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Utility Theory as a Method to Minimise the Risk in
Deformation Analysis Decisions

Abstract: Deformation monitoring usually focuses on the
detection of whether the monitored objects satisfy the
given properties (e.g. being stable or not), and makes fur-
ther decisions to minimise the risks, for example, the con-
sequences and costs in case of collapse of arti�cial objects
and/or natural hazards. With this intention, a methodol-
ogy relying on hypothesis testing and utility theory is re-
viewed in this paper. The main idea of utility theory is
to judge each possible outcome with a utility value. The
presented methodology makes it possible to minimise the
risk of an individual monitoring project by considering
the costs and consequences of overall possible situations
within the decision process. It is not the danger that the
monitored object may collapse that can be reduced. The
risk (based on the utility values multiplied by the danger)
can be described more appropriately and therefore more
valuable decisions can be made. Especially, the opportu-
nity for the measurement process to minimise the risk is
an important key issue. In this paper, application of the
methodology to two of the classical cases in hypothesis
testing will be discussed in detail: 1) both probability den-
sity functions (pdfs) of tested objects under null and al-
ternative hypotheses are known; 2) only the pdf under the
null hypothesis is known and the alternative hypothesis is
treated as the pure negation of the null hypothesis. After-
wards, a practical example in deformation monitoring is
introduced and analysed. Additionally, the way in which
the magnitudes of utility values (consequences of a de-
cision) in�uence the decision will be considered and dis-
cussed at the end.
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1 Introduction
Deformation monitoring usually focuses on the detection
of whether the monitored objects satisfy the given prop-
erties, for example, whether a bridge is stable or not, and
furthermore, it makes decisions in order to meet the need
of society to minimise negative environmental impacts or
risks, for example, the consequences and costs in case
of collapse of arti�cial objects and/or natural hazards.
An optimal con�guration for the measurement setup and
all other decisions should therefore review and rate the
risks of an individual monitoring project. Nowadays, the
methodology in many engineering disciplines and math-
ematically founded decisions is usually based on proba-
bilities and signi�cance levels but not on the risk (conse-
quences or costs) itself.

In the classical case, hypothesis testing serves to
check the available information on the (unknown) param-
eters [3]. In linear models, two decisions are possible. The
two assumptions are typically called the null hypothesis
(stable object) and the alternativehypothesis (unstable ob-
ject), respectively. The result of the test is the acceptance or
rejection of the prede�ned hypotheses. A typical example
is the detection of signi�cant movements of a monitored
object. The choice of the null or alternative hypothesis is
based solely on probabilities, which have more or less no
reference to practical applications. In cases in which the
same probabilities appear in the acceptance and rejection
regions, wrong decisions can be made and each decision
may lead to dramatically di�erent consequences.

One proper way to consider consequences within the
decision process is through the so-called "utility theory"
in decision making. It allows the consideration of the con-
sequences or costs of decisions in order to meet the real
requirements [4]. In this case, possible decisions are eval-
uatedwith cost functions for Type I and Type II errors, and
the �nal choice of themost bene�cial one leads to themin-
imum costs or consequences. The methodology was ap-
plied to a slide slope monitoring project in one of our pre-
vious researches, in a case where no statistical informa-
tion about the behaviour of the object was available and
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the assessment for a critical situation had to be based on
experience and/or expert knowledge [6].

As a continuation of the previous research,
methodology-embedded hypothesis testing and utility
theory is applied to the other two classical cases: 1) both
probability density functions (pdfs) of the tested objects
under null and alternative hypotheses are known; 2) only
the pdf under the null hypothesis is known and the alter-
native hypothesis is the pure negation of the null hypoth-
esis. Finally, an example of monitoring of a steel part will
be given.

2 Mathematical de�nition of the
situations

2.1 Possible situations in deformation
monitoring

The availability of initial information on a monitored ob-
ject, for example a bridge or slide slope, can di�er. In ac-
cordance with the physical model or material parameters
of a speci�cmonitored object, there exist threemain cases.
Due to the lack of space, and for a better understanding,
only these three main cases are considered within this pa-
per.

