter of 1.4 m that
are connected by a compressor station. At the end of the NEL a second compressor station
increases the pressure of the incoming gas to the pressure level of the subsequent networks.
Figure 4.14 shows the coarse structure of the pipeline under investigation. The main purpose
of this numerical experiment is to model the possible combination of electric motors and gas
turbines as drives in one compressor station. Since again the model of an ideal compressor
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(c) Taxes as for heavy industries

Figure 4.15: NEL: Optimal compressor control

for both stations is used, this can be achieved splitting the central station into two stations
arranged in parallel, where one is driven by gas and the other by electricity.
The test scenario assumes a constant gas outflow at the exit point at a minimal pressure

level of 80 bar of the subsequent network. The input pressure at the transfer station at the
Baltic sea is fixed to the maximum pressure of 100 bar. As energy cost we assume a constant
gas price for the gas turbine and use the varying electricity price already discussed for the
OPAL test cases for the electric motor. In the previous test cases only the pure electricity
market price has been considered. Here we add taxes and network charges to get a more
comprehensive comparison of the two drive types. The operation costs of the second station
in Rehden are not included in the objective function because this would hide the effects at
the central compressor station.
In Figure 4.15 the optimal controls for the central compressor station are visualized for

different charge policies applied to the electricity market price. The first subfigure 4.15a is
obtained for the pure market price. We can observe that in almost the complete time horizon
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Figure 4.16: Network: Control profiles of compressors

the electric drive is used. Additionally, the load shift we have seen before in the OPAL test
case, is visible since the optimal control is anti cyclic w.r.t. the electricity price. The second
subfigure 4.15b shows the result for an electricity price containing full taxes and charges
like for a private household. In this case the cost for the gas driven compressor is always
lower than the varying electricity price and the electric motor is not even used. The third
graphic 4.15c visualizes the solution for a market price profile increased by reduced taxes and
charges as they are applied to heavy or energy-intensive industries. For this cost profile there
are more changes between gas and electricity driven compression. In periods with electricity
price peaks the compression power is provided by the gas drive. If the electricity price is very
low the used compression energy is higher than for the stationary case followed by a period
of lower compression. Here some of the energy is regained. However, in comparison to the
solution for the pure market price fewer of these load shifting events can be observed. For all
cases there are no time points where the compressor power of both compressors is nonzero.
Hence, the results can be interpreted as switching between two compressor or drive types.

4.3.2 Network Test Cases

Finally, we apply the cost optimization to the test network presented for the comparison in
Section 4.2.2 using the same electricity price profiles already tested with the OPAL pipeline.
The optimal compressor controls for the days 4 to 6 of the first weekly profile and the constant
price are plotted in Figure 4.16. The compressor powers show similar profiles as for the
constant price case and principally follow the periodical outflow profile but there are also
significant differences induced by the variations in the electricity price. As expected in time
periods with higher price the compression is lower while in the presence of lower prices the
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Table 4.5: Network: Results for single stations
CS E/MW h Ebase/MW h E/Ebase Costs/e Costs base/e Costs rel.
A 1548.2 1633.9 0.948 61 875.4 66 343.6 0.933
B 1886.8 1704.5 1.107 70 932.8 66 351.1 1.069
C 2071.3 2070.4 1.000 74 357.4 77 269.3 0.962

Sum 5506.3 5408.8 1.018 207 165.5 209 964.0 0.987

Table 4.6: Network: Results for different price profiles
Profile Energy/MW h Energy rel. Costs/e Costs base/e Costs rel.

1 5506.3 1.018 207 165.5 209 964.0 0.987
2 5456.4 1.009 292 276.4 294 538.9 0.992
3 5427.7 1.003 214 384.6 215 347.0 0.996
4 5718.2 1.057 201 643.5 211 799.4 0.952
5 5437.3 1.005 281 367.2 282 995.6 0.994
6 5979.4 1.105 114 443.6 121 768.0 0.940

compression is increased compared to the basic case. The summed results for the single
compressor presented in Table 4.5 as well as the visualization show that the compressor
operations are adapted in a different way to the varying electricity price. The general load
balance between the three stations is changed. The first compressor A is operated at a lower
level and its power is increased above the basic level only in time periods of very low prices.
While the first station thus only requires 95 % of the energy, the second station B on the
other hand is operated on a higher level all the time using about 110 % of the energy used
for the basic operation. There are only very few visible adaptions of the power of station
B to the variation in the electricity price. Most variations can be observed for station C.
Following the profile of the outflow at exit O3, the operation is adapted to the varying price
as already known from the OPAL tests. A rapid increase of the price from rather low to
high prices is used for a load-shift increasing the pressure in subsequent pipes first to be able
to lower the compression in the presence of higher prices. Summing up the results for the
three stations the total numbers do not differ much from the basic operation. The computed
control requires about 2 % of extra energy which results in the saving of only slightly more
than 1 %.

Like for the simple pipeline case, similar computations have been made for different price
profiles. The results are shown in Table 4.6. The freedom for additional operation as storage
appears to be smaller for this network compared to the simple OPAL pipeline since the
potential relative savings for all tested price profiles are lower than for the OPAL tests. This
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observation is especially backed by the fact that the two profiles 4 and 6, which showed
excessive savings for the OPAL case study, here fit much better with the other price profiles
and only results in savings of 5 resp. 6 %.

Summary and outlook

The results of this section provide indications to consider electric drives for compressors in gas
transmission networks. The computations even for very simple network configurations have
shown that it is possible to use gas pipelines in its normal operation as short term storage for
electric energy. But it has also been visible that the potential benefit depends on the present
state of operation. For the simple OPAL case an extended view on the subsequent network
showed much more potential for storage and saving because this relaxed the constraints for
the operation. On the other hand, the network test case is an examples for a gas transmission
system whose capacity is almost completely required for the basic operation. For this network
and flow scenario a smaller storage potential is visible.

There are different open points left to continue these investigations. To get nearer towards
a possible incorporation into the compressor operation the tests have to be done on a better
and more detailed data basis. Especially for the compressor stations, better models should
be used to validate the obtained results. So far only ideal compressors are considered for
the optimization which cannot represent all restrictions to the feasible operation range of
compressors. To get reliable data for test cases, has again proved to be a big challenge and
obstacle for the related project.
The tests were all executed in terms of operation costs optimization using the electricity

prices as indicator for the availability of energy to store. This led to extreme results for energy
prices with negative electricity prices as well as to case studies with almost no potential,
whose electricity price profiles do not exhibit exploitable variations. The first problem could
be fixed using additional constraints for the compressor or network. However, if storage of
electricity in gas transmission pipelines is required, then different incentives may be considered
and incorporated in the optimization model as alternative indicator for the availability of
renewable energy. This possibly requires a more sophisticated coupling of electricity and gas
networks than only utilizing electric driven compressors.

The computations so far have shown only the potential for short term storage. Regaining
energy at the same compressor station used for storage is only possible in a small time
period after storing the energy since the increased pressure has shown to move away from
the compressor station. To overcome this problem, we have considered different stations
for storage and withdrawal of energy. In this case this would imply cooperation of different
compressor operators. Another approach might be to introduce gas storage facilities into the
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setting. For example the presented NEL pipeline ends near one of the largest gas storage in
Germany. Here the increased pressure, i.e. the stored energy, will not move outside the region
where it can be regained. Again on a good data basis computations could investigate on
the potential of this approach and show if there exist enough freedom for storage of electric
energy additionally to the normal operation of the network.

Embedding economical investigations are required to extend and complement the presented
results. The influence of taxes and charges, visible in the NEL test case, is only one example
of the strong influence of exterior factors to be included. Regulatory rules on the gas market
(see [36] for a comprehensive overview) require the unbundling of functions like transport
and storage of gas. These rules are disadvantageous for the operation of gas transmission
pipelines in general and for the usage as storage as well. A review of these rules w.r.t. the
coupling of gas and electricity networks should therefore be part of further investigations.
The results so far can only give new incentives to consider electric drives for compressor
stations and ideas to exploit the potential of varying compressor operation in the presence of
varying prices and the need for short term storage.

