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Heat flow, weighted Bergman spaces,
and real analytic Lipschitz approximation

By Wolfram Bauer at Hannover and Lewis A. Coburn at Buffalo

Abstract. We show that, for f any uniformly continuous (UC) complex-valued
function on real Euclidean n-space Rn, the heat flow Qf .t/ is Lipschitz for all t > 0 and Qf .t/

converges uniformly to f as t ! 0. Analogously, let� be any irreducible bounded symmetric
(Cartan) domain in complex n-space Cn and consider the Bergman metric ˇ. � ; � / on�. For f
any ˇ-uniformly continuous function on �, we show that there is a Berezin–Harish-Chandra
flow of real analytic functions B�f which is ˇ-Lipschitz for each � � p (p, the genus of �)
andB�f converges uniformly to f as �!1. For a certain subspace of UC we obtain stronger
approximation results and we study the asymptotic behaviour of the Lipschitz constants.

1. Introduction

The problem of Lipschitz approximation to uniformly continuous complex-valued func-
tions on metric spacesX is an old one, going back – at least – to Lebesgue. It is known [5] that,
for “metrically convex”X (including complete Riemannian manifolds), Lipschitz functions are
uniformly dense in the uniformly continuous functions. The standard density construction guar-
antees no particular smoothness of the Lipschitz approximants, instead resembling piecewise
linear approximation on the reals.

In this paper, we consider the subspaces� of complex n-space Cn, where� D Cn or�
is an irreducible bounded symmetric domain (BSD) in Cn with Bergman metric ˇ. � ; � /. We
obtain real-analytic Lipschitz approximants to arbitrary ˇ-uniformly continuous functions f
by using the heat-flow for Cn and the Berezin–Harish-Chandra flow when � is an arbitrary
irreducible BSD. For the heat flow Qf .t/, it is reasonable to expect that Qf .t/ ! f uniformly
as t ! 0. It is less clear that the Qf .t/ are Lipschitz. The Berezin–Harish-Chandra flows for f
ˇ-uniformly continuous on BSD�, discussed in Section 4, are natural analogs of the heat flow.

Bounded symmetric domains (BSDs) are Hermitian symmetric spaces of non-compact
type [4,7,9,10]. There is a standard classification of BSDs going back to H. Cartan. We work in
the Harish-Chandra realization of BSDs as bounded convex domains� containing the origin 0
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226 Bauer and Coburn, Heat flow and Lipschitz approximation

of Cn and invariant under the map z ! �z for � in C and j�j D 1. The group Aut.�/ of
biholomorphic automorphisms of � is transitive. In particular, for each w in �, there is an
automorphism 'w so that 'w ı 'w D identity and 'w.0/ D w.

Here, we consider BSDs�with normalized Lebesgue measure dv.z/, in Cn, or� D Cn

with normalized Gaussian measure d�.z/ D expŒ�jzj2���ndv.z/. It is well known that, for
any bounded domain � in Cn, the space of complex analytic functions in L2.�; dv/, denoted
L2an.�; dv/, is a Bergman space: for every w in � there is a function K. � ; w/ in L2an.�; dv/

so that, for all f in L2an.�; dv/ (a is the complex conjugate of a),

f .w/ D

Z
�

f .z/K.z;w/ dv.z/ � hf;K. � ; w/i:

The corresponding formula holds for .Cn; d�/ and f entire in L2.Cn; d�/ where we say f
is in H 2.Cn; d�/. It is standard that K.w; z/ D K.z;w/. For � D D, the open unit disc in C
with normalized Lebesgue measure, we have

K.z;w/ D .1 � zw/�2:

For � D Cn with normalized Gaussian measure d�.z/, we have

K.z;w/ D exp.z � w/ .z � w D z1w1 C z2w2 C � � � C znwn/:

For � a BSD in Cn with normalized Lebesgue measure dv, or � D Cn with normal-
ized Gaussian measure d�, K.z; 0/ D 1 and K.z; z/ � 1 for all z in �. Moreover, we have
limz!à�K.z; z/ D1. The functions K.z; z/ determine a complete Riemannian metric on �
by the formula

gij .z/ D
à2

àziàzj
logK.z; z/; z 2 �:

In the case that� is the open unit ball, the Bergman metric is the usual hyperbolic metric, when
� D Cn, the Bergman metric is the usual Euclidean metric. The Bergman metric induces a dis-
tance function ˇ. � ; � / on �. For BSD �, [4, Theorem E], the function ˇ.0; � / is in Lp.�; dv/
for all p > 0. The corresponding result holds for .Cn; d�/ by direct calculation. For � D D,
the open unit disc in C, it is standard that

ˇ.0; z/ D
1
p
2

log
�
1C jzj

1 � jzj

�
while for � D Cn, ˇ.0; z/ D jzj and 'w.z/ D w � z. For all BSDs � and for Cn,

ˇ.'wz; 'wy/ D ˇ.z; y/

for all z; y in � and each w in �. Note that, for à� the boundary of �,

lim
z!à�

ˇ.0; z/ D1:

The ˇ-metric topology on BSD � is equivalent to the usual Euclidean topology inherited
from Cn. In particular, the closed metric balls E.0;R/ D ¹z 2 � W ˇ.0; z/ � Rº are compact.

A function f from � to C is Lipschitz (Lip) if there is a constant Df so that for all z; w
in �,

jf .z/ � f .w/j � Df ˇ.z; w/:
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Bauer and Coburn, Heat flow and Lipschitz approximation 227

The function f is uniformly continuous (UC) if, for each " > 0, there is a ı D ı.f; "/ > 0 so
that, for any z; w in �, jf .z/ � f .w/j < " whenever ˇ.z; w/ < ı. A continuous function f is
of bounded oscillation (BO) if there is a C > 0 so that, for all z; w in �,

(1.1) jf .z/ � f .w/j � C C Cˇ.z;w/:

As usual, we denote the bounded functions in UC.�/ by BUC.�/. The relation

Lip.�/ � UC.�/

is standard.
The functions

kw. � / D K.w;w/
� 1
2K. � ; w/

are unit vectors in L2an.�; dv/ and H 2.Cn; d�/. For BSDs �, the functions ¹kw. � /º are
bounded for each w in �. For .Cn; d�/, the kw are linear exponentials. We define the Berezin
transform of f by

(1.2) Qf .w/ D

Z
�

f ı 'w.z/ dv.z/ D

Z
�

f .z/jkw.z/j
2 dv.z/

with the analogous definition for� D Cn. This definition makes sense for f and jf j2 when f
is in L2.�; dv/ for BSD � and for f and jf j2 on Cn for f in

�.Cn/ D ¹f W f kw 2 L
2.Cn; d�/ for all w 2 Cn

º:

Note that ejf j2.w/ � j Qf .w/j2 by an easy application of the Cauchy–Schwarz inequality.
Following [4], we say thatf has bounded mean oscillation on BSD� (f is in BMO2.�/)

if the continuous function

MO.f; w/ � e
jf j2.w/ � j Qf .w/j2 D ¹jf . � / � Qf .w/j2ºe.w/

is bounded on � and we define a semi-norm on BMO2.�/ by

kf kBMO WD sup
z2�

MO.f; z/
1
2 :

Again, there is a completely analogous definition in [1] for � D Cn.
For a BSD �, we say that f has vanishing mean oscillation at the boundary à� (f is

in VMO2.�/) if limw!à� MO.f; w/ D 0. Analogously, for .Cn; d�/, we say f has vanishing
mean oscillation at1 (f is in VMO2.Cn/ ) if limjwj!1MO.f; w/ D 0. Note that, trivially,
all bounded measurable functions are in BMO2.�/.