The most optimal situation is the case when the phys-
ical model [e.g. Finite Element Model (FEM)] or other in-
formation is well known to a certain degree. Then the sta-
tistical behaviour of the monitored object under the null
and alternative hypotheses can be statistically depicted
(CASE I).

If a physical model can be provided, but only (statis-
tical) statement about the behaviour of the stable object
is available (e.g. the objects under the null hypothesis are
prevailing), the non-stable objects are modelled as pure
negation of the statistically de�ned null hypothesis in this
case (CASE II). When the monitored targets are older ob-
jects, usually no physical model is available because the
material parameters and exact object geometry are un-
known. Therefore no statistical information about the be-
haviour of the object is available and the assessment for a
critical situation has to be based on experience and/or ex-
pert knowledge (CASE III). This situation should generally
be strictly avoided.

The uncertainty in the loads, geometry, material pa-
rameters, and so on, leads to the case in which the deter-
mined stresses, internal forces, or displacements are un-
certain values too. Generally speaking, the uncertainty in
the assessment of the behaviour of the monitored objects

and of the geodetic measurements is taken into consider-
ation. Therefore, the null and alternative hypotheses are
speci�ed with uncertainty. Both of the above-mentioned
uncertainty components are mainly modelled with the aid
of pdfs (ρ(x) with x ∈ R). Among the three mentioned
cases, only the null and alternative hypotheses in CASE III
are modelled with intervals. Since this situation was dis-
cussed in detail in our previous papers, for example [6]
and [14], this case will not be discussed further; the in-
terest of this paper is in the �rst two cases. For more de-
tailed discussion of CASE III, please refer to [7]. Strategies
for constructing fuzzy numbers or fuzzy intervals based on
expert knowledge are given by [7] and [10].

2.2 Determination of Probabilities

For each possible situationmentioned above, de�ning the
probability of its occurrence is the prerequisite for any fur-
ther decision making and/or analysis steps. In general,
this requires a multidimensional treatment of a structure
and the corresponding situations. But usually this multi-
dimensional case is mapped to a one-dimensional deci-
sion with the above-mentioned two alternatives (e.g. [3]).
Therefore, the paper shows only the one-dimensional
treatment of all methods. For all three cases, the uncer-
tainty of the measured situation is described by the pdf:
T ∼ ρT (x). But due to the space limitation, the probabil-
ity determination for CASE III will not be elaborated in this
paper. The related strategy was discussed in [9] and [5].

CASE I

This optimal situation is based on the richness of the
knowledge of, for example, the physical model or other
information. Take a steel part as a monitored object. It is
assumed that the target object can be manufactured by
either of two machines, the null hypothesis is that the
monitored object (the steel part) is manufactured by ma-
chine I; the alternative hypothesis is that it is manufac-
tured by machine II. Then the statistical behaviour of the
monitored object under the null and alternative hypothe-
ses can be statistically delineated. Due to the uncertainty
of the input parameters, the knowledge of the behaviour
of an object is also uncertain. Therefore the de�nitions of
the null and alternative hypothesesmust be uncertain val-
ues. Within the paper this uncertainty should be provided
by the pdf, where ρH0

(T) and ρH1
(T) stand for the pdfs of

objects that satisfy the null and alternative hypotheses,
respectively. Then the probability P (T |H0 ) that the mea-
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sured T ∼ ρT (x) belongs to the null hypothesis is

P (T |H0 ) =
∫
R ρH0 (x) ρT (x) dx∫

R ρH0 (x) dx +
∫
R ρH1 (x) dx

, (1)

and similarly, the probability P (T |H1 ) that the measured
T ∼ ρT (x) belongs to the alternative hypothesis is

P (T |H1 ) =
∫
R ρH1 (x) ρT (x) dx∫

R ρH0 (x) dx +
∫
R ρH1 (x) dx

= 1 − P (T |H0 ) .