Mathematical supplement to Section 4.3.1

Before closing this chapter on the numerical results, we take another point of view on the
results in Section 4.3.1. We point out that although we modeled the central station by two
parallel compressors, there is no point of the time horizon for which the two compressors
share the compression load. The first point to note here is, that this type of switching is only
possible for the ideal compressor model since a closed compressor has to be feasible w.r.t.
the set of constraints associated with active compressors. In the following we will show that
this complementarity in the operation is a direct consequence of the KKT conditions applied
to this model. Hence, it is necessary condition for a local solution for any time point where
the actual costs per power value are not equal for the two drive types. Reorganization of the
fuel cost objective (4.5) yields

f cost(y) =
M∑
l=1

∑
a∈Acs

claP
l
a,

where the coefficients cla comprise the operation cost and the time discretization step size as
well. Using this representation, we get for the gradient of the objective function:

∂if
cost(y) =

c
l
a, if yi = P la,

0, else.
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The observed complementarity is now shown using selected components of the KKT conditions.
The dual feasibility conditions (3.5a) for the derivatives w.r.t. the model variables of the
central compressor stations (cf. (4.3),(4.4)) with head j and tail i are:

0 = ∂qlin,CsE
L(y∗,λ∗) = λl,flow-bali − λl,flowCsE ,

0 = ∂qlin,CsG
L(y∗,λ∗) = λl,flow-bali − λl,flowCsG ,

0 = ∂qlout,CsE
L(y∗,λ∗) = λl,flowCsE + λl,powerCsE

H l
ad,CsE

ηad,CsE
− λl,flow-balj ,

0 = ∂qlout,CsG
L(y∗,λ∗) = λl,flowCsG + λl,powerCsG

H l
ad,CsG

ηad,CsG
− λl,flow-balj .

Since the increase in adiabatic enthalpy depends only on input and output pressure as
variables, it holds H l

ad,CsG = H l
ad,CsE. Assuming the case H l

ad,CsG > 0 we get from the
previous system:

λl,powerCsE
ηad,CsE

= λl,powerCsG
ηad,CsG

.

Only for simplicity we further assume ηad,CsE = ηad,CsG and obtain

λl,powerCsE = λl,powerCsG =: λl,powerCs .

The dual feasibility w.r.t. the power variables in the two compressors is then

0 = ∂P lCsE
L(y∗,λ∗) = clCsE − λ

l,power
Cs − (λl,lowPow,Cs − λ

l,up
Pow,CsE), (4.7)

0 = ∂P lCsG
L(y∗,λ∗) = clCsG − λ

l,power
Cs − (λl,lowPow,Cs − λ

l,up
Pow,CsG), (4.8)

where the previous results are already included. We assume, for example, that in time
point l for the cost coefficients clCsE < clCsG holds and suppose that the power of the
gas driven compressor is strictly positive P lCsG > 0. By complementarity (3.5e), for the
multiplier associated with the lower bounds it must hold λl,lowPow,Cs = 0. We then deduce from
condition (4.8) and the nonnegativity condition (3.5b) that

clCsG − λ
l,power
Cs = −λl,upPow,CsG ≤ 0.

Insertion in equation (4.7) yields

λl,lowPow,CsE − λ
l,up
Pow,CsE ≤ c

l
CsE − clCsG

assump.
< 0.
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It follows from the KKT condition (3.5b) that the multiplier for the upper bound λl,upPow,CsE
must be strictly positive and hence by complementarity that

P lCsE = P l,max
CsE .

In general the optimality conditions show that the more expensive compressor is used only if
the cheaper one is at its upper operation bound. Conversely if non of both are at its upper
bounds then no combined operation appears if the prices are always distinct. This simple
computations show that for this setup the switching between the two compressors can be
modeled without explicitly incorporating the discrete decision. However, this is restricted to
the case of ideal compressors where the case of no flow through a compressor is feasible. For
active compressors described by characteristic diagrams this is usually not the case since real
compressor machines have a characteristic minimal throughput and compression ratio.





Chapter 5

Using a Distributed Nonconvex Optimization
Method for Gas Networks

The theory in Chapter 3 and the algorithms used for solving the optimization problems as
presented in Chapter 4 do not rely on more problem structure than given by the problem
formulation (3.1). Structure exploitation is a very important point of departure for the
efficient solution of difficult but structured problems. There are numerous examples that
can be quite general up to algorithms for complete problem subclasses as linear or quadratic
programming as well as fundamental properties of the problem as convexity with consequences
as presented before.

We concentrate on a more specific structure that in the gas model case is inherited from the
time discretization. In sections 5.1 and 5.2 we present the algorithm ALADIN (“Augmented
Lagrangian based Alternating Direction Inexact Newton”) proposed by Houska et al. [39] and
our experiences applying it to the cost optimization problem on gas transmission pipelines.
However, first we have to show that the optimization problem introduced in Section 4.1 can
be rewritten in the special form required by the algorithm:

min
x

N∑
i=0

fi(xi) s.t.
N∑
i=0

Aixi = b, (5.1a)

hi(xi) = 0,

ri(xi) ∈ [rli, rui ],

xi ∈ [bli, bui ],

 i ∈ {1, . . . , N}, (5.1b)

For every stage i ∈ {1, . . . , N} a vector of variables xi ∈ Rñi , vectors of equality and range
constraints hi ∈ Rmeq,i , ri ∈ Rmr,i and corresponding ranges rli, rui ∈ Rmr,i as well as upper
and lower bounds bli, bui ∈ Rñi are introduced associated to the stage.

We refer to the partial problems associated with one stage as stage problems or local NLPs

89
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in the remainder of this thesis:

min
xi

f(xi) (5.2a)

s.t. hi(xi) = 0 (5.2b)

ri(xi) ∈ [rli, rui ] (5.2c)

xi ∈ [bli, bui ]. (5.2d)

To shorten the notation, we sometimes denote the feasible set of the stage problem with

Fi = {xi ∈ Rñi : hi(xi) = 0, ri(xi) ∈ [rli, rui ],xi ∈ [bli, bui ]}

and its Cartesian product by F̃ = F1 × · · · × FN .

Time Structure of Optimization Problem

Each variable or constraint of the optimization model for the gas transmission networks has
been introduced in Section 4.1 associated with one time point tl of the discretization grid.
Associating each of the M discretization time steps of the used finite differences discretization
with one stage, the optimization problem (4.6) can almost be written in the form (5.1). The
equations resulting from the discretized Euler equations, are the only constraints coupling two
successive time point, i.e. stages. Unfortunately, these equations are nonlinear and therefore
do not fit into the form (5.1) which only covers linear coupling between variables of different
stages. However, this is not an actual limitation since it can be remediated by a simple
reformulation. As introduced in (4.1) the vector yl contains all model variables associated
with time point l of the time grid. For the reformulation, we introduce for any time step
l ∈ {1, . . . ,M} a vector of auxiliary variables yl,− ∈ Rn

−
l containing one component for any

entry of yl−1 that appears in any of the constraints collected in cl. For our optimization
problem (4.6) this means exactly one entry for mass flow and density for every point on the
spatial discretization grids of the pipes:

yl,− =
(
yl,−a

)
a∈Api

with yl,−a =
(
ql,−0,a , ρ

l,−
0,a , . . . , q

l,−
Na,a

, ρl,−Na,a
)
, for all a ∈ Api. (5.3)

We extend the variable vector yl by the auxiliary variables and define the new stage vector
xl =

(
yl,−

T
,yl

T
)T

. The equations cl(yl−1,yl) = 0 for every l ∈ {1, . . . ,M} are then
equivalently replaced by

cl(xl) = 0,[
0 Î

]
xl−1 +

[
−I 0

]
xl = 0,
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where I ∈n
−
l
×n−

l is the identity matrix and Î ∈n
−
l
×nl−1 is the matrix with only one entry of

value 1 in each row selecting the corresponding representative from the complete vector of
the previous time point as described above. With this reformulation the problem has the
desired structure (5.1):

fi(xi) = f costi (yi) =
∑
a∈Acs

∆tiea(ti) + ∆ti+1ea(ti+1)
2 P ia

hi(xi) = ci(xi)

bli =
(
ylow,−i

T
,ylowi

T
)T

, bui =
(
yup,−i

T
,yupi

T
)T

Ai =



0
...
0

−I 0
0 Î

0
...
0



, for all i = 1, . . . ,M , b =


0
...
0



The optimization model used through this thesis has no further range constraints, hence
mr,i = 0 for all i = 1, . . . ,M . To simplify the notation in the remainder of this thesis, we will
focus on this reformulated model and therefore use xi as well as yi for the complete vector of
variables associated to stage i, i = 1, . . . , N .

