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Deformation quantization of
endomorphism bundles

By Johannes Aastrup at Hannover

1. Introduction

A deformation quantization of a Poisson manifold (M, {-,-}) is an associative pro-
duct x on C*(M)][[A]] so that

x being % linear, P; bidifferential, and

[/ 9] = ih{ [, g} + O(h),
where [-, ] is the commutator with respect to .
This notion was first introduced in [1].

The question of existence and classification of deformation quantizations on general
Poisson manifolds was solved in 1997 by Kontsevich in [9].

The simpler case of existence of deformation quantizations of the canonical Poisson
structure on symplectic manifolds was solved already in [16]. A simple geometric con-
struction of deformation quantizations of symplectic manifolds was given by Fedosov in
[6]. The advantage of Fedosov’s construction compared to the ones in [9] and [16] is that it
is easy to handle and also suitably generalizable. The most general setting of the Fedosov
construction is probably given in [15], where deformation quantizations of symplectic Lie
algebroids is done. Also the classification of deformation quantizations becomes amenable
in view of the Fedosov construction. In the case of symplectic manifolds this was done in
[11], and the classification of deformation quantizations on a symplectic manifold (M, ) is
given by the points (characteristic classes) 6 in the space

w 2
o HP (M ClA]).
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204 Aastrup, Deformation quantization of endomorphism bundles

One of the main classes of examples of deformation quantizations of symplectic
manifolds are those coming from the asymptotic calculus of pseudodifferential operators on
manifolds, see for example [13]. If we consider the asymptotic calculus of pseudodifferential
operators on a manifold M, we will get a deformation quantization of the cotangent bundle
T*M of M, where T*M is equipped with the canonical symplectic structure.

This example gives the connection to index theory. On a deformation quantization of
any symplectic 2n dimensional manifold there is a canonical trace, unique up to multipli-
cation by a scalar, of the form

(1.1) Tr(a) = n!(;h),, (AJ; ao" + 0(h)).

By an appropriate choice of the representation of the quantization, i.e. after applying a
linear isomorphism of C*(M)[[A]] of the form

S = S+ RDy(f) + -

one can assure that Tr has the form

1
Tr(a) = aIGh) A£ am”,

which fixes it uniquely.

In most proofs of the Atiyah-Singer index theorem and related “local” index theo-
rems, one of the main difficulties is to compute the trace of a certain operator on a Hilbert
space, usually L2(M) as above. In order to compute this trace, a scaling / in R, of the
operator is introduced, and the asymptotic expansion of the trace as i — 0 becomes com-
putable, at least the constant term in the expansion. The computations coming out of this
are computations like (1.1). This is why computing the canonical trace on deformation
quantizations is called algebraic index theory. Actually, according to [13], computing the
trace on deformation quantizations in a way that will be described now, implies the Atiyah-
Singer index theorem.

Many elements, though not all, on which computing the trace is interesting, are first
components of classes in cyclic periodic homology. The cyclic periodic homology or rather
cohomology was invented by Connes in [5]. It is the noncommutative analog of de Rahm
cohomology and was already at the beginning intimately connected to index theory. A
complex computing the cyclic periodic homology of a unital algebra 4 over a field k is
given by

even

CCEL(A) =T[A® A®%;  CCly(4) =]4® 4%
1 1

where A = A/k - 1 and the differential

b+B
per per
CCeven(A_) Ccodd (A) ) ) o
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Aastrup, Deformation quantization of endomorphism bundles 205
is given by

b(a0®"'®an)
n—1
=S (- Dar®  Quar @ Qap+ (—1)"apa0 @ a1 ® - -+ ®
k=0
and

Blay® - ®ay) =X (-D"1@a @1 @a,®ao... a1

k=0

If for example p € M, (A) is a projection, a class in HCES (A) is given by the formula

even

(2k)!
w(pr S G- @ ),

where
tr: M, (4)%F — 4®F
is the map given by
(M] ®a1)®--~®(Mk®ak) ;—>tr(M1...Mk)a1 R R a.