(2)

CASE II

The existence of a physical model of the monitored object
allows the behaviour of the object under speci�c loads and
so on to be predicted. Regarding the uncertainty, for rea-
sons similar to those introduced in CASE I, ρH0

(T) is also
provided as the pdf of the object under the null hypothe-
sis. If no further information is available, the probability
P (T |H0 ) that the measured T ∼ ρT (x) belongs to the null
hypothesis is

P (T |H0 ) =
∫
R ρH0 (x) ρT (x) dx∫

R ρH0 (x) dx
. (3)

When no knowledge about the alternative hypothesis
is available, it is generally treated as the pure negation of
the null hypothesis and the probability P (T |H1 ) that T ∼
ρT (x) belongs to the alternative hypothesis is

P (T |H1 ) = 1 − P (T |H0 ) . (4)

From the computational aspect, the integral for prob-
ability is hard to solve. Later in the paper, convolution for-
mulas will be treated as a solution for the example.

3 Test with the Consideration of
Costs

3.1 General Idea of Utility Theory

Within the paper, the so-called utility theory is introduced
for the currentmethodology. The simplest case in decision
making is where the situation resulting from each deci-
sion is known exactly, and the preferred situation can be
decided through simple comparisons. But generally only
the probabilities of situations can be predicted. The idea
of utility theory allows the consideration of consequences
or costs in decision making in order to meet the real re-
quirements (e.g. [4]). In this case, possible decisions are

evaluated with cost functions for Type I and Type II errors.
Finally, the decision leading to the minimum costs or con-
sequences is chosen as the most bene�cial one.

The classical case of decisionmaking in geodesy is so-
called hypotheses testing with two possible alternatives
(acceptance or rejection of the null hypothesis). Four pos-
sible alternatives according to the test hypotheses (H0 or
H1) are displayed in Table 1.

The utility value is ameasure of the consequences that
occur as a result of a decision. It is well known that those
decisions leading to a wrong assessment of the real situa-
tion lead to higher costs and therefore to lower utility val-
ues. Take bridge deformation monitoring as an instance.
If a bridge is classi�ed as unstable but in reality it is sta-
ble (Type I error), then the costs of, for example, the dy-
namic stabilisation of the bridge are determined as the cor-
responding utility values. There are four utility values cor-
responding to four possible test situations:
– U00: Utility of a correct choice of the null hypothesis;
– U01: Utility of an incorrect choice of the alternative hy-

pothesis (Type I error);
– U11: Utility of a correct choice of the alternative hy-

pothesis;
– U10: Utility of an incorrect choice of the null hypothe-

sis (Type II error).

Considering that the correct decision is always better
than the incorrect one, it can be derived that U00 > U10

and U11 > U01.

3.2 Test Strategy with the Aid of Cost
Function

This section presents the mathematical procedure to iden-
tify the most bene�cial decision with the aid of utility the-
ory. In general, the case is that situations are not always
explicit, and in practice, often only the probability of each
situation occurring can be predicted. Then the decision
making cannot be derived by simple comparison and pick-
ing of the preferred situation. Assume that ρ0(T) and ρ1(T)
are probability densities of a test value T, for objects sat-
isfying the null and alternative hypotheses, respectively.
The probability p0(T) = P(H0|T) for T which satis�es the
null hypothesis can be determined by Bayes’ Theorem [2]:

p0(T) =
P (T |H0 ) · P (H0)

P (T |H0 ) · P (H0) + P (T |H1 ) · P (H1)

= ρ0(T) · P (H0)
ρ0(T) · P (H0) + ρ1(T) · P (H1)

.
(5)
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Table 1. Possible situations resulting from the test decision.

Situations Acceptance of H0 Rejection of H0

H0 is true Correct choice of the null hypothesis Incorrect choice of the alternative hypothesis (Type I
error)

H0 is false (H1is true) Incorrect choice of the null hypothesis (Type II error) Correct choice of the alternative hypothesis

where P(H0) and P(H1) represent the probabilities of a ran-
domly chosen object satisfying the null or alternative hy-
pothesis.

