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Abstract:Thebig coneof every smoothprojective surface X admits anatural decomposition into Zariski cham-
bers. The purpose of this note is to give a simple criterion for the interiors of all Zariski chambers on X to be
numerically determined Weyl chambers. Such a criterion generalizes the results of Bauer–Funke [4] on K3
surfaces to arbitrary smooth projective surfaces. In the last section, we study the relation between decompo-
sitions of the big cone and elliptic fibrations on some surfaces.
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1 Introduction
The main purpose of this note is to study numerical properties of the decomposition of the big cone of
smooth projective surfaces into Zariski chambers, i.e. the decomposition induced by the variation of the
Zariski decomposition of divisors over the big cone. Recall that, given a pseudo-effective ℝ-divisor D on
a smooth projective surface X, there exist effectiveℝ-divisors PD and ND such that

D = PD + ND (1.1)

and the following conditions are satisfied
(Z1) the divisor PD is nef,
(Z2) either ND = 0 or ND = ∑si=1 αiCi, where αi > 0, and the intersection matrix [Ci .Cj]i,j=1,...,n is negative-

definite,
(Z3) one has PD .Ci = 0 for all i = 1, . . . , s.
The divisor PD (resp. ND) in (1.1) is called the positive (resp. the negative) part of D. One can show (see [16]
or [3] for a short proof in modern language) that the Zariski decomposition (1.1) of the divisor D is uniquely
determined by conditions (Z1), (Z2) and (Z3). Moreover, all sections of D come in effect from PD, which can
be expressed in terms of the volume vol(D) = vol(PD) (see [10] for details).

Given an algebraic surface X, by [5, Theorem 1.2], the variation of the Zariski decomposition over the
big cone Big(X) leads to the Zariski decomposition of the cone Big(X). Indeed, suppose that P is a big and nef
divisor. Recall the following definition (see [5, p. 214]).
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Definition 1 (Zariski chamber). The Zariski chamber ∑P associated to P is defined as

ΣP := {B ∈ Big(X) : irreducible components of NB are the only irreducible curves
on X that intersect P with multiplicity 0}.

By [5, Theorem 1.2], Zariski chambers yield a locally finite decomposition of the cone Big(X) into locally
polyhedral subcones such that the support of the negative part of the Zariski decomposition of all divisors in
the subcone is constant.

On the other hand, it follows immediately from property (Z2) (see (1.1)) that the negative part ND of
the Zariski decomposition is either trivial or its support consists of negative curves, i.e. curves with negative
self-intersection. One can use such curves to define another decomposition of the big cone. Let N(X) be the
set of all irreducible negative curves on X. Each curve C ∈ N(X) defines the hyperplane in the Néron–Severi
space NSℝ(X) of X

C⊥ = {D : D.C = 0} ⊂ NSℝ(X),

and the decomposition of the set
Big(X) \ ⋃

C∈N(X)
C⊥ (1.2)

into connected components yields a decomposition of (an open and dense subset of) the cone Big(X) into
subcones.

Definition 2 (Simple Weyl chamber). Connected components of the set (1.2) are called simpleWeyl chambers
of X.

Traditionally the (simple) Weyl chambers are defined if X is a surface carrying only (−2)-curves as negative
curves, see e.g. [4]. By a slight abuse of terminology we extend this definition to arbitrary surfaces and arbi-
trary negative curves.

It is natural to compare the two chamber decompositions. Since the Zariski chambers need not in general
be either open or closed, whereas Weyl chambers are by definition open, it is natural to ask under which
condition the interior of each Zariski chamber is a simple Weyl chamber?

If it happens that all interiors of Zariski chambers coincide with simple Weyl chambers, then we say that
Zariski chambers are numerically determined (by the sign of the intersection product with negative curves).
A condition for Zariski chambers on K3 surfaces to be numerically determined was given in [4, Theorem 1.2].
Here we prove the following criterion, which is valid for all smooth projective surfaces.

Theorem 3 (A criterion for Zariski chambers to be numerically determined). Let X be a smooth projective sur-
face. The following conditions are equivalent:
(a) the interior of each Zariski chamber on X is a simple Weyl chamber,
(b) if two irreducible negative curves C1 ̸= C2 on X meet (i.e. C1.C2 > 0), then

C1.C2 ≥ √C21 ⋅ C
2
2.

Remark 4. In practice condition (b) in Theorem 3means that the support of the (non-trivial) negative part of
the Zariski decomposition of every big divisor on X consists of pairwise disjoint curves. Indeed, the condition
in question implies that if the intersection matrix of two irreducible negative curves C1, C2 ⊂ X is negative-
definite, then it is diagonal.