Therefore tr(p) can be regarded as the first component of a class in cyclic periodic homo-
logy. This class is also called the Chern character of p.

Evaluating Tr on the first component gives a morphism of complexes
(1.2) Tr: CCP (4™ — [, 7],

where A’ is the algebra of compactly supported elements C(M)([[4]]) in a deformation
quantization A", and C[[/i, /'] is considered as a complex concentrated at degree zero with
the trivial boundary map.

Computing the trace on elements that are first components of a class in cyclic periodic
homology is therefore the same as computing (1.2) at the level of homology.

In [11] it is proved that
Tr(-) ~ (—1)"A£ A(TM)e a()

where ~ means that the two sides define the same morphism at the level of homology. Here
0 is the characteristic class of the deformation and i is the map CCP*"(4") — Q*(M) given
by

_ | - -
Alay® - @ ai) = andal <-day, a; = a; modh.
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206 Aastrup, Deformation quantization of endomorphism bundles

This settles the problem of computing the trace at the level of homology for defor-
mation quantizations of symplectic manifolds.

1.1. Contents of the paper. Below I propose a definition of deformation quantiza-
tion of endomorphism bundles over a symplectic manifold. The motivation is clear: De-
formation quantizations of the trivial line bundle are the algebraic analogs of pseudodiffer-
ential operators in line bundles. Therefore deformation quantizations of an endomorphism
bundle End(E), E vector bundle over M, should be the algebraic analogs of pseudodiffer-
ential operators in any vector bundle having End(E) as endomorphism bundle.

The definition proposed requires a product * on
I'(End(E))([A]

so the algebra (I'(End(E))[[/]], ) is locally isomorphic to My (#;); here #;, is the Weyl al-

gebra, the canonical deformation quantization of the standard symplectic structure on R*".

It turns out that the Fedosov construction also works in this case. Thus let My (A")
be the algebra of jets at zero of elements in My (#;,). Associated to (M, w, End(E)) there
is an algebra bundle W with fiber My(A"). Put g = Der(My(A")). There is now a short
exact sequence

1
0= 2CllH)] —§—g—0
of Lie algebras. The Fedosov construction then consists, for a given element 0 in

)
4 H2(M, )

in constructing a flat connection V in W with values in g, such that ker V ~ I'(End(E)) [[7]]
linearly and V admits a lift V to a connection with values in g and curvature 6. The product
on I'(W) induces a product on ker V = I'(End(E))[[A]]. This product gives a deformation

quantization of End(E), and 6 will be an isomorphism invariant of the deformation quan-
tization.

This construction is done in section 3. In this section the following is also shown.

Theorem 1. A deformation quantization of End(E) is isomorphic to the algebra of flat
sections of a Fedosov connection, and the isomorphism classes of deformation quantizations of
End(E) are classified by the points in

)
2+ HA(M, O[],
The principle that a deformation quantization comes as flat sections in a certain infi-

nite dimensional vector bundle is not special to deformation quantizations. In section 2 it is
shown that sections of F(End(E )) are flat sections in an algebra bundle with fibre

My (C[[z1, ..., %))
Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet
Heruntergeladen am | 13.04.18 13:52



Aastrup, Deformation quantization of endomorphism bundles 207

The reason for redoing this construction for End(E) is that it is notationally simpler,
and, hopefully, clarifies the construction. Therefore in section 3 only the differences in
the construction for End(E) and deformation quantizations of endomorpism bundles are
spelled out.

Like in the scalar case there are canonical traces on deformation quantizations of
endomorphism bundles. The rest of the paper is devoted to an index theory for these traces.
The methods used for this have been developed by Nest and Tsygan in [11], [12], [2] and
[15]. These methods are based on the following:

(1) The action of the reduced cyclic complex C%(A4) on CCPe'(A):
CH(A) x CCP™(4) — CCP"(A).