Meanwhile, probability p1(T) = P(H1T) that T satis-
�es the alternative hypothesis can be determined as

p1(T) = 1− ρ0(T) · P (H0)
ρ0(T) · P (H0) + ρ1(T) · P (H1)

= 1−p0(T). (6)

According to [4], the expected utilities of the null and
alternative hypotheses, written as K0 and K1, can be cal-
culated with the aid of probabilities and utility values:

K0 = p0(T)U00 + p1(T)U10 = p0(T) (U00 − U10) + U10,
K1 = p0(T)U01 + p1(T)U11 = p0(T) (U01 − U11) + U11.

(7)
Since the �nal decision that will result in the largest

expected utility (the minimum costs) of the hypothesis is
made, the null hypothesis is chosen if

p0(T)U00 + p1(T)U10 ≥ p0(T)U01 + p1(T)U11 (8)

holds. It is known from the last section that U00 > U01 and
U11 > U10; then Equation (8) can be simpli�ed to

p0(T)
p1(T)

= U11 − U10
U00 − U01

. (9)

Substituting the Bayes equation (5) leads to

ρ0 (T)
ρ1 (T)

≥ r0 = (U11 − U10) p1(T)
(U00 − U01) p0(T)

. (10)

When the right hand side of Equation (10) is known,
the decision is made by comparison with the existing
threshold r0. Then, the so called Neyman-Pearson crite-
rion can be summarised as follows:
– the null hypothesis is selected if ρ0 (T)ρ1 (T)

≥ r0 holds,

– otherwise, the alternative hypothesis is selected if
ρ0 (T)
ρ1 (T)

< r0 holds.

In the monitoring concept, regulatory thresholds for
critical movements play a key role nowadays. When tol-
erances are given, a production or inspection process can
be checked by measurements with detection of deviation
between the actual and nominal dimensions of an object.

The nominal dimension is de�ned by lower and upper
bounds, which are known as regulatory thresholds. Using
Equation (7), Equation (8) can also be written as

p0(T) (U00 − U10) + U10 ≥ p0(T) (U01 − U11) + U11. (11)

The rearranged form is

p0(T) ≥ p0,critical =
U11 − U10

U00 − U10 − U01 + U11
. (12)

If the probability p0(T) is larger than or equal to the critical
probability p0,critical , the null hypothesis is selected.

The decisions for regular thresholds can be extended
to the linguistic imprecision or fuzziness of the formu-
lated hypotheses, when decision making deals with rea-
soning that is more approximate rather than �xed and ex-
act. It is also possible to consider non-stochastic uncer-
tainties, such as systematic measurement errors. For more
information on the strategy for non-stochastic measure-
ment uncertainties and linguistic uncertainty for regula-
tory thresholds, the reader can refer to [9] and [1].

For geodetic monitoring with regular thresholds, de-
tailed methodology and examples have been discussed,
for example in [6] and [14]. In the following section, an ex-
ample regarding themonitoring of steel parts will be intro-
duced.

4 Example: Monitoring of a
Machine Part

Suppose we have a steel part which is used in a machine,
and the standard length of the steel part is assumed to
be 100 mm. Now we need to decide, based on its length,
whether the steel part is suitable for use in the machine or
whether itmaydestroy themachine slowly and causemore
risk later. In this case, there are four possible situations.

When we make a correct decision that the part is un-
suitable (costs for U11), we abandon it and buy or produce
anewpart. But if the abandonment is unnecessary, this de-
cision will bring in additional costs for U01. On the other
hand, when we correctly classify it as suitable (costs for
U00), the test part will be used in themachine. In the same
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decision, there still exists a possibility that the machine
may be destroyed little by little and the costs of reparation
can be much higher (costs for U10). Therefore, the optimal
approach is tomake a decision based on the expected total
utilities which allows us to derive the minimum costs.