5.1 ALADIN - An Augmented Lagrangian based Decomposition
Method

In this section we present the algorithm ALADIN as it has been introduced by Houska et
al. [39] for problems of structure (5.1). Following the lines of original article, we present the
algorithm, discuss some of the features and summarize the global convergence proof for the
algorithm. More details on the algorithm and its motivation as well as a promising numerical
result can be found in the mentioned article [39].

The proposed algorithm is a distributed and parallelizable method that combines ideas from
different algorithmic frameworks like SQP and Augmented Lagrangian methods. Additionally,
it is inspired by ADMMs and dual decomposition methods (see [6] for a survey). Similar
to ADMM, ALADIN uses a primal-dual iterate but tries to extend its idea for nonconvex
problems for each stage. The authors motivate the new algorithm by the observation that



92 Chapter 5 Using a Distributed Nonconvex Optimization Method for Gas Networks

for problems where the stage problems (5.2) are only weakly coupled, an unnecessary large
number of SQP iterations would be required. Even if for the function evaluations and
the solution to the QP subproblems distributed methods are used, every iteration would
contain potentially expensive communication points. The abstract statement of the ALADIN
algorithm is given in Algorithm 1. This presentation assumes the existence of suitable
algorithms for the solution of the augmented stage NLPs and the coupling QP (5.7). We
will address our choices later in the upcoming subsection 5.1.2 and comment first on some
aspects at the abstract level.

For the primal dual iterate x,λ in Step 1 the augmented stage problems (5.4) have to be
solved. Because the set of constraints is a subset of the original problem, the problem admits
a feasible solution if the original does. Choosing the parameters ρ and the positive definite
scaling matrices Σi makes it possible to weight the different terms with the original objective.
Both augmenting terms are required to ensure global convergence of the algorithm. Their
role becomes more obvious from the later presented globalization results.

We denote by κeqi ,κrui ,κrli ,κbui ,κbli the Lagrange multipliers associated with equality, upper
and lower range as well as upper and lower bound constraints, respectively. We assume that
all minimizers to the problems (5.4) satisfy the LICQ and inspect the optimality conditions
(3.5) first. The Lagrangian for the original problem (5.1) is given by:

L(x,λ,κ) =
N∑
i=0

fi(xi)− λT (
N∑
i=0

Aixi − b)−
N∑
i=0

(κeqi )Thi(xi)

−
N∑
i=0

(κrli )T (ri(xi)− rli)−
N∑
i=0

(κrui )T (rui − ri(xi))

−
N∑
i=0

(κbli )T (xi − bli)−
N∑
i=0

(κbui )T (bui − xi).

(5.8)

Comparing the corresponding dual feasibility condition (3.5a)

∇xiL(x,λ,κ) = ∇xifi(xi)−ATi λ−∇xihi(xi)Tκ
eq
i

−∇xiri(xi)T (κrli − κrui )− (κbli − κbui ),
(5.9)

with its counterpart for the augmented decoupled NLPs (5.4)

L(yi,κi) := f(yi)− λTAiyi + ρ

2‖yi − xi‖
2
Σi

− (κeqi )Thi(yi)− (κrli )T (ri(yi)− rli)− (κrui )T (rui − ri(yi))

− (κbli )T (yi − bli)− (κbui )T (bui − yi),

(5.10)
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Algorithm 1 ALADIN
Input: Initial guess x,λ
Repeat:

1: Choose tuning parameter ρ > 0 and solve for all i ∈ {1, . . . , N} the decoupled NLPs

min
yi

fi(yi)− λTAiyi + ρ

2‖yi − xi‖
2
Σi (5.4a)

s.t. hi(yi) = 0, (5.4b)
ri(yi) ∈ [rli, rui ], (5.4c)

yi ∈ [bli, bui ], (5.4d)

with Σi ≥ 0.
2: If

∥∥∥∑N
i=0Aiyi − b

∥∥∥
1
≤ ε and ρ‖Σi(yi − xi)‖ ≤ ε, terminate with solution x∗ := y.

3: Choose constraint Jacobian approximations Ci ≈ C∗i of the Jacobians of active constraints
and bounds. Compute modified gradient

gi := ∇yifi(yi)− (Ceq*
i − Ceq

i )Tκeqi
− (Car*

i − Car
i )T (κrli − κrui )− (Ĩ − Cab

i )(κbli − κbui ) (5.5)

and choose symmetric Hessian approximations

Hi ≈ H∗=i ∇2
ii

(
fi(yi)− (κeqi )Thi(yi)− (κrli − κrui )Tri(yi)

)
. (5.6)

4: Choose tuning parameter µ > 0 and solve the coupled equality constraint QP

min
∆y,s

N∑
i=0

1
2∆yTi Hi∆yi + gTi ∆yi − λTs+ µ

2 ‖s‖
2
2

s.t.
N∑
i=0

Ai(yi + ∆yi) = b+ s,

Ci∆yi = 0, i ∈ {1, . . . , N}.

(5.7)

5: Choose step sizes α1, α2, α3 ∈ R+ with α1 + α2 + α3 > 0 and define new iterates

x+ := x+ α1(y − x) + α2∆y,
λ+ := λ+ α3(λQP − λ)

6: Update iterates x← x∗,λ← λ+ and continue with Step 1.
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0 != ∇yiL(yi,κ) = ∇yifi(yi)−ATi λ+ ρΣ(yi − xi)−∇yihi(yi)Tκ
eq
i

−∇yiri(yi)T (κrli − κrui )− (κbli − κbui ),
(5.11)

the termination criterion of Step 2 is explained. If the composition y solves the augmented
stage problems, then it satisfies the dual feasibility condition for the original problem up to
the term ρΣi(yi − xi). Clearly, the NLP solutions are feasible w.r.t. the stage constraints
yi ∈ Fi, for all stages i = 1, . . . , N . For primal feasibility, considering the complete set of
constraints, therefore only the coupling conditions ∑N

i=0Aiyi − b are left to check. Hence,
the conditions in Step 2 check if the solutions to the decoupled stage problems are primal
and dual feasible and thus a solution candidate for the complete problem (5.1). If both
infeasibilities, measured in the 1-norm, are sufficiently small, i.e. smaller than the chosen
tolerance ε, the current vector of solutions to the stage problems is returned as solution.

If the NLP solutions do not suffice these conditions, a quadratic problem is assembled and
solved to compute a primal dual update for the iterates. The quadratic subproblem (5.7) uses
a positive definite approximation on the Hessian of the Lagrangian evaluated in y and is only
equality constraint. It incorporates explicitly an approximation to the linearized active NLP
constraints and the stage coupling conditions by an Augmented Lagrangian relaxation. Like
for inexact SQP methods the approximated Jacobian matrices to the active NLP constraints
are compensated by the modified gradient (5.5).

Eventually, the iterates are updated using a globalization strategy presented in the next
section. For the primal update a combination of the two steps computed from the solution
of the decoupled stage problems and the coupling quadratic problem are considered. The
dual iterate is usually updated with a step computed from the Lagrange multiplier λQP,
associated with the relaxed coupling constraints of the QP.

From one point of view, Algorithm 1 can be seen as an equality constraint SQP method for
the partial augmented Lagrangian with respect to the coupling constraints. The authors of [39]
showed that the ALADIN algorithm is roughly obtained, if for the Augmented Lagrangian
method (cf. Section 3.3) the subproblem for current λ

min
∆y

N∑
i=0

fi(yi + ∆yi) + λT
(

N∑
i=0

Ai(yi + ∆yi)− b
)

+ µ

2

∥∥∥∥∥
N∑
i=0

Ai(yi + ∆yi)− b
∥∥∥∥∥

2

2

s.t. yi + ∆yi ∈ Fi, for all i = 1, . . . , N

is only approximately solved by a single SQP step. The corresponding original subproblem
would contain inequality constraints while the quadratic subproblem in Step 4 only comprises
equality constraints. This corresponds to an equality-constrained QP method (EQP, see [54])
where the information on the active set is handled at SQP level and only equality-constrained
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QPs are solved for each iteration. The main difference to common methods of this type is,
how the approximation on the active set is computed. Usually, the working set is updated
adding or removing inequalities depending on the last primal and dual step. In the ALADIN
iteration additionally the decoupled stage problems are solved to determine a new estimate
for the active set. Compared with the solution of inequality constraint QPs, the solution
with only equality constraints is much simpler and thus normally faster. Comparing with
other EQP methods, the more sophisticated procedure to determine a good working set gives
hope for lower total numbers of iterations.
On the other hand, in the original ALADIN article the authors mention the ADMM as

additional inspiration. With the special choice Σi = ATi Ai, approximations Ci = 0 and
Hi = ρATi Ai for µ→∞ the ALADIN iteration is shown to be very similar to the ADMM
applied the original problem (5.1) in a consensus reformulation. These rather coarse choices
for the approximations indicate the potential of ALADIN in comparison with ADMMs.
However, for any parameter choice ALADIN shares the structure with ADMMs and solves
decoupled small NLPs first and then a large coupling problem. In that sense the algorithm
alternates between solving two parts of the problem.