(2) The construction of the fundamental class, a special class in C/(A}), where A is
the deformation quantization of End(E). Or rather the construction of a class in the Cech

complex, C*(M, C/(A%)), with values in the presheaf V' — C‘j(AZ‘V).

(3) Computations in Lie algebra cohomology in order to identify the fundamental
class at the level of cohomology.

The fundamental class U lives in C5, | (My(#73)). Its role is that it relates Tr to f
when evaluated at classes that are scalar mod /. This has the effect that

Tr(U -a) = (-1)"[a(a), ae CCP"(My(#ne))-

Here, as before, the subscript “c”’ denotes the ideal of compactly supported elements in the
deformation algebra in question.

The following plays the major role.

_ Theorem 2. In cohomology, the class U has a unique extension to a class in
C*(M,C%(A%)), also denoted by U. On classes of the form ay® --- ® ay € CCfer(Agc),
where a; is a scalar mod h, the following holds:

Tr(U -a) = (—1)"[ a(a) mod h.

It is not difficult to see that this implies for general classes ag® ---® a; in
CCPer(AR ) that

Tr(U-ay® - ®ar) = (—1)"L|"ch(End(E))71 ch(V)(ay ® - -+ ® a;) mod /i

where ch(End(E)) is the usual Chern character of End(E) as a vector bundle, V is a con-
nection in End(E), and

ch(V)(ao ® -+ ® ax)

— [ tr(@e V' V(@)e "V - V(a)e V) dig - - diy_
Ay

the J.L.O. cocycle associated to V.
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208 Aastrup, Deformation quantization of endomorphism bundles

To finish the index theory, the fundamental class has to be identified. This is done via
Lie algebra cohomology. We have the Gelfand-Fuks morphism of complexes

C*(g,su(N) +u(n); CH(My(A")) — C"(M,Q* (M, CH(My(AM)))),

the latter complex being quasi-isomorphic to C* (M,C i(A’fg)) As in the case of My (#7,),
there is a fundamental class U in C* (M N(Ah)) extending uniquely in cohomology to a
class in Lie algebra cohomology, also denoted by U. It turns out that GF(U) is equi-
valent to U in C*(M, C*(A%)) via the quasi-isomorphism between C*(M, C/(A%)) and
C*(M,Q" (M, C(My(A")))). Hence the question of computing or identifying U is now a
question of computations in

C*(g,5u(N) + u(n); C‘f(MN(Ah))).

It turns out to be useful to work with the differential graded algebra My (A")[y], where # is

a formal variable, #?> = 0 and the differential is given by 8_(27

The reason for doing this is to include the identity operation on CCP' (M. N(Ah)).
Thus the action of C/(My(A") on CCP(My(A")) extends to an action of
CH(My(A")[n]) on CCPr(My(A")). With this action, the classes 7%+1) = klp®*+1 become
the identity operations. The main technical theorem of this paper, Theorem 6.0.3, states the
following:

Theorem 3. U is equivalent to

S (Ao (ch) )y,

m=0
in C*(g, su(N) + u(n); C/ (MN(AE)[n])), i.e. it defines the same cohomology class.

Here A is the Lie algebraic class A coming from u(n), ch is the Lie algebraic Chern
character coming from su(N) and 0 is the Lie algebraic class of deformation.

From this follows the index theorem:

Theorem 4. Let A% be a deformation quantization of End(E) and let 0 be the asso-
ciated characteristic class. Then the identity

Tr(a) = (—1)"[A- e’ ch(V)(a)
holds when a is a cycle in CCfer’C(Agc).

Acknowledgements. 1 would like, first of all, to thank my advisor Ryszard Nest. 1
would also like to thank Boris Tsygan for helpful conversations and Paulo Almeida and
Nuno Martins for inspiring conversations and a friendly climate the two months they
hosted me at the [.S.T. in Lisbon.