As mentioned in Section 2, the emphasis of this paper
is on CASE I and CASE II situations. Thus, all the examples
will be discussed in relation to these two situations. For
each case, we will also show the results with a single test
value and a random test value, respectively.

4.1 Strategy Applying to the Example

CASE I

This is the most optimal case in which the physical model
or other information is well known to a certain degree.
Then the statistical behaviour of the monitored object un-
der the null and alternative hypotheses can be statistically
depicted. In this practical example, the behaviour of the
steel part under both null and alternative hypotheses can
be statistically modelled. The distribution of the lengths
of the steel part which can be used in the machine prop-
erly is modelled mathematically (H0). Also, the distribu-
tion of the test values under alternative hypothesis H1,
whichmeans the distribution of the length of the steel part
that will damage the machine or may work properly in an-
other machine, is also known.

(i) Single test value
Assuming that H0 follows the normal distribution, when
there is a single test value T, the distance between the test
value and the mean (µH0 ) of the pdf can be used to decide
how the test value di�ers from the givenhypothesis. There-
fore, the probability that a normal random variable d0 is
no bigger than |µH0 − T| denotes the probability that H0

canbe rejected. Similarly, under the alternative hypothesis
(which also has a normal distribution with amean of µH1 ),
the probability that H1 can be rejected is equivalent to the
probability that a normal random variable d1 is no bigger
than |µH1 − T| . Figure 1 illustrates the two-sided situation.

Then, the probabilities that the null and alternative
hypotheses can be accepted with the consideration of
standardisation are

P(H0| T) =
1 − P(d0 ≤ |µH0 − T | )

[1 − P(d0 ≤ |µH0 − T | )]+[1 − P(d1 ≤ |µH1 − T | )]
,

(13)

Fig. 1. Probability that H0/H1 can be accepted in CASE I with single
test value.

P(H1| T) =
1 − P(d1 ≤ |µH1 − T | )

[1 − P(d0 ≤ |µH0 − T | )]+[1 − P(d1 ≤ |µH1 − T | )]
(14)

(ii) Random test value
In practice, it is impossible to �nd the "true length" of
a steel part without uncertainty. Advanced measuring
equipment and analysis methods can only help to avoid
gross errors and reduce systematic errors, but the random
errors inmeasurements cannot be totally eliminated.With
repeated measurements, the approximation of the "true
length" of a steel part can be illustrated mathematically,
usually by a normal distributionwith a certainmean value
and standard deviation as uncertainty.

When there is a random test value, the probabilities
that the null and alternative hypotheses can be accepted
are more complicated, as shown in Figure 2. The general
equation for computing the probability is

P(H0 |T ) = p(d0) =
+∞∫
−∞

pdfH0 (d0)pdfT(x − d0)dd0, (15)

which is known as convolution. This equation is in general
not analytically solvable and therefore numeric solutions
areneeded. If thedistributionof the random test value also
has a normal distribution, the convolution of the test value
and the normally distributed hypothesis (H0 or H1) can be
analytically treated.

Assume that in general two di�erent normal distribu-
tions are described by two probability density functions
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Fig. 2. Probability that H0/H1 can be accepted in CASE I with ran-
dom test value.

f1(x) and f2(x):

f1(x) = f (µ1 ,σ
2
1)

N (x), f2(x) = f (µ2 ,σ
2
2)

N (x), (16)

with means of µ1 and µ2 and variances of σ21 and σ22, re-
spectively. Then the convolution of the two functions is

fY (y) = f
(µ1+µ2 ,σ21+σ

2
2)

N (y). (17)

Due to the space limitation, the derivation of the above
equation will not be discussed. For more information,
please refer to [1], for example. In the speci�c example,
the new derived distribution is still normal with a mean
of (µH0 −µT) and variance of (σ2H0

+σ2T). The convolution of
the test value and the given alternative hypothesis is exe-
cuted in the same way as shown above. Considering stan-
dardisation, the probabilities that the null and alternative
hypotheses can be accepted are based on

P(H0| T) =
1 − P(d0 ≤ |µH0 − µT | )

[1 − P(d0 ≤ |µH0 − µT | )]+[1 − P(d1 ≤ |µH1 − µT | )]
,

(18)

P(H1| T) =
1 − P(d1 ≤ |µH1 − µT | )

[1 − P(d0 ≤ |µH0 − µT | )]+[1 − P(d1 ≤ |µH1 − µT | )]
,

with d0/
√
(σ2H0

+ σ2T) ∼ N(0, 1)

d1/
√
(σ2H1

+ σ2T) ∼ N(0, 1).