5.1.1 Step Size Computation and Global Convergence

In this subsection we summarize the steps to guarantee global convergence of the ALADIN
algorithm as presented in [39] and review some of its parts. The issue of global convergence
is mainly hidden in the step size choice of Algorithm 1. Houska et al. propose the following
procedure of three steps to compute the step sizes α1, α2, α3.

a) Try to take full step α1 = α2 = α3 = 1 and check if the trial x+ = y + ∆y yields
sufficient progress.

b) If the full step is not accepted, check if the NLP solutions x+ = y, i.e. α1 = 1,
α2 = α3 = 0 yield sufficient progress.

c) If none of the previous trials is accepted, set x+ = x and update only the dual variable,
i.e. set α1 = α2 = 0. Choose α3 ∈ (0, 1] such that Vρ(x,λ+ α3(λQP − λ)) is globally
maximized, where Vρ denotes the optimal objective of the problem

Vρ(x̄,λ) := min
y∈F̃

f̃(y;λ, x̄) := min
y∈F̃

N∑
i=0

[
fi(yi)− λTAiyi + ρ

2‖yi − x̄i‖
2
Σi

]
+ λT b.

(5.12)



96 Chapter 5 Using a Distributed Nonconvex Optimization Method for Gas Networks

First, we concentrate on Steps a) and b) with a primal update. The progress of the algorithm
is measured using a classical L1-penalty function

Φ(x) :=
N∑
i=0

fi(xi) + λ̄

∥∥∥∥∥
N∑
i=0

Aixi − b
∥∥∥∥∥

1
(5.13)

+κ̄
N∑
i=0

[
‖hi(xi)‖1 +

∑
k

max(0, rli − ri(xi))k + max(0, ri(xi)− rui )k

+
∑
j

max(0, bli − xi)j + max(0,xi − bui )j
]
.

Trials x+ are accepted if the condition

Φ(x)− Φ(x+) ≥ γ
(

N∑
i=0

ρ

2‖yi − xi‖
2
Σi + λ̄

∥∥∥∥∥
N∑
i=0

Aiyi − b
∥∥∥∥∥

1

)
(5.14)

is satisfied for 0 < γ � 1 where yi are the solutions of last decoupled NLPs. If Algorithm 1
is not stopped by the termination criteria in step 2, then the right-hand side of (5.14) is
bounded away from 0. It is clear then, that the algorithm stops after a finite number of
iterations with steps sizes computed in steps a) or b) if Φ is bounded from below. For
penalty parameters λ̄ and κ̄ sufficiently large this means that the original objective f of
the optimization problem (5.1) is bounded from below on the feasible set F̃ . The original
globalization strategy only considers the choices α1 = α2 = 1 and α1 = 0, α2 = 1, which
could sometimes be improved by considering partial primal steps as well. These could be
obtained using common line-search or planar search procedures. If the resulting primal trial
yields sufficient progress (5.14), the argumentation sketched above still holds.

The third step of the globalization procedure is more involved. We start with some remarks
and observations and give a short summary of the resting part of the globalization proof
afterwards. First, we cite the remark made in [39] that the exact line-search, used for the
presentation, is numerically not viable in practice. It can be replaced by practical inexact
line-search algorithms based on Wolfe or Goldstein conditions for sufficient increase with
respect to the objective function Vρ.

The idea of Step c) is to make dual progress towards a multiplier λ that maximizes the
dual objective Vρ(x̄,λ) for fixed x̄. Of course, this implies that the dual line-search in Step c),
independently of being exact or inexact, has to be along a direction of sufficient increase to
ensure the existence of a positive step length α3. For the upcoming we consider a general dual
search direction ∆λ and the more general line-search subproblem to solve (approximately):

Ṽ (α3) := Vρ(x,λ+ α3∆λ) = min
y∈Ω

f̃(y;λ+ α3∆λ, x̄) (5.15)
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If the minimizer of the inner problem in (5.15) at α3 = 0 is unique and satisfies the second
order necessary condition, LICQ and strong complementarity then we get from implicit
function theorem that Ṽ (α3) is continuously differentiable in a neighborhood of zero with

dα3 Ṽ (α3) = ∇α3 f̃(y;λ+ α3∆λ, x̄) = −∆λT (
N∑
i=0

Aiyi(α3)− b) (5.16)

=⇒ dα3 Ṽ (0) = −∆λT (
N∑
i=0

Aiyi − b), (5.17)

where y is the solution of the inner problem (5.15) for α3 = 0. This corresponds to the
solution of the augmented decoupled NLPs in Step 1 of the current ALADIN iteration. We
note that this coincides with the results presented in Section 3.2. The search direction ∆λ is
thus an ascent direction if

∆λT
(
b−

N∑
i=0

Aiyi
)
> 0. (5.18)

The ALADIN algorithm is stated using ∆λ = λQP − λ as step for the dual update and the
line-search of Step c) as well. We assume that the approximations Hi for Hessian are positive
definite and the approximate Jacobian matrices Ci have full rank. Analogous computations
as in [39, Appendix A] show then that this dual step satisfies

λQP − λ = −(M − 1
µ
I)−1( dλV − ρ

N∑
i=0

AiM̃iΣi(yi − xi)), (5.19)

with

dλV = b−
N∑
i=0

Aiyi,

M = −
N∑
i=0

AiM̃iA
T
i with M̃i = Zi(ZTi HiZi)−1ZTi .

Here with Zi we denote matrices whose columns form a basis for the Null space of Ci. The
matrix M is negative semidefinite and hence (M − 1

µI) < 0. We note that this corresponds
to the results presented in Section 3.2 with the choices A = [A1 . . . An], Y = F̃ and the
quadratic objective of the QP in Step 4. For the special choice ρ = 0 it is therefore clear
that ∆λ = λQP − λ is indeed an ascent direction. Houska et al. remarked that in this
case the dual search direction corresponds to a regularized dual Newton direction for a dual
decomposition method.
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Since ρ = 0 cannot be expected to hold during the iteration, it may be necessary to
compute an ascent direction before accessing the Step c) of the globalization procedure. In
order to avoid unnecessary computations, it is first checked whether the already computed
direction λQP−λ is an ascent direction, anyway. If not, the most simple choice for an ascent
direction would be to select the gradient direction

∆λ = dλV = b−
N∑
i=0

Aiyi. (5.20)

Inserting in (5.17) shows that this is clearly an ascent direction but it is well known that
gradient methods may lead to slow convergence rates. We can solve another QP, similar to
that in Step 4 of ALADIN, to get a search direction that can be interpreted as Newton-like
direction, too. The only difference is to set the linear terms of the objective function directly
as gi = −ATi λ. For the QP multiplier λ̃QP computed with this slight variation we obtain the
result (5.19) with ρ = 0. Hence, we get an ascent direction from λ̃QP − λ.
To come back to the global convergence of ALADIN, we note that Vρ(x̄,λ) for fixed x̄ is

the partial dual function of the optimization problem

Zρ(x̄) := min
y∈F̃

N∑
i=0

[
fi(yi) + ρ

2‖yi − x̄i‖
2
Σi

]
(5.21a)

s.t.
N∑
i=0

Aiyi = b (5.21b)

with optimal objective value Zρ(x̄). Solving the decoupled stage problems in Step 1 thus
corresponds to the evaluation of Vρ in x̄,λ. The solution of the central QP can then be
interpreted as computation of an approximated Newton step for Vρ followed by a line-search
procedure to determine the optimal step length α3. Now we are ready to cite the global
convergence statement for Algorithm 1.