Similar notions of deformation quantization of endomorphism bundles have been
studied by Fedosov [7] and by Bursztyn and Waldmann [4].
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Aastrup, Deformation quantization of endomorphism bundles 209
2. Sections of endomorphism bundles as flat sections in a profinite bundle

Let O, = C[[X},...,%,]] and My(0,) = My ® O,, where My is the algebra of
N x N complex matrices. We give My(0,) a grading by setting

deg(b® x;) =1, be My.

Furthermore we give My(0,) the I-adic topology, where I is the ideal generated by ele-
ments of degree = 1.

Definition 2.0.1. Let G be the group of continuous automorphisms of My (0,) such
that the induced automorphism on the centre O,, is an automorphism induced by an auto-
morphism on R[[X1,...,X,]].

Lemma 2.0.2. An automorphism in G is the composition of an automorphism induced
by an automorphism of R[[X1, ..., X,]] and an inner automorphism.

Proof. Given an automorphism @ in G let ¢ be the induced automorphism on Q,,.
Considering y = ®o (¢ ® id)f1 we have that y is an O,-module map.

For A in My(C) we have
2(A) = Do(A) + higher order terms, Dy(A4) € My.

Since Dy is an automorphism of My, it is inner, and hence it extends to My(0,). Let
11 :XODal. Then

21(A) = A+ > x;D;(A) + higher order terms.
Each D; is a derivation of My and hence given by a commutator by an element B; in My.
Therefore

21 © exp(z ad(fciB,-)> (A) = A + terms of order = 2.

i

Continuing by induction, we get a sequence of elements Cy in My (0, ), where deg(Cy) = k,
with

(x oexp(ad(Cy)) o ---oexp(ad(Cy)))(A4) = A + terms of order = k + 1.
Since the product
exp(ad(Cp)) o ---oexp(ad(Cy)) o -
converges, we see by the Hausdorff-Campbell formula that y is inner.
From Lemma 2.0.2 we get:

Proposition 2.0.3. The Lie algebra of the Lie group G is
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210 Aastrup, Deformation quantization of endomorphism bundles
WY < (gly(0,)/centre),
where WS is the Lie algebra of formal vector fields vanishing at zero.
We note that Der(My(0,)) is larger than WY x (gl(D,)/centre), namely
W, < (gIN(G)n)/centre),
where W, are all formal vector fields on R”.

Lemma 2.0.4. Let X be a contractible open subset of R, let Aut(M,) be the auto-
morphism group of M,, and let Der(M,) be the derivations of M,. Any smooth map
¢, : X — Aut(M,) (resp. ¢, : X — Der(M,)) lifts to a smooth map ¢, : X — Gl, (resp.
Py X — M,).

Proof.  First the case of ¢;:

Let {e;} be the standard matrix units. The families

x = @1 (x)(ei)
of projections over X give rise to a family of line bundles {/;} over X by
li = (1 (x)(en)) (R").

Since X is contractible, these line bundles are trivial. Let v; be a smooth nowhere vanishing
section of /;, and let

vi(x) = (601 (x)(@il)) (”l (x))

Put
(@1 (x)) (er) = vilx),
where ¢; is the vector (ai,...,a,) € R" with a; =0, j + i, and ¢; = 1. Since
(71 (e (71(x) " )oe(x) = Gy (X)eger = §1 (x)eidye = devi(),
and

91 (%) (eg)ve(x) = (o1(x)(ey)) (@1 (x) (ex1) Jvr (x)
= iy (x)(en) (v1(x)) = dgjvi(x),

we have that ¢, : X — Gl,, is smooth, and that

G1(0)A(G (X)) =g (x)(4), AeM,.

In the case of ¢, let ¢ : X x R — Aut(M,) be defined by
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Aastrup, Deformation quantization of endomorphism bundles 211
p(x, 1) = exp(tp(x)).-

This is clearly a smooth map, and hence by the first part of the lemma we get a smooth
lifting of p to ¢ : X x R — Gl,,.