After proving Theorem 3 in Section 2, we study the relation between elliptic fibrations and Zariski chambers
on Enriques and K3 surfaces in Section 3. It should be mentioned, that this note was motivated and inspired
by the earlier results of Bauer and Funke [4] on the K3 case.

Convention. In this note we work over the base field ℂ. Surfaces over algebraically closed field of arbitrary
characteristic are considered only in Lemma 14.

Elliptic fibrations are not assumed to have a section. For basic facts on various types of divisors and cones
associated to a smooth complex variety (resp. on elliptic fibrations) the reader should consult [10] (resp. [13]).

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 13.04.18 09:12



S. Rams and T. Szemberg, When are Zariski chambers numerically determined? | 1161

2 Proof of Theorem 3
Proof of Theorem 3. The implication (a)⇒ (b):We argue by contraposition. Let C1, C2 be negative curves on X
such that C1.C2 ̸= 0 and the matrix [Ci .Cj]i,j=1,2 is negative definite. To simplify our notation we put

a := −C21, b := −C22 and c := C1.C2.

Then we have a, b, c > 0 and ab > c2.
We will construct two big divisors D1 and D2 such that

supp(ND1 ) = supp(ND2 ) = {C1, C2}, (2.1)

the curves C1, C2 are the only irreducible curves on X that meet the positive part PD1 (resp. PD2 ) with multi-
plicity 0, and

D1.C1 < 0, D1.C2 < 0 but D2.C1 > 0, D2.C2 < 0. (2.2)

Let H be an ample divisor on X. For k ∈ ℕ we define the following divisors:

Tk = (ab − c2)H + k[(b(H.C1) + c(H.C2))C1 + (a(H.C2) + c(H.C1))C2].

Then, by direct computation, we have

T1.C1 = T1.C2 = 0 and Tk .C1 < 0, Tk .C2 < 0 for k ≥ 2. (2.3)

In particular, T1 is a nef divisor. Moreover, by definition

for all irreducible curves C ⊂ X such that C ̸= C1, C2 we have T1.C > 0. (2.4)

Let D1 = T2. Then

D1 = T1 + [(b(H.C1) + c(H.C2))C1 + (a(H.C2) + c(H.C1))C2]

is the Zariski decomposition of D1. Indeed, by (2.4) and (2.3) the divisor T1 satisfies conditions (Z1) and (Z3).
The choice of the curves C1, C2 implies that condition (Z2) is satisfied. Since the Zariski decomposition of D1
is uniquely determined by (Z1)–(Z3), the claim follows.

Finally, we define

D2 := (ab − c2)H + (b(H.C1) + c(H.C2) + c)C1 + (a(H.C2) + c(H.C1) + 2a)C2.

Then, by direct computation one gets D2.C1 = ac > 0 and D2.C2 = c2 − 2ab < 0. Moreover, the choice of the
curves C1, C2 combined with (2.4), (2.3) implies that D2 = T1 + (cC1 + 2aC2) is the Zariski decomposition
of D2, so that supp(ND2 ) = {C1, C2}.

To complete the proof, observe that (2.1) and (2.4) yield that D1, D2 ∈ ∑T1 (cf. Definition 1). On the other
hand (2.2) and (2.4) yield that D1 (resp. D2) belongs to a Weyl chamber (i.e. it does not belong to C⊥ for an
irreducible curve C ⊂ X). The two Weyl chambers in question do not coincide by (2.2).

The implication (b)⇒ (a): The opposite implication is elementary. Let D be a big divisor with Zariski
decomposition (1.1) that belongs to the interior of the chamber ΣP for a big and nef P.

By [5, Proposition 1.8] the only irreducible curves C ⊂ X such that C.PD = 0 are the components of the
negative part ND. In particular, one has

D.C ≥ PD .C > 0 for every irreducible curve C ⊂ X such that C ⊈ supp(ND).

Moreover, [5, Proposition 1.8] yields that the components of supp(ND) are precisely the irreducible curves
that meet P with multiplicity zero.

Recall that the support of ND consists of mutually disjoint curves C1, . . . , Cs (see Remark 4). Conse-
quently, one obtains

D.Ci = (PD + ND).Ci = αiC2i < 0,

which completes the proof.

As an immediate consequence one obtains the following corollary, that is a direct generalization of [4, Theo-
rem 1.2].
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Corollary 5. Let X be a smooth projective surfacewith kod(X) = 0. Then the following conditions are equivalent:
(a) the simple Weyl chambers are the interiors of Zariski chambers on X,
(b) there is no pair C1, C2 of smooth rational curves on X such that C1.C2 = 1.