Theorem 5.1 ([39, Theorem 1]). Let the optimization problem (5.1) be feasible and bounded
from below. Assume that all functions fi,hi, ri are twice continuously differentiable with
bounded second derivative. If the matrices Σi are chosen positive definite and ρ, λ̄, κ̄ are
chosen sufficiently large, then Algorithm 1 using the presented procedure for computing the
step sizes terminates after a finite number of steps.

The global convergence proof given in [39] is split in two parts: First, it is supposed that
Algorithm 1 runs infinitely often with Step c) of the globalization procedure and thus the
primal iterate x is never updated. If in every iteration a dual ascent direction is computed,
then the algorithm behaves like a dual ascent method for Vρ(x̄,λ) for fixed x̄. This means
that the dual iterates λ converge to a maximizer of Vρ(x̄,λ) if it exists. In [39] it has been
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shown that for a sufficiently large parameter ρ the maximum exists and that there is no
duality gap:

sup
λ
Vρ(x̄,λ) = Zρ(x̄)

This means that the primal variables, i.e. the solutions of the augmented decoupled NLPs,
converge to a limit y∗ which is the solution of problem (5.21). On the other hand, it
has been shown that every solution to this auxiliary problem satisfies the primal descent
condition (5.14) if the penalty parameters λ̄, κ̄ are chosen sufficiently large. All together,
this shows that after a finite number of steps at least the primal trial x+ = y corresponding
to α1 = 0 is accepted in Step b). This contradicts the assumption that the algorithm uses
Step c) infinitely often.

Hence, if the algorithm does not stop after a finite number of steps the primal trial has to
be accepted in Steps a) or b) in an infinite number of iterations. As already mentioned before
this is impossible if the optimization problem (5.1) is bounded from below and the penalty
parameters λ̄, κ̄ are chosen sufficiently large because the progress in every iteration with
accepted primal trial w.r.t. the L1-penalty function (5.13) is bounded from below. Eventually,
this contradicts the assumption of an infinite number of iterations.

5.1.2 Implementation

In this subsection we describe in more detail the methods used in the steps of Algorithm 1. We
will present algorithmic choices as well as the actual selection of solvers for the subproblems
that are incorporated in our concrete implementation utilized for the numerical experiments
in Section 5.2.
Our experimental implementation of Algorithm 1 is done in C++ which offers a wide

variety of programming paradigms. This choice also enables us to couple the algorithm
directly to the model implementation briefly introduced before and to parts of the software
framework Clean. This library is described best by citing the authors partly former colleagues
M. Schmidt [61], J. Hübner [42] and D. Rose [58] who implemented numerical algorithms as
part of their dissertations: “[The implementation] is part of the software framework Clean,
which is an acronym for A C++ Library of Efficient Algorithms in Numerics. Clean is a
generic library that is developed in the working group Algorithmic Optimization of Marc
Steinbach at the Leibniz Universität Hannover. It is intended to become public domain when
it is considered to be sufficiently mature.”1 The implementation of ALADIN follows the ideas
of Clean and extensively uses C++ templates to get a generic implementation which permits
a clearer separation of algorithm and data structures. For a more detailed description of the

1[61, Chap. 5.2]
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ideas of Clean and for examples of their realization in numerical algorithms we refer to the
above mentioned references.

Initialization

We assume that the initial primal estimate x is passed to the algorithm by the user. This
value is used unchanged to start the iterations. Special attention should be paid to the initial
choice of the dual iterate λ. If the primal start vector is already optimal, Algorithm 1 is
not able to detect this in the first step if the dual starting vector is badly chosen. This
would require costly ALADIN iterations with step size computation of type c) including
the dual line-search. We spent an extra KKT solution to compute the dual multipliers λ
that minimizes the violation of the dual feasibility condition (5.9) w.r.t. to the Euclidean
norm. A similar procedure is described in [61] and used in the related interior-point method
Clean::IPM.

Solution of the decoupled NLPs

The first subalgorithm of ALADIN to be chosen is the numerical solver for the decoupled
problems (5.4) for each stage. Because we aim to apply the algorithm for example to the
cost optimization problem for gas networks, this subsolver must be able to solve nonconvex
optimization problems. There exist a variety of solvers that are able to handle this problem
class. We use the interior-point solver Ipopt for the solution of these subproblems using its
C++ interface for the coupling with the model implementation.
For Step 1 a penalty parameter ρ and the scaling matrices Σi have to be chosen. We

implemented different strategies to set and adapt these during the iteration. For the norm
inducing matrices we have implemented the identity matrix Σi = I, the positive definite
Hessian approximation of the last iteration Hi ≈ H∗i or the ADMM inspired choice ATi Ai+δcI
that has to be convexified using the parameter δc > 0 as possible selections. For the penalty
parameter ρ an initial choice has to be provided to the algorithm. It is then adapted during
the iteration following the simple procedure cited in the survey of Boyd et al. [6]. The
parameter is increased or decreased if the primal and dual infeasibility of the solutions of
the decoupled subproblems differ too much. In detail, the new penalty parameter is chosen
according to

ρ =


τ incrρ, if ‖Σi(yi − xi)‖ > µincr‖

∑N
i=0Aiyi − b‖

ρ/τdecr, if ‖∑N
i=0Aiyi − b‖ > µdecr‖Σi(yi − xi)‖

ρ, otherwise,

(5.22)
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with parameters τ incr, τdecr, µincr, µdecr > 1. A slightly weakened variant of this procedure
is also available that only updates the parameter if the conditions implying a change are
satisfied in k successive iterations.

The coupling QP

For Step 3 we have to select the approximation to the Jacobian matrices of the active
constraints as well as for the Hessian of the Lagrangian. We decide to take the exactly
evaluated derivatives here. Of course, the use of approximations makes the algorithm more
flexible and may accelerate the solution of the coupling QP. However, in the current state
we aim to test the performance of the algorithm fed with the best available data.

Additionally, this step includes the determination of the active set corresponding to the
current y. Since the solver of the decoupled NLPs is not guaranteed to explicitly hold
information on the active set of the solutions yi, we select the numerically active constraints
based on the primal and dual solution of the decoupled problems (5.4). This is in line with
the usage of Ipopt as solver for the stage NLPs since it provides access to the multipliers
associated with the returned solution.

We solve the assembled quadratic problem (5.7) by solving the associated KKT-system
for the primal and dual variables. The system is obtained as KKT conditions (3.5) for the
coupling QP. Its Lagrangian function and the corresponding stationarity conditions are

L(∆yi, s,λQP,κQP) :=
N∑
i=0
{1

2∆yTi Hi∆yi + gTi ∆yi − κTQP,i(Ci∆yi)}

− λTs+ µ

2 ‖s‖
2
2 − λTQP

(
N∑
i=0

Ai(yi + ∆yi)− b− s
)
(5.23)

0 != ∇∆yiL(∆yi, s,λQP,κQP) = Hi∆yi + gi −ATi λQP − CTi κQP,i, ∀i ∈ {1, . . . , N}
(5.24)

0 != ∇sL(∆yi, s,λQP,κQP) = −λ+ λQP + µs. (5.25)

These conditions rewritten in matrix-vector form complemented with the primal conditions
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yield the KKT-System:

H1 AT1 CT1
. . . ... . . .

HN ATN CTN
µI −I

A1 . . . AN −I
C1

. . .
CN





∆y1
...

∆yN
s

−λQP

−κQP,1
...

−κQP,N



=



−g1
...
−gN
+λ

b−
∑N
i=0Aiyi

0
...
0



(5.26)

It is well known that if the approximations to the Hessian (5.6) are positive definite on the
Null space of full rank Jacobian matrices Ci, then the solution of the coupling QP (5.7) is
equivalent to the solution of the linear system. Using (5.25) we get

s = λ− λQP
µ

.

That can be exploited to eliminate the slack s from the linear system:

N∑
i=0

Ai(yi + ∆yi)− b = s = λ− λQP
µ

(5.27)

⇐⇒
N∑
i=0

Ai∆yi + 1
µ
λQP = b−

N∑
i=0

Aiyi + 1
µ
λ (5.28)

This corresponds to the reduced linear system

H1 AT1 CT1
. . . ... . . .