It is known ([4, Theorem 13], [1, Lemma 3.5]) that for � any BSD or � D Cn, we have

BO.�/ � BMO2.�/:

It is also known that, for f in BMO2.�/, Qf is Lipschitz. In fact, there is a decomposition of
spaces

(1.3) BMO2.�/ D BO.�/C F.�/

for all BSDs �, where

F.�/ D ¹f 2 L2.�; dv/ W ejf j2 is boundedº

and analogously for � D Cn.
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228 Bauer and Coburn, Heat flow and Lipschitz approximation

In Section 2 we show that UC.�/ is in BO.�/, and therefore in BMO2.�/ for � any
BSD or� D Cn. We consider the class of “generalized polynomials” in ˇ.0; � / and determine
which of these functions are in BMO2.�/. In Section 3, we show that, for any uniformly
continuous f on Rn, the heat transform Qf .t/ is Lipschitz for all t > 0 and Qf .t/ converges
uniformly to f as t ! 0. In Section 4, we prove the analogous result for f 2 UC.�/ when �
is any BSD. In Section 5, we give sharper variants of the results in Sections 3 and 4, under
a natural restriction. In Sections 3 and 4 we also provide estimates on the Lipschitz constants
which allow us to study their asymptotic behaviour. In particular, these estimates can be written
in a more explicit form under the stronger assumptions of Section 5.

2. Uniform continuity and BMO

We prove two lemmas and a theorem which provide some new perspective on UC.�/.

Lemma 2.1. The class UC.�/ is contained in BO.�/ and in BMO2.�/ for a BSD �

or � D Cn.

Proof. We use the completeness of the Bergman metric in a standard way to show
that UC.�/ is contained in BO.�/. The rest follows from the decomposition (1.3) which can
be found in [1,4]. It follows from the completeness of the Bergman metric [9] that for any z; w
in �, there is a geodesic segment 
 in � of Bergman arclength ˇ.z; w/ joining z to w. For f
in UC.�/, there is a ı.f; 1/ > 0 so that for a; b in � with ˇ.a; b/ < ı.f; 1/ we must have
jf .a/ � f .b/j < 1. Let N be the greatest integer in ˇ.z; w/ı�1.f; 1/ and divide 
 into N C 1
segments of equal Bergman arclength. An easy application of the triangle inequality shows that

jf .z/ � f .w/j < N C 1 � ˇ.z; w/ı�1.f; 1/C 1:

Hence, f 2 BO.�/ and so f 2 BMO2.�/.

Remark 2.2. Lemma 2.1 provides a large number of examples of unbounded functions
in BMO2.�/ and seems not to have been noted earlier. In particular, if f is any function
in UC.�/ and g is any uniformly continuous function from range.f / into C, then g ı f is
in UC.�/. This shows, for example, that

f .z/ D

qp
ˇ.0; z/C ˇ.0; z/

is in UC.�/.

For real ˛ � 0, we now give some useful estimates on the Berezin transform of ˇ.0; z/˛.
We write “

R
� � � dv” but understand that, for � D Cn, we integrate “d�”.

Lemma 2.3. For BSD (�; dv) or (Cn; d�), real ˛ � 0 and f˛.z/ D ˇ.0; z/˛, we have

1

2˛
ˇ.0;w/˛ �K.˛/ � Qf˛.w/ � 2

˛.ˇ.0; w/˛ CK.˛//;

where
K.˛/ WD

Z
�

ˇ.0; z/˛ dv.z/ D Qf˛.0/:
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Bauer and Coburn, Heat flow and Lipschitz approximation 229

Proof. We use the elementary inequality

.s C t /˛ � ¹2max.s; t/º˛ � 2˛.s˛ C t˛/

for s; t; ˛ � 0. By the invariance of ˇ. � ; � / under the involutive automorphisms 'w , we see that

Qf˛.w/ D

Z
�

ˇ.0; 'wz/
˛ dv.z/ D

Z
�

ˇ.w; z/˛ dv.z/:

Now, we estimate

ˇ.w; z/˛ � .ˇ.w; 0/C ˇ.0; z//˛ � 2˛.ˇ.w; 0/˛ C ˇ.0; z/˛/

and
ˇ.w; 0/˛ � .ˇ.w; z/C ˇ.z; 0//˛ � 2˛.ˇ.w; z/˛ C ˇ.z; 0/˛/:

Integrating both inequalities with respect to dv.z/ or d�.z/ gives the desired result.

We can now give a complete analysis of membership in BMO2.�/ for generalized poly-
nomials in ˇ.0; z/. Related results for polynomials on Cn were obtained in [1].

Theorem 2.4. On BSDs � or � D Cn (with measure d�) consider all generalized
polynomials in ˇ.0; z/ of the form

f .z/ D

mX
kD0

bk ˇ.0; z/
˛k ;

with bk in C, bm ¤ 0, ˛k real, 0 � ˛k < ˛kC1. The function f is in BMO2.�/ for ˛m � 1
and not in BMO2.�/ for ˛m > 1.

Proof. First, using the standard inequality .sCt /˛ � s˛Ct˛ for s; t � 0 and 0 � ˛ � 1,
we see that

ˇ.w; 0/˛ � .ˇ.w; z/C ˇ.z; 0//˛ � ˇ.w; z/˛ C ˇ.z; 0/˛

so that, by symmetry,
ˇ.w; z/˛ � jˇ.0;w/˛ � ˇ.0; z/˛j

and ˇ.0; � /˛ is UC.�/ for all 0 � ˛ � 1. It follows from Lemma 2.1 that f .z/ is in BMO2.�/
for ˛m � 1.