Proof. Recall that the only irreducible curves on X with negative self-intersection are (−2)-curves. The latter
are smooth and rational. Theorem 3 immediately yields the claim.

In fact, a stronger statement holds for Enriques surfaces. In order to prove itweneed the followingobservation
that is generally attributed to E. Looijenga.

Observation 6. Let r be class of a nodal curve on an Enriques surface X and let x ∈ Num(X) satisfy the condi-
tions x2 = −2 and (x − r) ∈ 2Num(X). Then (±x) is effective.

Proof. Let π : Y → X be the universal K3-cover of X and let x = r + 2y for a class y ∈ Num(X). Since π is étale,
we have π∗(r) = r� + r��, where r�, r�� are classes of smooth rational curves. Therefore, we have

π∗(x) = (r� + π∗(y)) + (r�� + π∗(y)).

Observe that (r� + π∗(y))2 = −2. Indeed, we have

−2 = x2 = (r + 2y)2 = r2 + 4r.y + y2,

which yields r.y + y2 = 0. The claim then follows from an elementary computation.
Thus, by Riemann–Roch, the class (r� + π∗(y)) is either effective or anti-effective. The assertion of the

observation follows from the equality x = π∗(r� + π∗(y)).

After these preparations we can prove the following stronger version of Corollary 5 for Enriques surfaces.

Proposition 7. Let X be an Enriques surface. Then the following conditions are equivalent:
(a) Zariski chambers on X are numerically determined,
(b) for all nodal curves C1, C2 ⊂ X, the intersection number C1.C2 is even.

Proof. The implication (a)⇒ (b): We assume to the contrary that X contains two nodal curves C1 and C2 with
C1.C2 odd. Since we have assumed (a) to hold, we infer from Corollary 5 that C1.C2 ≥ 3.

By [7, Remark 4.3] (see also [6]) there exists a birational surjective morphism φ : X → S, where S ⊂ ℙ5

is a degree-10 surface with at most rational double points as singularities (a Fano model of X). Furthermore,
it follows from [7, Proposition 4.2] and [7, Remark 4.7] that there exists an isometry mapping Num(X) onto
the Enriques lattice T2,3,7 = E8 ⊕ U such that the classes of C1, C2 are equivalent modulo 2Num(X) to classes
that belong to the 496 roots listed in [7, Remark 4.7]. By Observation 6, we can assume both classes to be
effective. Moreover, Corollary 5 implies that the surface X contains no pairs of smooth rational curves that
meet transversally in exactly one point, so both classes in question are represented by irreducible rational
curves C�1, C

�
2.

On one hand, by construction the intersection number C�1.C
�
2 is odd, so we have C

�
1.C

�
2 ≥ 3. On the other

hand, direct computation of intersection numbers of classes listed in [7, Remark 4.7] yields C�1.C
�
2 ≤ 2. (To

give a more geometric justification of the last inequality, observe that we compute intersection numbers of
smooth rational degree-d curves on the Fano model S ⊂ ℙ5, where d ≤ 4 – see [7, Remark 4.7]). In this way
we obtain a contradiction and the proof is complete.

The implication (b)⇒ (a) follows immediately from Corollary 5.

We end this section with two examples: degree-d hypersurfaces in ℙ3 for d = 3 and d ≥ 4.

Example 8. Let X3 be a smooth cubic surface in ℙ3. Obviously, the only negative curves on X3 are the
27 lines L and one has L2 = (−1). If two lines L1 ̸= L2 on X3 meet, then one has

L1.L2 = 1 = √L21 ⋅ L
2
2.

Thus Zariski chambers on X3 are numerically determined by Theorem 3. This follows also from [5, Proposi-
tion 3.4].
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The next example generalizes [4, Proposition 3.1].

Example 9. Let Xd ⊂ ℙ3 be a smooth surface of degree d ≥ 4which contains two intersecting lines L1, L2 (e.g.
the degree-d Fermat surface, see [14]). By adjunction, we have

L21 = L
2
2 = (−d + 2),

so condition (b) in Theorem3 is not satisfied for the intersectionmatrix of the lines in question. Hence, Zariski
chambers on Xd are not numerically determined.

3 Zariski chambers and elliptic fibrations
In this section we characterize the Enriques surfaces for which Zariski chambers are numerically determined
in terms of elliptic fibrations, and explain why no such characterization is possible for K3 surfaces.

Let X be an Enriques surface. Recall that for such surfaces theWeyl decomposition is given by irreducible
(−2)-curves, i.e. simple roots. A general Enriques surface carries no (−2)-curves, so both decompositions of
Big(X) become trivial. An Enriques surfaces is called nodal if and only if it contains a smooth rational curve.
Moreover, a nodal Enriques surface X is called general nodal if and only if any two (−2)-curves on X are
congruent modulo (2Num(X)) (see e.g. [9, Section 5], [11]).