HN ATN CTN
A1 . . . AN − 1

µI

C1
. . .

CN





∆y1
...

∆yN
−λQP

−κQP,1
...

−κQP,N


=



−g1
...
−gN

b−
∑N
i=0Aiyi + 1

µλ

0
...
0


, (5.29)

which can be solved by any linear solver. We require an additional feature of the used
linear solver. Since we want to use the exact Hessian matrices whenever possible, there
is no guarantee in general that all are positive definite. We therefore apply an adaptive
convexification scheme, like it is used for example in Ipopt (cf. [70]), that uses information
obtained during the factorization of system (5.29). A convexification parameter δc is increased
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repeatedly yielding a Hessian approximation H = H∗ + δcI if necessary to obtain a unique
solution of the linear system. These strategies are usually based on the so-called inertia of
the matrix, i.e. the number of positive, negative and zero eigenvalues. We refer for example
to the survey of Forsgreen [25] for more details. The sparse linear solver MA57 [41],[21] that
we has been selected as linear solver for Ipopt, too, provides this information during the
factorization and is therefore a viable choice as linear solver.
Another point related to the coupling QP is the update of the augmented Lagrangian

penalty parameter µ. We start with a rather small parameter and adapt it depending on the
progress of the algorithm with respect to the relaxed coupling conditions. The strategy stated
for example in the textbook of Nocedal and Wright [54, Alg. 17.4] for the present case is given
in Algorithm 2. It is called after each QP solution to determine the new parameter µ for the
upcoming iteration and checks if the relaxed coupling constraints are satisfied sufficiently
well compared to a threshold that is diminished in the course of iterations.

Algorithm 2 Update of Augmented Lagrangian penalty parameter µ
Input: µold, η > 0

1: if ‖
∑N
i=0Ai(yi + ∆yi)− b‖1 < η then

2: µ = µold

3: η = η/µ0.9

4: else
5: µ = 100µold
6: η = 1/µ0.1

7: end if

Step length computation

Our implementation of the step length computation in Step 5 basically follows the procedure
presented in the previous section. The first difficulty is to determine the penalty parameters λ̄
and κ̄ for the primal descent condition (5.14). It is commonly accepted that the determination
of optimal penalty parameters for merit functions is in general a hard task that motivated
for example the development of alternative globalization frameworks (cf. [24]). However,
we use a strategy presented in [54] for SQP methods that aims to choose sufficiently large
penalty parameters that do not interfere with the progress of the algorithm. As extension
of the basic search in globalization Steps a) and b), we employ a basic backtracking search
along the whole line segment for α1 = 1 and α2 ∈ [0, 1] for an acceptable trial, starting with
the full step α1 = α2 = 1.

If no primal acceptable point is found, we have to invoke the dual line-search of globalization
step c) and follow the remarks made above. We select an ascent direction for Vρ by checking
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first if the already existing dual direction λQP − λ satisfies condition (5.18). If this is not
the case, we compute a new Newton-like condition by solving the QP (5.7) or the equivalent
KKT matrix again with modified right-hand-side:

H AT CT

A − 1
µI 0

C 0 0




ȳ

λ̄QP

κ̄

 =


−ATλ

b−Ay + 1
µλ

0


Here we used the compact notation combining the matrices H = diag(H1, . . . ,HN ), C =
diag(C1, . . . , CN ) and A = [A1, . . . , An]. As already stated above, then the analog choice
∆λ = λ̄QP − λ yields an ascent direction if all Hessian approximations are positive definite.
We want to remark here that this procedure provides a Newton-like ascent direction without
an additional factorization of the KKT matrix. This strategy may lead to problems if we use
the exact Hessian as described above. The Hessian are augmented by the convexifications
if necessary but only to ensure that the Hessian H is positive definite on the Null space

of
[
A

C

]
. From the computations for the Hessian of the dual (3.17) we can see that we at

least need the Hessian H to be positive definite on the Null space of C to guarantee that
∆λ = λ̄QP − λ is an ascent direction. Hence, an additional factorization may be required.
Alternatively, we could just select the gradient direction (5.20). As last comment on the step
computation we remark on the denomination “Newton-like” for the dual steps. To get, the
still regularized, dual Newton direction for Vρ, the scaling matrices Σi have to be considered
when assembling the Hi. Thus, the computation would require a new matrix factorization
for the case ρ 6= 0. Once we have a dual ascent direction, we determine the step size α3 by
a common backtracking line-search. The evaluation at every trial step size comprises the
solution of the decoupled stage problems.

5.2 Numerical Experiences

In this section we present our numerical experiences using the ALADIN algorithm for the
solution of the energy cost optimization problems stated and discussed in the previous chapters.
As principal test case for the computations the OPAL pipeline (see sec. 4.2.1) is used. For
the presented optimization model we compare the performance of the implementation of
ALADIN with the solution progress obtained by the interior-point method Ipopt which has
been used before to compute the numerical results in Chapter 4.

As mentioned in the previous section, the ALADIN algorithm is run using Ipopt as solver
for the decoupled stage NLPs. Exact Hessian and Jacobian matrices are computed for the
QP which is solved by the sparse solver HSL MA57 that is also used by Ipopt. The focus at
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implementing the algorithm and the model evaluation has not been set on the performance.
Hence, a comparison of CPU times would not provide meaningful results, yet. There is
clearly lot of potential for further improvement in the implementation, e.g. parallelization.
One point that definitely should be parallelized is the solution of the local NLPs for every
stage. In our experimental implementation the whole algorithm runs sequentially, hence
solves the decoupled problems in sequence as well. However, it is reasonable to compare
the total number of iterations which corresponds directly to the number primal-dual KKT
systems, i.e. equality constraint QPs, to solve. Since the linear systems to be solved in each
iteration of ALADIN or Ipopt, do not differ significantly in structure, size and sparsity, the
iteration number characterizes if the ALADIN algorithm has the potential to perform better
on these instances. To do so, the number of ALADIN iterations should be significantly lower
than the number of Ipopt iterations.

Comparison for basic pipeline test

We start with a simple example that shows promising performance of the implementation of
ALADIN. The optimization model is set up for the first weekly energy price profile and a
coarse time discretization grid of only one time step per hour, i.e. ∆t = 3600 s, for the time
horizon of the complete week (and additional 6 hours). The resulting structured NLP then
has 174 stages with 656 variables and 440 equations each. Together with the 37 236 coupling
constraints this sums up to a total of 114 144 variables and 113 796 equations.

We select the ADMM inspired choice for the scaling matrices Σi = ATiAi + 0.01I and the
penalty parameters are initially chosen as ρ = 5 and µ = 105. With the chosen parameter
choice the ALADIN algorithm performs well on this test problem and solves it in only
6 iterations which requires almost 2 minutes of computing time.
In Figure 5.1 the relevant feasibility measures are plotted. For better readability we use

the notation

θ(x) =


θ1(x1)

...
θN (xN )

 with θi(xi) =


hi(x)

max(0, ri(xi)− rui )−max(0, rli − ri(xi))
max(0,xi − bui )−max(0, bli − xi)

 ,
for the violation of the constraints associated with the stage NLPs, where the max is
to be understood componentwise. The plot shows a favorable behavior of the ALADIN
implementation. First, the initial vector corresponds to the stationary solution of the problem
and is hence feasible for this problem with constant boundary data. The linear coupling
conditions are exactly satisfied while the nonlinear equations are fulfilled only up to a tolerance
since the initial is obtained as result of an antecedent numerical computation for the stationary
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Figure 5.1: ALADIN: Infeasibilities vs Iterations

state. For this particular problem the algorithm is making only full steps. This means that in
this case for every iteration we have x = y+∆y and the coupling error ‖Ax−b‖1 is the same
as for the QP-solution. The varying convergence rate for the coupling error can be explained
by the update procedure for the Augmented Lagrangian penalty term µ which is increased
before iteration 2 and 4. We have also plotted the distance ‖x− x∗‖∞ of the iterates from
the optimal solution as computed by Ipopt. The final distance is 3.8× 10−7 which is not
decreased in further iterations. Ipopt uses a heuristic relaxing simple bounds during the run
to avoid numerical difficulties. The Ipopt solution is finally computed with slightly different
bounds and thus serves as reference solution only up to a certain tolerance. However, the
iterates seem to converge with superlinear rate towards the solution. The infeasibility with
respect to the constraints associated to the stage NLPs ‖θ(x)‖1 shows a similar behavior.
Additionally, the primal infeasibility ‖Ay−b‖1 and dual infeasibility ‖y−x‖Σ corresponding
to the NLP solutions are plotted. The penalty parameter ρ is updated according to (5.22)
with the objective that these two infeasibility measures converge at similar rate. As desired,
both terms converge with the same rate for this instance, keeping ρ constant at its initial
choice. The same model instance is solved by Ipopt in 21 iterations.