For ˛m > 1, we recall that for f to be in BMO2.�/, Qf must be Lipschitz [1,4]. It follows
easily that, for some C > 0, we must have C C Cˇ.0;w/ � j Qf .w/j. For f˛.z/ D ˇ.0; z/˛ as
in Lemma 2.3, we have

Qf .w/ D bm Qf˛m.w/ �

m�1X
kD0

.�bk/ Qf˛k .w/:

Thus, using the triangle inequality and Lemma 2.3, we have

j Qf .w/j � jbmj Qf˛m.w/ �

m�1X
kD0

jbkj Qf˛k .w/

� jbmj

�
1

2˛m
f˛m.w/ �K.˛m/

�
�

m�1X
kD0

jbkj2
˛k .f˛k .w/CK.˛k//:
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230 Bauer and Coburn, Heat flow and Lipschitz approximation

It follows that

(�) C CCf1.w/CjbmjK.˛m/C
m�1X
kD0

jbkj2
˛k .f˛k .w/CK.˛k// �

1

2˛m
jbmjf˛m.w/:

Now choose " > 0 so that ˛m � " > max.˛m�1; 1/. Dividing both sides of (�) by ˇ.0;w/˛m�"

and taking ˇ.0;w/ large shows that f cannot be in BMO2.�/ for ˛m > 1.

Remark 2.5. It is not hard to check that, for 0� ˛ < 1, ˇ.0; � /˛ is, in fact, in VMO2.�/.

3. Real analytic Lipschitz approximation on Euclidean space

Consider the complex n-space Cn equipped with the Gaussian measure d�. We general-
ize our notion of the Berezin transform in (1.2) by inserting a positive parameter t

(3.1) Qf .t/.w/ WD
1

.4�t/n

Z
Cn
f .w � z/e�

jzj2

4t dv.z/:

Note that for each t > 0 (cf. [2, 6]) the integral transform (3.1) in fact is the Berezin transform
of f with respect to the new Gaussian measure

(3.2) d�t .z/ D
1

.4�t/n
exp

²
�
jzj2

4t

³
dv.z/:

Moreover, note that with our former notation we have d� D d�1=4 and Qf D Qf .
1
4
/. The family

¹ Qf .t/ºt>0 frequently is called the heat transform of f and due to its relation to the heat operator
on Cn Š R2n it fulfills the semi-group property

¹ Qf .s/eº .t/ D Qf .sCt/

whenever s; t > 0 are sufficiently small (see [2, 6] for more details). It easily can be checked
that for all f 2 UC.Cn/ the heat transforms Qf .t/.z/ exist for all t > 0 and define a semi-
group of real analytic functions on Cn. As for the next result, we also refer to the recent book
[16, Theorem 3.35, p. 127].

Proposition 3.1. For all t > 0 and with f 2 UC.Cn/ we have Qf .t/ 2 Lip.Cn/ and
f � Qf .t/ 2 BUC.Cn/.

Proof. Let f 2 BMO2.Cn/. Then the following Lipschitz estimate has been shown
in [1, Corollary 2.7] for all z; w 2 Cn,

(3.3) j Qf .z/ � Qf .w/j D j Qf .
1
4
/.z/ � Qf .

1
4
/.w/j � 2kf kBMOjz � wj:

By a change of variables one can check that the heat transforms Qf .t/.z/ for different values
of t and with z 2 Cn are simply related by

(3.4) ¹f .�
p
t /eº .s/.z/ D Qf .ts/.z

p
t /:

Let f 2 UC.Cn/. Then we have for all t > 0,

f .�
p
t / 2 UC.Cn/ � BMO2.Cn/:
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Bauer and Coburn, Heat flow and Lipschitz approximation 231

Combining (3.3) and (3.4) gives

j Qf .t/.z/ � Qf .t/.w/j D

ˇ̌̌̌
¹f .� 2

p
t /eº� z

2
p
t

�
� ¹f .� 2

p
t /eº� w

2
p
t

�ˇ̌̌̌
� t�

1
2 kf .� 2

p
t /kBMO jz � wj:

Hence, we have shown that Qf .t/ 2 Lip.Cn/ for all t > 0.
It is clear that gt WD f � Qf .t/ 2 UC.Cn/ and it remains to show the boundedness of gt .

Since UC.Cn/ � BO.Cn/, we can find C > 0with jf .z/�f .w/j � C.1Cjz�wj/. It follows
for w 2 Cn that

jgt .w/j �
1

.4�t/n

Z
Cn
jf .w/ � f .w � z/je�

jzj2

4t dv.z/

�
C

.4�t/n

Z
Cn
.1C jzj/e�

jzj2

4t dv.z/ <1:

Hence we have proved the proposition.

With f 2 UC.Cn/ we consider the limit behaviour of Qf .t/ as t ! 0. A corresponding
result in the case of a general bounded symmetric domain � in Cn can be found in Proposi-
tion 4.4 below.

Proposition 3.2. Let f 2 UC.Cn/. Then limt!0
Qf .t/ D f uniformly on Cn.

Proof. Since UC.Cn/ � BO.Cn/, we have jf .z/ � f .w/j � Kf .1C jz � wj/ for all
z; w 2 Cn and with a constantKf > 0. Moreover, for any " > 0, there is a ı D ı."; f / > 0 so
that jf .z/ � f .w/j < "

2
whenever jz � wj < ı. Now consider

Qf .t/.w/ � f .w/ D
1

.4�t/n

Z
Cn
Œf .w � z/ � f .w/�e�

jzj2

4t dv.z/

and let a D z=.2
p
t / so that

Qf .t/.w/ � f .w/ D
1

�n

Z
Cn
Œf .w � 2a

p
t / � f .w/�e�jaj

2

dv.a/:

For jaj < ı=.2
p
t / we have jf .w/ � f .w � 2a

p
t /j < "

2
so that

j Qf .t/.w/ � f .w/j <
"

2
C
Kf

�n

Z
¹a W jaj�ı=.2

p
t/º

.1C 2jaj
p
t /e�jaj

2

dv.a/

D
"

2
C
Kf

�n
I.t/:

One observes that limt!0 I.t/ D 0. Finally, by choosing sufficiently small t > 0, we see that
j Qf .t/.w/ � f .w/j < " for all w 2 Cn.

The proofs of Propositions 3.1 and 3.2 “descend” from � D Cn to real n-space Rn.
If f 2 UC.Rn/ and t > 0, then similarly to (3.1) we define

Qf .t/.u/ D
1

.4�t/
n
2

Z
Rn
f .u � x/e�

jxj2

4t dv.x/;

where now dv means the usual Lebesgue measure on Rn.
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232 Bauer and Coburn, Heat flow and Lipschitz approximation

Corollary 3.3. For f in UC.Rn/ and all t > 0, we have Qf .t/ 2 Lip.Rn/ and f � Qf .t/

is in BUC.Rn/. Moreover, with u 2 Rn it holds

(3.5) lim
t!0

Qf .t/.u/ D f .u/

and the convergence is uniform on Rn.

Proof. For z D .x; y/ with x; y in Rn, define F.x; y/ D f .x/. We see that F is
in UC.Cn/ and can now apply Proposition 3.1. Note that

eF .t/.u; 0/ D .4�t/�n Z
Rn

Z
Rn
F.u � x;�y/e�

jxj2Cjyj2

4t dv.x/ dv.y/

D .4�t/�
n
2

Z
Rn
f .u � x/e�

jxj2

4t dv.x/

D Qf .t/.u/;

so Qf .t/ is in Lip.Rn/. Moreover, F.u; 0/ � eF .t/.u; 0/ is bounded, so f � Qf .t/ is in BUC.Rn/.
We immediately conclude from Proposition 3.2 that

lim
t!0

Qf .t/.u/ D lim
t!0

eF .t/.u; 0/ D F.u; 0/ D f .u/
and the convergence is uniform on Rn.