Defining

0
_ _ 95V x 0
?2(x) = = (9)(x, 0),
the lemma follows.
In view of Lemma 2.0.4, the proof of Lemma 2.0.2 actually shows

Lemma 2.0.5. A4 smooth family of elements in G over a contractible open subset X of
R lifts to a smooth family over X of elements in the group of invertible elements in M,(0,).

2.1. Jets of sections of endomorphism bundles. Let 4 be an algebra bundle over a
manifold M. In this case we let

I, ={aeTl(A)|a(m)=0}.
Given this, we define

JnA =1im T(A)/I}.
k

Denote by J,, the quotient map from I'(4) into J,,4. In the following we are only inter-
ested in the case, where 4 = End(E), E a vector bundle. Note that J,4 ~ My(0,) by
choosing a trivialization; and that any other trivialization leads to an automorphism of
My(0,) belonging to G.

Suppose we are given a smooth path of automorphisms @, in G, according to Lemma
2.0.5 we can write it as @, = ¢, o y,, where ¢, is a smooth path of automorphisms induced
by automorphisms of R[[Xi,...,X,]] and y, is a smooth path of inner automorphisms of
My (O,). It is well known that ¢, lifts to a smooth path of local diffeomorphisms ®, of R"
preserving zero, and since y, lifts to a smooth path of invertible elements in My (0,), it lifts,
by the Borel lemma, to a smooth path of invertible elements in M N(C”(U )), where U is
an open subset of R” containing zero. We thus get

Proposition 2.1.1.  Any smooth path of automorphisms in G lifts to a smooth path of
local bundle automorphisms of My (C OC‘([Ri”)) preserving zero.

2.2. The frame bundle. For a manifold M with a vector bundle E we define the
following:

Definition 2.2.1. The frame bundle M} is given by

Mg ={(m,®)|me M,®: My(0,) — J,, End(E)}.
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212 Aastrup, Deformation quantization of endomorphism bundles

We note that M is a profinite manifold and in fact a principal bundle over M with
fibre G.

Proposition 2.2.2.  For all (m,®) € M there is a canonical isomorphism
Oma) : TomoyMp — Der(My(0,)).

The map w these isomorphisms define from T Mg to Der(M N((D)n)) satisfies

i) w(d4*) =4, A e W x (gly(0,)/centre),

(i) ¢'w=adp'® forgpe G,

(i) do+ % w,0] =0, x
where A* is the fundamental vector field corresponding to A.

In other words, w is a flat connection in M with values in Der(M N(@,,)).

Proof. Suppose we are given a path in My so y(f)e My with 7(0) =,
7(0) = (m, @), and y(t) = (m,, ®,). This lifts to a path of trivializations j = (m,, ®@,),
@, : My(C*(U)) — I'(End(E)) that map 0 to m,.

Define w(v) to be the derivation

Jo(a) — Jo (% (o @,(a))>, ae My(C*(V)).

This does not depend on the choice of y or the lifting to  and will be an isomorphism.
Identity (i) follows, since w is the canonical one form on the fibres of M.

For identity (ii), we have to compute (g, (v)), ¢ € G, but

0(p.0)) = (e = 5o (5 (57 08" 0,0 4(a) ) ) =l Joto)
Identity (iii) is equivalent to
o(lw(X), 0 (Y)]) =[X,Y], X,Y eDer(My(0,)).

This is actually a consequence of identity (i), because the statement is obvious for X, Y of

the form d € Der(My(0,)). For X, Y in WY x (gly(0,)/centre) it follows, because o

0X;
is the canonical one form on the fibres of M. Hence it suffices to check the case when X

is of the form

0
Fr and Y e WY (gl (0y)/centre). Therefore let g, be the one parameter
1
group for Y on G. We have
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Aastrup, Deformation quantization of endomorphism bundles 213
_ _ .1 _ _
(o (X).07 (1)) = o lim (907 (1) - 0 (1))

= lim% (ad(p, ") (X) — X) = [X, Y],

t—0

from which the proposition follows.