The performance of the ALADIN implementation is now compared with Ipopt for the cost
optimization problem for different time discretizations. We consider the first two days of the
first energy price profile as well as the complete weekly (again with additional 6 hours at the
end) profile for time step length of one to five time steps per hour, i.e. time step lengths of
3600 s, 1800 s, 1200 s, 900 s and 720 s. Since it is not clear a-priori how to parametrize the
ALADIN code we have made tests for a range of parameters for the penalty parameter ρ, its
update strategy parameters (cf. Equation 5.22) and the selection of the scaling matrices Σi.
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Table 5.1: Comparison of iteration numbers: ALADIN vs. Ipopt
Prob. ∆t/s #Stages #Iter. Ipopt #Iter. ALADIN (Configuration) solved
O48.1 3600 48 17 4 (e.g. ρ = 5, Σi = ATiAi + 10−2I) 80
O48.2 1800 96 18 5 (e.g. ρ = 5, Σi = ATiAi + 10−2I) 80
O48.3 1200 144 20 8 (e.g. ρ = 5, Σi = ATiAi + 10−2I) 79
O48.4 900 192 24 11 (e.g. ρ = 5, Σi = ATiAi + 10−2I) 78
O48.5 720 240 24 16 (e.g. ρ = 100, Σi = I) 11

The results for adaptively changed ρ have not shown any improvements in our tests compared
to the constant parameter choice. This includes that in most of the runs the update formula
(5.22) does not change the parameter. Hence, we concentrate on constant penalty parameters
for the discussion, which yields 80 parametrizations of our ALADIN implementation then
used to solve the cost optimization problem. Table 5.1 shows the results for the comparison
of the Ipopt iteration number and the best ALADIN run for the first test with 48 h time
horizon. The parametrization for one of the runs of Algorithm 1 with smallest iteration
number is given as well as the total number of parametrizations that have been able to
solve the problem within the time limit of 2 hours and at most 100 iterations. The failures
also include collapsing solution procedures for the subproblems, i.e. the augmented stage
problems, the QP as well as the dual line-search. The results show that the implementation
is able to solve the instances for time discretizations with up to four time steps per hour
quite well and especially in significantly less iterations than required by Ipopt. The problem’s
difficulty is increasing with the number of stages which is reflected in moderately increasing
iteration numbers of both implementations. Except for the results for the time step size
of 720 s, the results are as expected. As a first observation we remark that for this case
only 11 parametrizations of ALADIN solve the problem whereas the instances for bigger
time steps are solved by almost all parametrizations. Additionally, the minimal iteration
number increases significantly and in particular is not obtained by the parametrizations that
are among the fastest for the smaller instances. All successful runs are characterized by a
greater convexification of the augmented objectives of the stage problems achieved by bigger
values for the parameter ρ or the convexification of ATA. We remark additionally that all
the ALADIN runs presented above always select the full step, i.e. x+ = y + ∆y, in Step 5 of
Algorithm 1.

The same test runs have also been done for the same OPAL network using the complete
weekly energy profile. The results are given in Table 5.2. As for the smaller time horizon
there can be found parametrizations for our implementation of Algorithm 1 that beat Ipopt
in the number of total iterations. For the coarser time grids for one and two time steps per
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Table 5.2: Comparison of iteration numbers: ALADIN vs. Ipopt
Prob. ∆t/s #Stages #Iter. Ipopt #Iter. ALADIN (Configuration) solved
O174.1 3600 174 21 6 (e.g. ρ = 5, Σi = ATiAi + 10−2I) 80
O174.2 1800 348 23 10 (e.g. ρ = 5, Σi = ATiAi + 10−2I) 74
O174.3 1200 522 25 16 (e.g. ρ = 5, Σi = ATiAi + 10−2I) 72
O174.4 900 696 28 21 (e.g. ρ = 5, Σi = ATiAi + 10−2I) 49
O174.5 720 870 29 26 (ρ = 25, Σi = ATiAi + 5× 10−2I) 11

hour the iteration number is below the half of the number of iterations required by Ipopt.
Hence, for these cases a considerably number of KKT system solutions can be avoided.

For the time step size of 1800 s a comparison of the iteration of Ipopt and the ALADIN
implementation with parameters ρ = 5, Σi = ATiAi + 10−2I is illustrated in Figure 5.2. As
before, we take the Ipopt solution as reference point and plot its distance to the iterates
measured by the maximum norm. The plot shows the expected advantage of the ALADIN
algorithm since the iterates seem to reach much faster the local convergence region where the
Newton type convergence comes into effect. The final distance to the reference should again
be attributed to the Ipopt strategy of relaxing the bounds by small amounts.

For finer time discretizations the problems seem to be much more difficult to solve for our
implementation. This is expressed by the total number of parametrizations that are able to
solve the problem instance. Like for the smaller time horizon this number decreases especially
for the finest time discretization. Clearly, this is also related to the constant choice of the
time limit which is more likely to be violated for large problems that naturally require longer
run times. But even the best parametrization beats the result of Ipopt in the number of
iterations only by a few iterations. For these cases the effort of solving the decoupled NLPs
in each iterations is not refunded in the number of total iterations.
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ALADIN − x∗Ipopt‖∞
‖x(k)

Ipopt − x∗Ipopt‖∞

Figure 5.2: ALADIN vs. Ipopt: Comparison for runs for Problem O174.2
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Table 5.3: Comparison of ALADIN iteration numbers for different constant penalty parame-
ters ρ and scaling matrices Σi for Problem O174.4.

Σi ρ = 1 ρ = 5 ρ = 10 ρ = 20 ρ = 25 ρ = 35 ρ = 50 ρ = 100 ρ = 150
Hi + δcI − 32 24 − − − − − −
Bi(0.01) − 21 21 21 23 25 25 − 26
Bi(0.05) 36 24 22 24 28 − − − −
Bi(0.1) − 22 22 25 26 25 25 27 28
Bi(0.5) 23 24 31 31 29 34 − 39 31
Bi(1) 23 21 32 − 34 30 28 29 33
Bi(5) 21 − 27 − − 30 35 − −
I 23 25 − − − 27 − − −

Note that the increasing difficulty seems to be related to the discretization step size and
not purely to the problem size. The number of stages which is directly associated with the
total problem size, for problem O48.5, i.e. the first 48 hours with five time steps per hour, is
much smaller then problem O174.2 for the complete time horizon and two time steps per
hour. The former smaller problem is only solved by 11 parametrizations whereas the latter is
solved by almost all parametrizations (74 of 80).
To show the strong dependence on the parameter choice of ALADIN, we compare the

performance of the ALADIN implementation for different initial choices for ρ and for
different choices for the scaling matrices Σi. The total number of iterations for different
parametrizations solving Problem O174.4, i.e. the complete weekly profile and a time step
size of ∆t = 900 s, is given in Table 5.3. As described before the Hessian matrices of the
previous iteration H(k−1) are adaptively convexified by the parameter δc. We denote by
Bi(δ) = ATA+ δI the convexified scaling matrices inspired by ADMM.
The fails include exceeding of the maximal number of 100 iterations or the maximal

computing time of 2 h as well as failures in the solution of the subproblems. We can observe
that the best results for these problems are obtained for the moderately convexified scaling
matrices ATA and not too big penalty parameters ρ. The results indicate the difficulties to
generalize them to rules how to get a reliable choice for the parameters for other problems.
In this table these problem appears as “holes” in the area of successful runs. For example
the choice for the scaling matrices Σi = Bi(0.05) fails for ρ = 35 and ρ = 50, whereas the
runs for Σi = Bi(0.01) as well as for Σi = Bi(0.1) are successful for both selected penalty
parameters. Beginning with certain iteration numbers with iterates still far away from
the reference solution both failed runs only apply the pure dual update. According to the
global convergence strategy at some point the current solutions y should satisfy the coupling
equations. There is no observable progress w.r.t. this measure for these runs which are finally
stopped by the time limit.
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Finally, we comment on the runs for the parametrization ρ = 5 and σi = ATiAi + 10−2I

on problems O48.5 and O174.5. This parametrization appeared as one of the best for all
other time discretizations but fails to solve the problem for the finest discretization. However,
the reason of failure is difficult to isolate. Applied to Problem O48.5 the solver gets stuck
at some point unable to compute search directions that yield progress measured by the
merit function as well as compared to the reference solution. The run for Problem O174.5
is finished by the time limit as well but the distance of the last iterates to the reference
solution is already very small. However, the implementation is not able to improve the iterate
such that the termination criteria in Step 2 are satisfied. This numerical issue can partly
be attributed to the solution tolerance provided by Ipopt as solver for the decoupled stage
problems. Additionally, during the run some steps which would yield progress towards the
reference solution are refused by the merit function. This indicates that a better choice for
the penalty parameters for the merit function (5.13) could improve the performance here.
Indeed, choosing smaller penalty parameters initially leads to faster convergence, but still
the solution cannot be proven to be optimal by the termination criteria.