Now we sum up our previous results:

Theorem 3.4. Let f 2 UC.Cn/. Then the heat transforms ¹ Qf .t/ºt>0 define a flow of
real analytic functions in Lip.Cn/ with

lim
t!0

Qf .t/ D f

uniformly on Cn. The Lipschitz constant of Qf .t/ is dominated by Ct WD t�
1
2 kf .� 2

p
t /kBMO.

In particular, the inclusion Lip.Cn/ � UC.Cn/ is dense.

Remark 3.5. We point out that the density with respect to the uniform topology of the
inclusion Lip.Cn/ � UC.Cn/ had been known before and can be proven in a more abstract
framework, cf. [5]. However, Theorem 3.4 provides a very natural approximation of uniformly
continuous functions by real analytic Lipschitz functions via the heat flow and with an explicit
control of the Lipschitz constants.

Remark 3.6. Proposition 3.1 is not obvious. It gives an explicit additive decomposition

UC.Cn/ D Lip.Cn/C BUC.Cn/

and shows that for f unbounded in UC, Qf is also unbounded.

Remark 3.7. There are many interesting examples of Lipschitz functions on BSD �.
In particular, by [14], if f is in the Bloch space of analytic functions on�, then f is Lipschitz.
However, as pointed out in [1], the only entire functions in BMO2.Cn/ are linear functions.
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Bauer and Coburn, Heat flow and Lipschitz approximation 233

4. Real analytic Lipschitz approximation on BSDs

Let � � Cn be an irreducible bounded symmetric domain (BSD) of type .r; a; b/ and
genus p D .r � 1/aC b C 2 in the Harish-Chandra realization (cf. [8,9]). Let dv be the usual
Lebesgue measure on Cn Š R2n restricted to�. Recall that to such a domain� one can assign
the so-called Jordan triple determinant h D h.z; w/ on Cn �Cn which is a polynomial with
respect to the variables z and Nw (see [8, 11, 15] for details). Moreover, h satisfies

(i) h.z; 0/ D 1 and h.z; w/ D h.w; z/ for all z; w 2 Cn.

(ii) h.z; z/ > 0 for all z 2 � and h.z; z/ D 0 for all z 2 à�.

With a given weight parameter � > p � 1 we write L2an; �.�; dv/ for the Hilbert space
of holomorphic functions f on � such that

kf k2� WD c�

Z
�

jf .z/j2h.z; z/��p dv.z/ <1:

The constant c� > 0 is chosen with kek� D 1 where e � 1. It has the explicit form (cf. [8])

(4.1) c� D
1

�n
��.�/

��.� �
n
r
/
;

where ��.�/ denotes the Gindikin Gamma function

��.�/ WD .2�/
n1�r

2

rY
jD1

�

�
� � .j � 1/

a

2

�
with n1 WD

r.r � 1/

2
aC r:

We call L2an; �.�; dv/ the standard weighted Bergman space over �. As is well known [8], the
reproducing kernel K� W � ��! C of L2an; �.�; dv/ is related to h via

(4.2) K�.z; w/ D h.z; w/
��:

For a given function g 2 L1.�; dv/ and with � � p consider the integral transform

(4.3) B�.g/.w/ WD c�

Z
�

g ı 'w.z/h.z; z/
��p dv.z/:

On the right-hand side we write 'w for the (unique up to unitary multiples) automorphism of�
with 'w ı 'w D id and 'w.0/ D w. We will show below that the integral (4.3) exists. Note that
according to (1.1) and with ˇ. � ; 0/ 2 Lp.�; dv/ for all p > 1 we have

UC.�/ � BO.�/ � L1.�; dv/:

In particular, the integral transform B�.g/ is well defined for all g 2 UC.�/.
We give another expression for B�.g/.w/. Let JC'w denote the complex Jacobian

of 'w.z/ for fixed w 2 �. From the well-known transformation rule of the (unweighted)
Bergman kernel together with (4.2) we obtain

h.z1; z2/
�p
D Kp.z1; z2/(4.4)

D Kp.'wz1; 'wz2/JC'w.z1/ JC'w.z2/

D h.'wz1; 'wz2/
�pJC'w.z1/ JC'w.z2/:
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234 Bauer and Coburn, Heat flow and Lipschitz approximation

In particular, if we chose w D z2 and w D z1 D z2, then the last equation and the property (i)
of h imply the identities

h.z1; w/
�p
D JC'w.z1/JC'w.w/;

h.w;w/�p D jJC'w.w/j
2:

We find
JC'w.z1/ D h.z1; w/

�pJC'w.w/�1 D ew � h.z1; w/
�ph.w;w/

p
2

with some constant ew 2 C depending only on w 2 � and with jew j D 1. Using this relation
in formula (4.4) with z1 D z2 D z 2 � shows that

(4.5) h.'wz; 'wz/ D
h.z; z/h.w;w/

jh.z; w/j2
:

Now, using the transformation rule of the integral in (4.3) gives

B�.g/.w/ D c�

Z
�

jJC'w.z/j
2g.z/h.'wz; 'wz/

��p dv.z/(4.6)

D c�

Z
�

g.z/
jh.z; w/j�2�

h.w;w/��
h.z; z/��p dv.z/:

In particular, it follows from the boundedness of h. � ; w/�� for allw 2 � (cf. [8, Theorem 3.8])
that B�.g/.w/ is well-defined for all g 2 L1.�; dv/ and � � p.

Consider now the normalized reproducing kernel k�w of the weighted Bergman space
L2an;�.�; dv/ given by

k�w.z/ WD
K�.z; w/

kK�. � ; w/k�
D

h.z; w/��

h.w;w/�
�
2

; z; w 2 �:

Then we can rewrite (4.6) in the form

(4.7) B�.g/.w/ D c�

Z
�

g.z/jk�w.z/j
2h.z; z/��p dv.z/:

Lemma 4.1. Let g 2 L1.�; dv/ and � � p. Then B�.g/ is real analytic on �.