(19)

CASE II

In this case, if a physicalmodel or other information is pro-
vided, then the (statistical) statement about the behaviour

Fig. 3. Probability that H0/H1 can be accepted in CASE II with single
test value.

of the object under H0 is available. Applying this to this
practical example, the behaviour of the steel part under
H0, which means the tested steel part is suitable for use
in the speci�cmachine, can be statistically modelled. And
the alternative hypothesis (H1), whichmeans the steel part
is unsuitable for the speci�cmachine (itmaybe anunqual-
i�ed steel part or one for anothermachine), is derived from
a pure negation of the de�ned null hypothesis.

(i) Single test value
Similarly to CASE I, the null hypothesis H0 is deemed to
have a normal distribution, the test value T has only a sin-
gle value, and the distance between the test value and the
mean (µH0 ) of the null hypothesis pdf can be used to de-
cide how the test value di�ers from the given hypothesis.
Therefore, the probability that a normal randomvariable d
is no bigger than |µH0 − T| denotes the probability that H0

can be rejected (see Figure 3). But the alternative hypothe-
sis cannot be mathematically modelled and is treated as a
pure negation of the null hypothesis in this case.

The probability that the null hypothesis can be ac-
cepted and the probability that it can be rejected are, re-
spectively,

P( H0| T) =1 − P(d ≤ |µH0 − T | ), (20)

P( H1| T) =1 − P( H0| T) = P(d ≤ |µH0 − T | ). (21)
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Fig. 4. Probability that H0/H1 can be accepted in CASE II with ran-
dom test value.

(ii) Random test value
For CASE II, when the random test value follows the nor-
mal distribution with a mean of µH0 and a variance of σ2H0

,
it is necessary to perform the convolution operation as in
CASE I in order to obtain the probability that H0 can be ac-
cepted (see Figure 4).

In the example, thenewdistributionderived fromcon-
volution also follows a normal distribution with a mean of
(µH0 − µT) and a variance of (σ2H0

+ σ2T). Since the probabil-
ity that the test value is under the alternative hypothesis is
a negation of the null hypothesis, the probability that the
null alternative hypothesis can be accepted and the prob-
ability that it can be rejected are, respectively,

P( H0| T) =1 − P(d ≤ |µH0 − µT | ),

with d/
√
(σ2H0

+ σ2T) ∼ N(0, 1);
(22)

P( H1| T) =1 − P( H0| T) = P(d ≤ |µH0 − µT | ),

with d/
√
(σ2H0

+ σ2T) ∼ N(0, 1)
(23)

4.2 Results and analysis

According to the strategies discussed above, the probabil-
ities that the test value is under the null or alternative hy-
pothesis can be calculated. Besides probabilities, the utili-
ties (see Section 3) are also considered tomake optimal de-
cisions and to minimise the total costs. The utility values
of four di�erent situations are given in Table 2. The minus
sign denotes the meaning of expenditure and the speci�c
values should be given by relevant experts.

Table 2. Utility values for four situations.

Utilities U00 U01 U11 U10

Currency −2000 −3000 −3000 −10000

Table 3. Results for the single test value in Case I.