After these preparations we show the following proposition.

Proposition 10. Let X be an Enriques surface. Then, the following conditions are equivalent:
(a) the simple Weyl chambers are the interiors of Zariski chambers on X,
(b) every fiber of every elliptic fibration on X has at most two components.

Proof. The implication (a)⇒ (b): By the Kodaira classification of singular fibers (see e.g. [13, Section 4]), if
a fiber of an elliptic fibration on X has at least three components, then the fiber in question contains two
smooth rational curves C1, C2 that meet transversally in exactly one point. Corollary 5 completes the proof.

The implication (b)⇒ (a): Suppose that a Weyl chamber on X is not the interior of any Zariski chamber.
Let C1, C2 be two (−2)-curves on X such that C1.C2 = 1 (see Corollary 5) and letM be the orthogonal comple-
ment of span(C1, C2) in the lattice Num(X) = E8 ⊕ U, where U stands for the hyperbolic plane.

By definition and the Hodge Index Theorem, M is a rank-8 lattice of index (1, 7), so we can apply the
Meyer Theorem (see e.g. [15, Corollary 2 on p. 43]) and [2, Proposition 16.1 (ii)] to find a primitive class

D ∈ M such that D2 = 0 and |D| ̸= 0. (3.1)

Let π : Y → X be the universal K3-cover of X. Recall that every smooth rational curve E on X defines the
Picard–Lefschetz reflection:

sE : H2(X,ℤ) ∋ D Ü→ D + (D.E)E ∈ H2(X,ℤ).

Moreover, the counterimage of E under π decomposes into two disjoint smooth rational curves E+, E−. Anal-
ogously, we have the Picard–Lefschetz reflection sE+ defined by E+ on H2(Y,ℤ) (see [2, Section VIII.1]).

By [2, LemmaVIII.17.4], there exist smooth rational curves E1, . . ., Ek on X such that for the composition
of Picard–Lefschetz reflections pX := (sE1 ∘ ⋅ ⋅ ⋅ ∘ sEk ) we have

pX(D) is a half-pencil of an elliptic fibration on X. (3.2)

We put pY := (sE+1 ∘ sE−1 ∘ . . . ∘ sE+k ∘ sE−k ). As one can check (see e.g. [12, Section 2.3]) we have
pY ∘ π∗ = π∗ ∘ pX and π∗(pY (C+i )) = pX(Ci) for i = 1, 2. (3.3)

To simplify our notation, we label the four curves C±1, C
±
2 on the K3 surface Y in such way that C+1 .C

+
2 = 1.

Since (pY (C+i ))
2 = −2 for i = 1, 2, and (pY (C+1) + pY (C

+
2))

2 = −2, we can always assume that |pY (C+1)| ̸= 0
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and |pY (C+1 + C
+
2)| ̸= 0. Recall that Picard–Lefschetz reflections are isometries. Thus, from (3.3) and (3.2)

we infer that pX(C1 + C2), pX(C1) are effective divisors on X, and their supports are contained in a fiber of
the elliptic fibration given by |2pX(D)|. Finally, the equality pX(C1).pX(C1 + C2) = −1 implies that the fiber
in question is reducible, but it cannot be of Kodaira type I2. The Kodaira classification ([13, Section 4])
completes the proof.

As a direct consequence of the above proposition we obtain the following corollary.

Corollary 11. On every general nodal Enriques surface X the simple Weyl chambers are the interiors of Zariski
chambers.

Proof. Assume that a Weyl chamber on X is not the interior of any Zariski chamber. Let C1 and C2 be two
(−2)-curves on X such that C1.C2 = 1. From C1.(C2 − C1) = 3 we infer that C1 and C2 are not congruent mod-
ulo (2Num(X)) and the proof is complete.

It should be emphasized, that a statement analogous to Proposition 10 does not hold for elliptic K3 surfaces,
as the following example shows.

Example 12. (cf. [4, Section 3]) Let Y4 ⊂ ℙ3(ℂ) be a smooth quartic surface, such that
(i) a plane cuts the quartic Y4 along a conic C and two lines l�, l��,
(ii) the Picard group Pic(Y4) is generated by C, l�, l��.
Obviously, the line l� (resp. l��) defines the elliptic fibration |OY4 (1) − l�| (resp. |OY4 (1) − l��|), but such a fibra-
tion has a unique reducible fiber and the latter is of Kodaira type I2.