Further Tests and Outlook

The experiences made for the OPAL pipeline test case can be best summarized by the
nonsensical statement that the implementation of Algorithm 1 works well if it works well.
The results for the coarser time discretization show impressively lower iteration numbers
compared with Ipopt. The successful runs are almost all characterized by not requiring the
line search procedure of Step 4, i.e. taking only full steps. Whenever the third alternative
with only dual update is invoked more than very few times, what is likely the case for more
complicated instances, the algorithm does not provide acceptable performance on our test
cases.
In addition to the experiments for the OPAL pipeline, we applied our implementation

to the network test introduced in Section 4.2.2. The model was assembled for the coarse
discretization of one time step per hour on a time horizon of two days. The constant cost
profile that has been used for the earlier comparisons has been applied here as well. Even
for the relaxed limits on iteration number (25 000) and computation time (24 h) none of
the tested parametrizations of ALADIN has been able to compute an optimal solution. On
the other hand, Ipopt solved this problem in 40 iterations requiring less than 45 s. Most of
the tested runs are again canceled by the time limit, which already allows for a waste of
computation time. All final iterates are not even close to the reference solution. However, it
proved to be difficult to identify the reasons for these failures. The network test case differs
from the OPAL case in not starting from a feasible point. Only the stationary state of the
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network corresponding to the boundary values at the initial time point is available. The
boundary values, which are part of the description of the feasible sets Fi of the problems for
every stage, vary. Hence, the stationary state as starting point is not feasible w.r.t. these
constraints. In all cases, the line search frequently rejects the full step and only a partial
primal step or even the pure dual step is selected in Step 5. For many of these iterations
the QP (5.7) does not even provide a dual ascent direction which has to be computed by an
extra linear solve. Clearly, these problems are not part of the favorable instances, solved for
any small penalization with ρ without requiring a globalization routine. Since the ALADIN
algorithm shares many ideas with dual decomposition approaches, which are expected to
perform well far from the solution, we did not expect such a poor performance, anyway.
The failures could be related to different difficulties hidden in the abstract description of

Algorithm 1. In Step 1 the vector y is set to be the minimizer of the augmented stage problems.
There is no further specification which solution concept is required here. Nevertheless, for
the global convergence proof it is assumed that this step is equivalent to the evaluation
of the dual function of the problem (5.21). This indicates, that a global optimal solution
is necessary in this context. However, most NLP solvers that are usually applied to the
decoupled problems (5.4) compute solutions that may or may not be the global optimum.
Since they use local information only, no guarantees are made with respect to global solutions.
This could possibly yield to problems for the global convergence of the algorithm. As a
remedy so-called global solvers could be employed for the stage problems but this would
imply a much bigger computational effort for each stage problem and hence contradict the
assumption, that the small decoupled problems are solved rather fast.

Additionally, the theory at different points assumes that chosen constants are “sufficiently
large”. It is well known that satisfying these assumptions is involved from a numerical point
of view. It is usually not desired to choose these parameters very large initially since this
probably interferes with the algorithms performance. Finding the best strategy of when
and how to increase or even decrease these parameters is known to be very challenging.
We have already commented on this issue for ALADIN and presented our algorithmic
choices which however again depend on new parameters to select. Hence, the complexity is
further increased, which makes it still more difficult to understand the behavior. However,
in comparison with established solver implementations like Ipopt our implementation still
lacks heuristics and other techniques that improve the reliability of the algorithm, like e.g.
non-monotone techniques. The determination of the current active set and the associated
approximation for the Jacobian matrix of the constraints also deserves further attention since
we believe that in some iterations bad search direction are computed from the QP solution.
This may be related to the selection of the working set.

Hence, there are various open questions and tasks to make our implementation of Al-
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gorithm 1 a reliable alternative. Beside the above stated problems, the computational
performance could be improved. So far our experimental implementation does not solve the
decoupled parts of the algorithm in parallel. Additionally, problem specific linear solvers for
the gas network problem as presented in [64] could be tested as replacement for the general
purpose solver, currently used.
We selected the ALADIN approach because it would provide a good basis for further

structure aware solver development for the optimization on gas transmission networks. The
separation between the nonlinear stage models and the solution of the possibly approximated
coupling QP allows for a combination of more detailed stage descriptions with tractable
coupling QPs. In addition to the time structure, the gas network optimization problem also
inherits the structure of the underlying network, which could be exploited in this context.
Nevertheless, without a remedy for the reliability problems of the algorithm in general and,
in particular, of our ALADIN implementation, no further steps have been possible.



Chapter 6

Conclusions and Outlook

In this thesis a transient optimization model for gas networks has been presented and discussed.
We employed mathematical optimization techniques to this model for realistic networks to
evaluate the new proposal to use gas transmission networks as storage for electric energy.

The isothermal Euler equation account for the principal contribution to the model, charac-
terizing the flow inside pipelines. We showed that this governing PDEs satisfy the typical
assumption to be treated as strict hyperbolic system on a network. Based on these results
the finite volume framework ADER has been applied to the model. By a novel comparison
of these high order schemes with a finite difference approximation, commonly utilized for
the mathematical optimization on gas networks, we could show that the typical dynamics in
gas transmission networks is described sufficiently well by the approximation obtained by an
implicit box scheme. The numerical results showed visible differences only in the presence
of large variations in the solution which stay acceptably small. Thus, the usage of such
discretizations schemes, using implicit time steps, is justified and recommended for complete
transmission networks, especially comparing the computational effort, which make the finite
volume approach intractable in an optimization context, yet.

Using this optimization model, we have shown that the existing gas transmission infras-
tructure can play a role for storage of renewable electric energy. The presented case studies
indicate that the operation of electric compressor drives having the electricity network under
consideration can be beneficial even for just one compressor station. Nevertheless, we have
also presented results that show that the potential is strongly dependent on the price as
indicator as well as on the network structure and the capacity to operate the network away
from the state required for the normal operation. Of course, there are still various open
questions to complement. In addition to an embedding economic study it would be very
interesting to verify the promising results for real operation data of network operators. Having
a better data basis, the model could also be enhanced to include the network structure with
more details. However, we are positive that the essential conclusion has not to be changed
incorporating a more detailed network model. Moreover, there are various directions to
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extend the model coverage on the neglected effects. One could include to the model, for
example, temperature effects, discrete control decisions as well as the effects of uncertainty
concerning the energy prices and the external in- and outflow to the networks. All these lead
to very challenging optimization problems that require further investigation.
Additionally, our implementation of the distributed algorithm ALADIN [39] and its

application to the optimization problem, trying to exploit the problem structure originating
from the underlying time discretization, has been presented. This algorithm was selected
because of its potential to serve as a starting point for the development of structure exploiting
solvers not only for the transient optimization of gas networks but also others fitting in a
separable structure. With our implementation we could show promising performance of this
approach compared to an established interior-point solver on models for a simple network
and coarse time discretizations. On the other hand, poor reliability has been observed for
finer discretizations and furthermore it has not been possible to apply the implemented
algorithm successfully to more complicated networks. The algorithm’s performance appears
to be strongly related to the involved choice of parameters and subalgorithms which makes
its application to challenging problems very difficult.
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