Proof. Let v 2 �. Then it is sufficient to show that the function

G.v/ WD

Z
�

g.z/jh.z; v/j�2�h.z; z/��p dv.z/

is real analytic in a neighbourhood U � � of v such that U � �, where U denotes the closure
of U . Note that G is the restriction to � WD ¹.v; v/ � �2 W v 2 �º of the function

(4.8) eG.v;w/ WD Z
�

g.z/h.z; w/��h.v; z/��h.z; z/��p dv.z/:

We show that eG is holomorphic in the neighbourhood eU WD ¹.v1; v2/ 2 �2 W v1; v2 2 U º,
which will prove the lemma. Consider the standard expansion of the reproducing kernel

(4.9) h.z; w/�� D
X

m2M

.�/mK
m.z; w/;

where M denotes the set of all tuples m D .m1; : : : ; mr/ 2 Nr
0 with m1 � � � � � mr � 0 and

.�/m is the generalized Pochhammer symbol in [8].
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Bauer and Coburn, Heat flow and Lipschitz approximation 235

For fixed w 2 Cn the functions Km.z; w/ are certain complex analytic polynomials
homogeneous of degree jmj D m1 C � � � Cmr in z 2 Cn and it holdsKm.z; w/ D Km.w; z/.
It is known (cf. [8, Theorem 3.8]) that the convergence in (4.9) is uniform and absolute on
compact subsets of � ��. Hence we can interchange integration and summation in (4.8).
With .v; w/ 2 eU we have

eG.v;w/ D X
m;q2M

.�/m.�/q

Z
�

g.z/Km.z; w/Kq.v; z/h��p.z; z/ dv.z/:

Since � � p, the integrals on the right-hand side exist and for all m;q 2M they define holo-
morphic polynomials in .v; w/ homogeneous of degree jmj C jqj. It follows that eG.v;w/ is
holomorphic in eU .

In the next example, we calculate B� in the case of a rank one domain more explicitly.

Example 4.2. Let � D Bn be the Euclidean unit ball in Cn. Then we have r D 1
and p D nC 1. In this case, the Gindikin Gamma function ��.�/ coincides with the usual
Gamma function �.�/. Thus (4.3) with � WD nC 1C ˛ and ˛ � 0 takes the form

BnC1C˛.g/.w/ D
1

�n
�.nC 1C ˛/

�.˛ C 1/

Z
Bn
g ı 'w.z/.1 � jzj

2/˛ dv.z/

D
1

�n
�.nC 1C ˛/

�.˛ C 1/

Z
Bn
g.z/

.1 � jwj2/nC1C˛.1 � jzj2/˛

j1 � z � wj2.nC1C˛/
dv.z/;

where g 2 L1.Bn; dv/. Recall that in the literature the expression BnC1C˛.g/ is also called
the ˛-Berezin transform of g (cf. [12, 13]).

Let Aut0.�/ denote the connected component of the automorphism group of � char-
acterized by Id 2 Aut0.�/. We write K � Aut0.�/ for the sub-group of all automorphisms
leaving the origin 0 2� invariant. As is well known, there is a set ¹e1; : : : ; erº �Cn of R-linear
independent vectors (Jordan frame) such that each z 2 Cn has a polar decomposition of the
form

(4.10) z D k

rX
jD1

tj ej with k 2 K; t1; : : : ; tr 2 R:

Moreover, z 2 � if and only if jtj j < 1 for all j D 1; : : : ; r .

Lemma 4.3. Assume that g 2 L1.�; dv/ identically vanishes in an open ball Bn
ı
� �

of radius ı > 0 and centered at the origin. Then

lim
�!1

c�

Z
�

g.z/h.z; z/��p dv.z/ D 0:

Proof. If z 2 � is expressed in the polar decomposition (4.10), then the Jordan triple
determinant restricted to the diagonal can be written as

h.z; z/ D

rY
jD1

.1 � t2j /:
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236 Bauer and Coburn, Heat flow and Lipschitz approximation

In particular, we see that h.z; z/ � 1 and h.z; z/ D 1 if and only if z D 0 2 �. Pick 0 < � < 1
with 0 < h.z; z/ < � for all z 2 � n Bn

ı
. Then we obtain for z 2 � n Bn

ı
and with a sufficiently

large weight parameter � � p,

c�h.z; z/
��p
�
���p

�n
�

��.�/

��.� � n=r/

�
���p

�n
�

rY
jD1

�.� � .j � 1/a
2
/

�.� � .j � 1/a
2
�
n
r
/

�
���p

�n
�

rY
jD1

�.� � .j � 1/a
2
/

�.� � .j � 1/a
2
� n/

D
���p

�n
�

rY
jD1

nY
kD1

�
� � .j � 1/

a

2
� k

�

�
���p

�n
� �nr :

The right-hand side tends to zero as �!1 and the assertion easily follows from the assump-
tion on g and the estimateˇ̌̌̌

c�

Z
�

g.z/h.z; z/��p dv.z/

ˇ̌̌̌
�
���p

�n
� �nrkgkL1.�;dv/:

As before, we write ˇ. � ; � / for the Bergman metric on �. Recall that due to Lemma 2.1
the space UC.�/ is contained in BO.�/. Hence for any f 2 UC.�/ there is a Cf > 0 such
that for all z; w 2 �,

(4.11) jf .z/ � f .w/j � C Œ1C ˇ.z; w/�:

Now, we can prove a result analogous to the statement of Proposition 3.2:

Proposition 4.4. Let f 2 UC.�/. Then lim�!1B�.f / D f uniformly on �.

Proof. Let " > 0 and choose ı > 0 such that jf .z/ � f .w/j < " whenever z; w 2 �
with ˇ.z; w/ < ı. Since the ˇ-topology is equivalent to the Euclidean topology on� (see [9]),
we can pick ı0 with 0 < ı0 < 1 so that ¹z 2 � W jzj < ı0º � ¹z 2 � W ˇ.z; 0/ < ıº. If w 2 �
and � � p, then we have

jB�.f /.w/ � f .w/j � c�

Z
�

jf ı 'w.z/ � f ı 'w.0/jh.z; z/
��p dv.z/

� c�

²Z
jzj<ı 0

C

Z
jzj�ı 0

³
jf ı 'w.z/ � f ı 'w.0/jh.z; z/

��p dv.z/

D .�/:

Note that in the case where jzj < ı0 we also have ˇ.'wz; 'w0/ D ˇ.z; 0/ < ı and therefore it
follows from the uniform continuity of f that

jf ı 'w.z/ � f ı 'w.0/j < ":
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Bauer and Coburn, Heat flow and Lipschitz approximation 237

Hence, using this estimate together with (4.11) shows

.�/ � "C c�C

Z
jzj�ı 0

Œ1C ˇ.z; 0/�h.z; z/��p dv.z/:

It is known (see [4, Theorem E]) that the function ˇ. � ; 0/ defines an element in L1.�; dv/.
Hence we conclude from Lemma 4.3 that

lim
�!1

c�

Z
jzj�ı 0

Œ1C ˇ.z; 0/�h.z; z/��p dv.z/ D 0

and the proposition is proven.

In the case of the Euclidean unit ball � D Bn in Cn the following Lipschitz estimate for
the ˛-Berezin transform has been proven in [13, Theorem 2.11] or [12, Lemma 2.14].

Proposition 4.5. Let � be a measure on Bn such that j�j is Carleson. Then there is
a constant C > 0 such that

jBnC1C˛.�/.z/ � BnC1C˛.�/.w/j � CkT�kˇ.z; w/:

Here T� denotes the Toeplitz operator with (measure) symbol � acting on L2an; �.B
n; dv/.