Hypothesis Probability Expected
Utility

Decision

H0 0.841 −3273.21 Reject
H1 0.159 −3000.00 Accept

As mentioned in Section III, there is a numerical rela-
tion between the four values. From the practical point of
view, the expense of correctly choosing the null hypoth-
esis (U00) could be the �xed costs of producing the steel
part and assembling it in the machine. When we make a
decision of choosing the alternative hypothesis (U01 and
U11), which means the steel part is considered to be un-
suitable irrespective ofwhether or not this is true, the costs
increase (here by 1000) due to the need to reproduce or re-
pair it. But when the wrong decision causes a Type II er-
ror, an unsuitable steel part may damage the whole ma-
chine, thereby leading to more risk and costs in future. In
this case, the costs of a Type II error (U10) could be much
higher (7000–8000) than in the other three situations.

Results and decisions for the example in the di�erent
cases are given below.

CASE I

The parameters of the null and alternative hypotheses are
given, and in both cases they follow the normal distribu-
tion. For the null hypothesis, the mean µH0 = 100mm and
the standard deviation σH0 = 0.3 mm; for the alternative
hypothesis, the mean µH1 = 100.7 mm and the standard
deviation σH1 = 0.3 mm.

(i) Single test value
When there is a single test value of T = 100.2 mm, the
results are as shown in Table 3.

(ii) Random test value
When the random test value obeys the normal distribution
with themean µT = 100.2mm and the standard deviation
σT = 0.2 mm, the results according to Equations (11), (18)
and (19) are as shown in Table 4.
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Table 4. Results for the random test value in Case I.

Hypothesis Probability Expected
Utility

Decision

H0 0.778 −3778.29 Reject
H1 0.222 −3000.00 Accept

Table 5. Results for the single test value in Case II.

Hypothesis Probability Expected
Utility

Decision

H0 0.505 −5960.12 Reject
H1 0.495 −3000.00 Accept

CASE II

If only the distribution of the null hypothesis is known,
its parameters are the same as in CASE I: the mean µH0 =
100 mm and the standard deviation σH0 = 0.3 mm. The
probability of the alternative hypothesis is obtained from
the negation of the null hypothesis. For the purpose of
comparison, the parameters of the test values remain the
same as in CASE I.

(i) Single test value
The single test value remains T = 100.2 mm. The results
are shown in Table 5.

(ii) Random test value
The random test value remains the same with the mean
µT = 100.2 mm and the standard deviation σT = 0.2 mm.
The results are shown in Table 6.

For all the results displayed above, the decision based
only on probability and the decision with consideration of
utility are consistent most of the time. But the results for
CASE II appear to be di�erent; for example, in the example
with a single test value, the probabilities that the test value
is under the null and alternative hypotheses are quite close
to each other; here, they are 50.5 and 49.5%, respectively,
and a decision based only on probabilitymay lead to a dra-

Table 6. Results for the random test value in Case II.

Hypothesis Probability Expected
Utility

Decision

H0 0.579 −5367.20 Reject
H1 0.421 −3000.00 Accept

matic situation. When the focus of the decision is more on
the risk itself, that is,when theutilities or costs for each sit-
uation are also considered, the decision will result in the
minimum risk or costs. In this example, the di�erence in
utility of two decisions can be greater than 2000. Hence
one can see the necessity of considering the utility in deci-
sion making in the �eld of deformation monitoring.

As discussed above in this paper, the Type II error gen-
erally costs the most among all four situations. Therefore,
this value (U10) plays an important role in thedecisionpro-
cedure. Figure 5 shows how it in�uences the magnitude of
the expected utility of the two hypotheses as well as the
�nal decision.

It is shown that thenull hypothesis has abetter chance
of being selected when a Type II error costs less. The ex-
pected utilities of the null and alternative hypotheses are
equivalent, reaching −3000 when U10 ≈ −4020.14.

4.3 Estimation of Signi�cance Level

Asmentioned at the beginning of the paper, themethodol-
ogy in many engineering disciplines and mathematically
founded decisions is usually based on probabilities and
signi�cance levels. With the �gures given above, it is not
easy to �nd a clear and practical meaning for a speci�c ex-
ample. But the utility values in four concrete situations are
more comprehensible and canbegivenmore easily by rele-
vant experts; furthermore, they are necessary for the eval-
uation of the risk itself through the expected costs. From
this point of view, we should �nd a way to calculate the
signi�cance levels based on given utility values in order to
compare the results with the standard methodology.