Moreover, by [4, Proposition 3.1 (ii)] the curves C, l�, l�� are the only (−2)-curves on Y4. Since the conic C
meets each line with multiplicity two, no fiber of an elliptic fibration on Y4 has more than two components. On
the other hand, the Zariski and Weyl decompositions on Y4 do not coincide by [4, Proposition 3.1 (iv)].

Remark 13. (i) Recall that, by [9, Theorem 2], a nodal Enriques surfaces is general nodal if and only if every
elliptic fibration on X has at most one reducible fiber that consists of two irreducible components. Thus,
Corollary 11 follows also from Proposition 10 and [9, Theorem 2].

(ii) It is well known that, if π : Y → X is the K3-cover of a general nodal Enriques surface X, then we
have ρ(Y) = 11, where ρ(Y) stands for the Picard number of Y. Standard arguments yield that if none of the
conditions of Proposition 10 is satisfied, then we have ρ(Y) ≥ 12.

(iii) The K3 surface of Example 12 satisfies the condition ρ(Y4) = 3. An analysis of the proof of Proposi-
tion 10 (see (3.1)) shows that no similar example with a K3 surface of Picard number ≥ 7 can be constructed.
Indeed, one can use the Meyer Theorem and Picard–Lefschetz reflections again.

(iv) Obviously, given an elliptic K3 surface with a section and a reducible fiber of the elliptic fibration in
question, [4, Theorem 1.3] implies that Zariski chambers are not numerically determined.

Recall that the results of [5] and [4] were formulated only for complex varieties. On the other hand, the Zariski
decomposition can be defined for any pseudo-effectiveℚ-divisor on a non-singular projective surface over an
algebraically closed field of an arbitrary characteristic (see e.g. [1, Theorem 14.14]), so it seems very natural
to ask whether our results remain valid for surfaces defined over an algebraically closed field of positive
characteristic.

One can easily see that the constructions of divisors in the proof of Theorem 3 do not require the assump-
tion that the ground field is ℂ. On the other hand, the proof of Proposition 10 relies on the study of some
divisors on the K3-cover, so it cannot be repeated for all Enriques surfaces over algebraically closed fields.
Below, we follow the advice of an anonymous referee and give a characteristic-free proof of Proposition 10.
Obviously, since we deal with Enriques surfaces over fields of any characteristic, we have to consider quasi-
elliptic fibrations. More precisely, we prove the following lemma (for the discussion of genus-1 pencils on
Enriques surfaces the reader can consult [8, p. 172]).

Lemma 14. Let X be an Enriques surface over an algebraically closed K. Assume that X contains a pair of
nodal curves C1 and C2 such that C1.C2 = 1. Then there exists a genus-1 pencil on X with a singular member
that consists of at least three components.
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Proof. We put R := C1 + C2 and define (cf. [6, p. 589])

Φ(R) := MinE{E.R : |2E| is a genus-1 pencil}.

We repeat verbatim the first part of the proof of [6, Lemma 4.1.1] for the nodal divisor R to obtain the inequal-
ity

Φ(R) < 2.

If Φ(R) = 0, the claim of the lemma follows directly from the classification of singular fibers of genus-1
fibrations (see e.g. [8, p. 288]).

Therefore, (interchanging the curves C1 and C2 when necessary) we can assume that Φ(R) = 1 and there
exists a half-fiber E such that

E.C1 = 1 and E.C2 = 0.

If we put (e1, e2, e3) := (E, E + C1, E + C1 + C2), thenwe have ei .ej = (1 − δi,j), so e1, e2, e3 form an isotropic
3-sequence. It follows from [8, Corollary 2.5.6] that such a sequence can be extended to an isotropic
10-sequence (e1, . . . , e10).

We claim that none of e3, . . . , e10 are nef. Indeed, suppose that ej is nef for some j > 3. Then by the
definition of an isotropic sequence we have

ej .E = ej .(E + C1) = ej .(E + C1 + C2) = 1.

The latter implies ej .(C1 + C2) = 0 and Φ(R) = 0. A contradiction.
Thus, by [8, Lemma 3.3.1], we can assume that

e4 = E + C1 + C2 + C3,

where C3 is a nodal curve such that C2.C3 = 1. Recall that the sequence (e1, . . . , e10) is isotropic, so we have

E.C2 = E.C3 = 0.

Thus |2E| is a genus-1 pencil with a singular member that contains the A2-configuration C2 + C3. The claim
of the lemma follows from the classification of singular fibers of genus-1 fibrations.

Observe that the proof of the above lemma cannot be repeated for K3 surfaces, so it does not yield
Remark 13 (iii).
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