For our purpose in the present paper we need a different Lipschitz estimate for the integral
transforms B�.g/ which is valid for arbitrary BSDs and also applies to functions g 2 UC.�/
(in which case the Toeplitz operator Tg might be unbounded even in ball case).

For the rest of the section we have to introduce some new notation.

Definition 4.6. Let � � p and f 2 L2.�; dv/, where� is any BSD. Then the “�-mean
oscillation” MO�.f; z/ of f is defined by

(4.12) MO�.f; z/ WD B�.jf j
2/.z/ � jB�.f /.z/j

2:

We say that f is of “bounded �-mean oscillation” on � if MO�.f; � / defines a bounded
function on �. Let BMO2�.�/ be the space of all functions of bounded �-mean oscillation.

Note that BO.�/ is contained in BMO2�.�/ for all � � p by a minor modification of the
proof of [4, Theorem 13]. By a straightforward calculation one can check that

(4.13) MO�.f; z/ D B�.jf � B�.f /.z/j
2/.z/

and since B� has a non-negative integral kernel, according to (4.7) we conclude that MO�.f; � /
is a non-negative function. Let S be any subset of �. Then we write

kf kBMO�.S/ WD sup
z2S

MO�.f; z/
1
2 and kf kBMO� WD kf kBMO�.�/:

Note that k � kBMO� defines a semi-norm on BMO2�.�/.
For any given w 2 � let P �w denote the rank-one orthogonal projection onto the linear

span of the normalized kernel function k�w in L2an; �.�; dv/.
The following result generalizes [4, Theorem F] to the case of weighted Bergman spaces.
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238 Bauer and Coburn, Heat flow and Lipschitz approximation

Proposition 4.7. Let � � p and 
 W I WD Œ0; 1�! � be a smooth curve. For any func-
tion g 2 BMO2�.�/ we have

(4.14)
ˇ̌̌̌
d

dt
¹B�.g/ ı 
.t/º

ˇ̌̌̌
� 2kgkBMO�.
.I//





ŒI � P �
.t/�� ddt k�
.t/
�





�

:

Proof. We express B�.g/ in the form (4.7) and differentiate under the integral sign to
obtain

d

dt
¹B�.g/ ı 
.t/º D 2c�

Z
�

g.z/Re
²�

d

dt
k�
.t/.z/

�
k�

.t/

.z/

³
h.z; z/��p dv.z/(4.15)

D .�/:

Another differentiation of the identity hk�

.t/

; k�

.t/
i� � 1 with respect to the t -variable shows

that

Re
�
d

dt
k�
.t/; k

�

.t/

�
�

D 0:

Therefore we obtain from P �

.t/

f D hf; k�

.t/
i� � k

�

.t/

that

Re
²
P �
.t/

�
d

dt
k�
.t/

�
.z/k�


.t/
.z/

³
D Re

²�
d

dt
k�
.t/; k

�

.t/

�
�

jk�
.t/.z/j
2

³
D 0:

From (4.15) we see that

.�/ D 2c�

Z
�

g.z/Re
²
ŒI � P �
.t/�

�
d

dt
k�
.t/.z/

�
k�

.t/

.z/

³
h.z; z/��p dv.z/:

In particular, if we choose g � 1, then we haveB�.g/ ı 
.t/ � 1 and therefore the last identity
gives Z

�

Re
²
ŒI � P �
.t/�

�
d

dt
k�
.t/.z/

�
k�

.t/

.z/

³
h.z; z/��p dv.z/ D 0:

Now we combine the last two equations to the relation

.�/ D 2c�

Z
Bn
Œg.z/�B�.g/ ı 
.t/�Re

²
ŒI �P �
.t/�

�
d

dt
k�
.t/.z/

�
k�

.t/

.z/

³
h.z; z/��p dv.z/:

An application of the Cauchy–Schwarz inequality givesˇ̌̌̌
d

dt
¹B�.g/ ı 
.t/º

ˇ̌̌̌
� 2c�

Z
�

jg.z/ � B�.g/ ı 
.t/jjk
�

.t/.z/j �

ˇ̌̌̌
ŒI � P �
.t/�

�
d

dt
k�
.t/.z/

�ˇ̌̌̌
h.z; z/��p dv.z/

� 2

²
c�

Z
�

jg.z/ � B�.g/ ı 
.t/j
2
jk�
.t/.z/j

2h.z; z/��p dv.z/

³ 1
2




ŒI � P �
.t/�� ddt k�
.t/

�




�

D 2

q
B�.jg � B�.g/ ı 
.t/j

2/ ı 
.t/ �





ŒI � P �
.t/�� ddt k�
.t/
�





�

:

Finally, using (4.13) shows the assertion.
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Bauer and Coburn, Heat flow and Lipschitz approximation 239

Now we relate the second term on the right-hand side of (4.14) to the Bergman metric
ˇ. � ; � / on �. As before, we write K�.z; w/ D h.z; w/�� with z; w 2 � for the reproducing
kernel function of L2an; �.�; dv/. The infinitesimal Bergman metric on � with respect to the
parameter � > p � 1 is given by

G�z D .g
�
i;j .z//i;j D

�
à2

àzj àzj
logK�.z; z/

�
i;j

D ��

�
à2

àzj àzj
log h.z; z/

�
i;j

:

It follows that

(4.16) G�z D
�

p
�Gpz ;

where Gpz is the infinitesimal Bergman metric corresponding to ˇ (the unweighted case).
Let 
 D .
1; : : : ; 
n/ W I D Œ0; 1�! � be a smooth curve with arc length s� D s�.t/

with respect to G�z . Put s D sp. Then we have

(4.17)
�
ds�

dt

�2
D

nX
i;jD1

g�i;j .
.t//

0
i .t/


0
j .t/:

The following result is analogous to [4, Lemma 1].

Proposition 4.8. For any smooth curve 
 as above and � > p � 1 we have

ds�

dt
D





.I � P �
.t//� ddt k�
.t/
�





�

:

Proof. By a direct calculation using .à=àzi /K�. � ; z/ D .à=àzi /K�. � ; z/ one has

à2

àziàzj
logK�.z; z/ D

à2

àziàzj
loghK�. � ; z/;K�. � ; z/i�

D K�.z; z/
�1

�
à
àzj

K�. � ; z/;
à
àzi

K�. � ; z/

�
�

�K�.z; z/
�1

�
à
àzj

K�. � ; z/; k
�
z

�
�

�
k�z ;
à
àzi

K�. � ; z/

�
�

:

According to our previous notation we can rewrite this identity in the form

à2

àziàzj
logK�.z; z/ D K�.z; z/

�1

�
.I � P �z /

à
àzj

K�. � ; z/;
à
àzi

K�. � ; z/

�
�

:

Inserting the expression on the right into (4.17) gives�
ds�

dt

�2
D K�.
.t/; 
.t//

�1






.I � P �
.t//
nX

jD1


 0j .t/
à
àzj

K�. � ; z/jzD
.t/







2

�

:

Now we use the relations
à
àzj

k�z D k
�
z

²
K�.z; z/

1
2
à
àzj

K�.z; z/
� 1
2

³
CK

� 1
2

�
.z; z/
à
àzj

K�. � ; z/

for j D 1; : : : ; n which imply that

(4.18)
�
ds�

dt

�2
D






.I � P �
.t//
nX

jD1


 0j .t/
à
àzj

k�z jzD
.t/







2

�

:
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240 Bauer and Coburn, Heat flow and Lipschitz approximation

Since the derivatives

à
àzi

k�z D k
�
z

²
K�.z; z/

1
2
à
àzi

K�.z; z/

³
define elements in the one-dimensional space span¹k�z º � L

2
an; �.�; dv/ and with the total

derivative

d

dt
k�
.t/ D

nX
iD1


 0i .t/
à
àzi

k�z jzD
.t/ C

nX
jD1


 0j .t/
à
àzj

k�z jzD
.t/ ;

it follows that

.I � P �
.t//

�
d

dt
k�
.t/

�
D .I � P �
.t//

nX
jD1


 0j .t/
à
àzj

k�z jzD
.t/ ;

which together with (4.18) implies the assertion.

Let g 2 BMO2�.�/. By combining the results of Proposition 4.7 and Proposition 4.8 we
obtain

(4.19)
ˇ̌̌̌
d

dt

²
B�.g/ ı 
.t/

³ˇ̌̌̌
� 2kgkBMO�

�
ds�

dt

�
:

Now we get a Lipschitz estimate for B�.g/ which holds for all g 2 BMO2�.�/:

Theorem 4.9. Let g 2 BMO2�.�/ and � � p. Then we have for all z; w 2 �,

(4.20) jB�.g/.w/ � B�.g/.z/j � 2

s
�

p
� kgkBMO�ˇ.z; w/:

In the case where g 2 UC.�/, we have g � B�.g/ 2 BUC.�/.

Proof. Let 
 be a geodesic joining z and w with respect to the Bergman metric corre-
sponding to the weighted kernel K�. Let ˇ�. � ; � / denote the Bergman distance function. Note
that according to (4.16) we have

ˇ.z; w/ D

s
�

p
� ˇ�.z; w/:

The estimate (4.20) follows from this observation and by integrating (4.19). If g 2 UC.�/,
then it follows from Lip.�/ � UC.�/ that g � B�.g/ 2 UC.�/ for all � � p. It remains to
show the boundedness of g � B�.g/. From

g.w/ � B�.g/.w/ D c�

Z
�

Œg.w/ � g ı 'w.z/�h.z; z/
��p dv.z/

we obtain the estimate

jg.w/ � B�.g/.w/j � c�

Z
�

jg ı 'w.0/ � g ı 'w.z/jh.z; z/
��p dv.z/:
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Bauer and Coburn, Heat flow and Lipschitz approximation 241

Since g 2 BO.�/ and ˇ.'w0; 'wz/ D ˇ.0; z/, we see from (1.1) and with C > 0 that

jg.w/ � B�.g/.w/j � c�C

Z
�

Œ1C ˇ.0; z/�h.z; z/��p dv.z/

� c�C

Z
�

Œ1C ˇ.0; z/� dv.z/ <1:

In the last line we have used � � p and 0 < h.z; z/ � 1 for all z 2 � together with the well-
known fact (cf. [4]) that ˇ.0; � / 2 L1.�; dv/.

We collect the previous results to obtain a statement which is completely analogous to
Theorem 3.4 (see also the Remark 3.5).

Theorem 4.10. Let � � Cn be a BSD of genus p equipped with the Bergman metric
and let f 2 UC.�/. Then the integral transforms ¹B�.f /º��p in (4.3) define a flow of real
analytic functions in Lip.�/ with

lim
�!1

B�.f / D f

uniformly on �. The Lipschitz constant of B�.f / is dominated by C� WD 2
p
�=pkf kBMO� .

In particular, the inclusion Lip.�/ � UC.�/ is dense.

Remark 4.11. In the case where � D Bn, it has been shown in [17] that the spaces
BMO2�.B

n/ in fact are independent of the weight parameter � > n.

Remark 4.12. In our results, we have assumed that � � Cn is an irreducible BSD.
However, they remain valid for arbitrary reducible BSDs by reasonably clear modifications of
the proofs for the irreducible case.

5. Real analytic Lipschitz approximation and the Berezin measure

Let � � Cn be a domain equipped with a finite positive Borel measure � normalized to
one, i.e. �.�/ D 1. We write H .�/ for the Fréchet space of all holomorphic functions on �.
Assume that the �-Bergman space

L2an.�; �/ WD H .�/ \ L2.�; �/

is a Hilbert subspace of L2.�; �/ with a reproducing kernel K W � ��! C such that K is
non-vanishing on the diagonal, i.e. one has K.z; z/ > 0 for all z 2 �. We define the Berezin
measure dV� on � by

(5.1) dV�.z/ WD K.z; z/ d�.z/:

Moreover, for a given bounded function f 2 L1.�; �/ and with z 2 � we write

(5.2) B�.f /.z/ WD
hfK. � ; z/;K. � ; z/i

K.z; z/
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for the Berezin transform of f with respect toL2an.�; �/, where h � ; � i denotes the inner product
of L2.�; �/. With the normalized reproducing kernels

kz.u/ WD
K.u; z/

kK. � ; z/k
1
2

2 L2an.�; �/;

where z; u 2 �, we can rewrite the Berezin transform (5.2) of f as

B�.f /.z/ D hf kz; kzi D

Z
�

f .u/jkz.u/j
2 d�.u/:

In the next example we express these objects more explicitly in the case where � D Cn or �
is a BSD.

Example 5.1. Let� D Cn be equipped with the Gaussian measure �t in formula (3.2),
where t > 0. Then we have B�t .f / D Qf .t/ for f 2 L1.Cn/ and

(5.3) dV�t .z/ D
1

.4�t/n
dv.z/:

Consider now a BSD � � Cn of genus p which carries the standard weighted measure
d��.z/ WD c�h.z; z/

��p dv.z/ (see the notation in Section 4) with � > p � 1. Then one sees
from (4.7) that B��.f / D B�.f / for all f 2 L1.�/. The Berezin measure takes the form

(5.4) dV��.z/ D K�.z; z/ dv�.z/ D c�h.z; z/
�p dv.z/:

In the last equality we have used the relation (4.2) between the weight function and the repro-
ducing kernel of L2an; �.�; dv/.

Note that none of the measures (5.3) and (5.4) is finite which is a typical phenomenon
in the case when L2an.�; �/ is infinite dimensional. Moreover, one observes that the spaces
L2.Cn; V�t / and L2.�; V��/ are independent of the weight parameter t and �, respectively.
All corresponding norms are equivalent.

As was noted earlier, the families of Berezin transforms above can be extended from
bounded functions to the spaces UC.Cn/ (and UC.�/), respectively, whenever � � p.