According to Equation (12), we could determine the
critical probability with �xed utility values. And if the rela-
tion between the observed variable and its probability dis-
tribution is clear, then decisionmaking based on risk (con-
sequences or costs) itself can be related to the observation
directly. Take CASE II as an example. Figure 6 and Figure 7
show the variation tendency of the signi�cance level with
respect to di�erent costs of Type II error for the single test
value (according to Figure 3) and the random test (accord-
ing to Figure 4), respectively.

For the single test value in Figure 6 we obtain the fol-
lowing:
– When U10 = −15000, if p0 ≤ 0.92 (d ≥ 0.03 mm),H0

can be rejected;
– When U10 = −10000, if p0 ≤ 0.88 (d ≥ 0.05 mm),H0

can be rejected;
– When U10 = −5000, if p0 ≤ 0.67 (d ≥ 0.13 mm),H0

can be rejected.

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 16.04.18 10:29



Y. Zhang and I. Neumann, Utility Theory as a Method to Minimise the Risk | 291

Fig. 5. Expected utilities of H0 and H1 with gradual changes in U10.

Fig. 6. Signi�cance level under the influence of U10 for the single test value according to Figure 3.
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Fig. 7. Signi�cance level under the influence of U10 for the random test value according to Figure 4.

For the random test value (see Figure 7):
– When U10 = −15000, if p0 ≤ 0.92 (d ≥ 0.03 mm), H0

can be rejected;
– When U10 = −10000, if p0 ≤ 0.88 (d ≥ 0.06 mm), H0

can be rejected;
– When U10 = −5000, if p0 ≤ 0.67 (d ≥ 0.16 mm), H0

can be rejected.

From the results, we can see that the signi�cance level can
be determined conversely through given utility values and
described by the observation and the probability under
their distributions. For large costs of Type II errors the null
hypothesis can only be chosen if it is very probable that it
is true. This is in full accordance with the theoretical as-
sumptions, where one should obviously avoid the choice
of the null hypothesis if it leads to a large risk (if the deci-
sion is not correct).

It should also be clearly stated here that this step is in
general not necessary to evaluate the risk of a monitoring
project. It is only worthwhile for a comparison of the new
methodology with the classical approach.

5 Conclusion
Deformation monitoring concepts need to be more accu-
rate and reliable when higher risks or costs result from the
assumed deformation of an object, for example, under a
load. However, decision making without consideration of
costs or risks themselves therefore cannot be optimal for
either arti�cial nor natural objects. In the case of a phys-
ical model, for example with the aid of an FEM, or when
other information is available, the presented methodol-
ogy can identify critical situations for an object and al-
lows geodetic techniques to measure real deformations of
the objects. Therefore the most bene�cial decisions which
minimise the consequences of actual behaviour of a mon-
itoring project are identi�ed.

In this paper, the presentedmethodology shows a con-
cept in decision making with the consideration of costs
or consequences in the case where at least one of the hy-
potheses can be modelled. The decisions are evaluated by
extending the statistical hypothesis tests with cost func-
tions for Type I and II errors. Finally, use of the method-
ology leads to the minimum costs or consequences for a
deformation monitoring process.

In general, this methodology can also be applied to
non-statistical uncertainties in the measurements and in
the object’s behaviour. For the civil engineering treatment,
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see for example [12] or [13], and for the geodetic measure-
ments, see for example [8]. Furthermore, the uncertainty
of the modelling of the regulatory thresholds based on dif-
ferent expert opinions can be considered [7].

Further work needs to extend the approach to
multiple-criteria decisions with more than two alterna-
tives. Additionally, it would also be meaningful to imple-
ment the strategy in a real project to numerically anal-
yse and optimise themeasurement process with respect to
consequences. This is important in order to evaluate the
in�uence of the uncertainty of the utility values on the de-
cisions.
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