With the definition (5.1) consider now the L2-space L2.�; V�/. Then we have the fol-
lowing (cf. [3, Example 3.1]):

Lemma 5.2. The Berezin transform is linear and well-defined on L2.�; V�/ and leaves
this space invariant. More precisely, it defines a contraction on L2.�; V�/.

Proof. Let f 2 L2.�; V�/. One can check thatZ
�3

1

K.y; y/

jku.w/j
2

K.u; u/

jkw.y/j
2

K.w;w/
dV�.y/ dV�.w/ dV�.u/ D �.�/ D 1:

Hence we conclude from Tonelli’s theorem that the function

L.u; y/ WD
1

K.y; y/

Z
�

jku.w/j
2
jkw.y/j

2 d�.w/
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is finite for a.e. .u; y/ 2 �2 with respect to the product measure dV� ˝ dV� and non-negative.
By using the identity jkw.u/j2 D K.u; u/K�1.w;w/jku.w/j2 one finds thatZ

�

L.u; y/ dV�.u/ D

Z
�

L.u; y/ dV�.y/ D 1:

Hence the two functions F1.u; y/ WD f .u/ and F2.u; y/ WD f .y/ are both elements of the
L2-space L2.� ��;L. � ; �/dV� ˝ dV�/ with the norm

(5.5)
Z
�2
jFj .u; y/j

2L.u; y/ dV� ˝ dV�.u; y/ D kf k
2
L2.�;V�/

; j D 1; 2:

Finally, Fubini’s theorem and (5.5) together with the Cauchy–Schwarz inequality shows that

kB�.f /k
2
L2.�;V�/

D

Z
�3
f .u/f .y/jkw.u/j

2
jkw.y/j

2 d�.u/ d�.y/ dV�.w/

D

Z
�3
f .u/f .y/jku.w/j

2
jkw.y/j

2 d�.w/ dV�.u/ d�.y/

D

Z
�2
F1.u; y/F2.u; y/L.u; y/ dV� ˝ dV�.u; y/

� kf k2
L2.�;V�/

:

This proves the lemma.

If we restrict our analysis to certain subspaces of UC.Cn/ and UC.�/, respectively, then
we can sharpen the statements of both Theorems 3.4 and 4.10.

Theorem 5.3. Let f 2 UC.Cn/ \ L2.Cn; dv/. Then the heat transforms ¹ Qf .t/ºt>0
define a flow of real analytic functions in Lip.Cn/ \ L2.Cn; dv/ with

lim
t!0

Qf .t/ D f

uniformly on Cn. The Lipschitz constant of Qf .t/ is dominated by

Dt WD .4�/
�nt�n�

1
2 kf kL2.Cn;dv/:

Proof. According to Theorem 3.4, Lemma 5.2 and the first part of Example 5.1 we have

Qf .t/ 2 Lip.Cn/ \ L2.Cn; dv/

for f 2 UC.Cn/ \ L2.Cn; dv/ and all t > 0. Let K denote the reproducing kernel of the
space H 2.Cn; d�/. Then we obtain from jK.u;w/j2 � K.u; u/K.w;w/ for all u;w 2 Cn

that
jMO.f /.u/j � e

jf j2.u/

D

Z
Cn
jf .w/j2jku.w/j

2 d�.w/

�

Z
Cn
jf .w/j2K.w;w/ d�.w/

D kf k2
L2.Cn;V�/

:
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From the last estimate we conclude that kf kBMO � kf kL2.Cn;V�/. In particular, we have for
all t > 0,

kf .� 2
p
t /k2BMO � kf .� 2

p
t /k2

L2.Cn;V�/

D
1

.4�t/n

Z
Cn
jf .2
p
tu/j2 dv.u/

D
1

.4�t/2n
kf k2

L2.Cn;dv/:

A second application of Theorem 3.4 shows now that the Lipschitz constant of Qf .t/ is domi-
nated by Dt WD .4�/�nt�n�

1
2 kf kL2.Cn;dv/.

Let � � Cn be a bounded irreducible domain of genus p. For any � > p � 1 consider
the Berezin measure dV��.z/ D c� d!.z/ on � in (5.4). Note that the measure

d!.z/ WD h.z; z/�p dv.z/

is independent of the weight parameter �. Then we have:

Theorem 5.4. Let f 2 UC.�/ \ L2.�; !/. Then the integral transforms ¹B�.f /º��p
in (4.3) define a flow of real analytic functions in Lip.�/ \ L2.�; !/ with

lim
�!1

B�.f / D f

uniformly on �. The Lipschitz constant of B�.f / is dominated by

(5.6) M� WD 2

s
�

p�n
�

��.�/

��.� �
n
r
/
� kf kL2.�;!/;

where ��.�/ denotes the Gindikin Gamma function and r is the rank of �.

Proof. By the same argument as in the proof of Theorem 5.3 we conclude that

kf kBMO� �
p
c�kf kL2.�;!/:

Hence the upper boundM� for the Lipschitz constant ofB�.f / is obtained from Theorem 4.10
and the definition (4.1) of c�.

We close the section with some remarks on the relation between the spaces BMO2.�/
and L2.�; V�/ in the case where � D Cn with the Gaussian measure d� or � is a bounded
symmetric domain of genus p equipped with the measure d�p.

In the general framework (as it was described at the beginning of this section) we denote
by P the orthogonal projection of L2.�; �/ onto L2an.�; �/. With a (suitable) complex-valued
symbol f the Hankel operator Hf is defined by

Hf D .I � P /Mf W L
2
an.�; �/! L2an.�; �/

?
� L2.�; �/;

where Mf denotes the multiplication by f . The following result was shown in [3, Proposi-
tion 4.1].
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Lemma 5.5. Let f 2 L2.�; V�/. Then the Hankel operator Hf is of Hilbert–Schmidt
type.

Assume that� D Cn or� is a BSD of genus p equipped with the measure d� and d�p,
respectively. We say that f is of vanishing mean oscillation (f is in VMO2.�/ � BMO2.�/)
if one of the following holds:

(i) � D Cn and limz!1MO.f; z/ D 0,

(ii) � � Cn a BSD and limz!à� MOp.f; z/ D 0.

In both cases it is known that the simultaneous compactness of the Hankel operators Hf and
H Nf implies that f 2 VMO2.�/ (see [1, 4]). Hence Lemma 5.5 shows:

Corollary 5.6. Let � be a BSD. Then

L2.�; !/ � VMO2.�/ � BMO2.�/:

The analogous result holds for � D Cn.

Remark 5.7. By a direct calculation it even can be shown that for a BSD � of genus p
and f 2 L2.�; !/ one has limz!à� MOp.jf j2/.z/ D 0. This convergence implies thatMf P
is compact onL2.�; dv/ for all f 2 L2.�; !/. We omit the proofs here. The analogous results
are true for � D Cn equipped with a Gaussian measure and f 2 L2.Cn; dv/.
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