Given M, we define the jet bundle of End(E) by
JE = ME X@G MN(@,[)

The flat connection on M gives a flat connection in JE in the following way: Choose
a trivialization of JEy 5 U x My (O,). This corresponds to a lift ¢: U — M £, of the
projection P : Mg — M. In this trivialization the connection V is given by V = d — ¢*(w),
where w is the connection described in Proposition 2.1.1.

Proposition 2.2.3. The complex (Q*(M ,JE),V) is acyclic, and the cohomology is
isomorphic to T (End(E)).

Proof- There is an injective map j from F(End(E)) into JE given by

) = ((m, ®), @7 (J), 7T (End(E)).

To see that the image of j belongs to the kernel of V, choose a trivialization in the sense of
a local bundle map @ : My (C*(U)) — I'(End(E)), U open subset of R". Denote the in-
duced map from U to M by ®@. From this trivialization we get a special trivialization of Mg
by letting @, denote the map My(0,) = J,(My(C*(U))) — Jou (C(End(E))) induced
from ® and then define

UxG>3(u,g) — (Ou),g®,).
Using this trivialization, we get a local bundle isomorphism
C*(U) ® My(0,) — JE,

and in this trivialization it is not difficult to see that

0
(2.1) V=d-3dv® oo

IfyeM N(COO(U )), we have that j(y) is just given by the Taylor expansion in each point,
ie.

. 0 II'V o1

JO)w) = 5T,

T
where I runs through all multi-indices. Hence j(y) € ker(V).

A computation in (Q*(U, My(0,)),V), where V is as in (2.1), gives that
(Q*(U, My(0,)), V) is acyclic, and the cohomology is j(My (C*(U)))
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214 Aastrup, Deformation quantization of endomorphism bundles

We have thus seen that (Q*(M,JE), V) is locally acyclic and the cohomology is lo-
cally isomorphic to I'(End(E)). Since we have also seen that I'(End(E)) is globally con-
tained in kerV, i.e. the cohomology of (Q*(M,JE),V) is a module over I'(End(E)), the
statement follows.

3. Deformation quantization of endomorphism bundles
We start with looking at R?" with the standard symplectic structure, and denote the

coordinates by xi,...,x,,¢1,...,&,. On C*(R?)[[A]] we consider the Weyl quantization
given by the product

(f + )0 = exp( T £ 0ntn — 2600 )15 Doy

~.

We will denote the Weyl quantization by #/,.

Since the definition of the product in the Weyl quantization of two functions f', g only
uses derivatives of f and g, the Weyl quantization makes sense over any open subset U of
R?". We will in this case talk about the Weyl quantization over U.

Let (M, ) be a symplectic manifold, and let £ be a vector bundle over M.

Definition 3.0.4. A deformation quantization of End(E) is a Z-linear associative
product % on I'(End(E))[[#]], continuous in the /-adic topology and satisfying

where f,g € F(End(E)), and the B; are bidifferential expressions. Furthermore we require
that (I'(End(E))[[/]], %) is locally isomorphic to My(#}), where %, is the Weyl algebra
on some open subset of R?".

In this case locally isomorphic means that we are given a local bundle isomorphism
®: My (C*(U))[[A]] — I'(End(E))[[A]]|, over a local symplectomorphism such that the
product " induced by * on My (C*(U))[[A]] is isomorphic to My (#7). Isomorphic means
that there exist differential operators {D;} such that the map

0 (My (CT(U)[AY, ") — My (#3)
given by
p(a) =a+hDi(a)+---, aeMy(C*(U))
is an isomorphism of algebras.

We want to do the same construction for deformation quantizations as we did for
endomorphism bundles. We therefore need the infinitesimal version of My (#7,). This is just

given by considering Oy,[[%]], O, = C[[X1,..., X4, &q, ..., &,]], with the same product as
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Aastrup, Deformation quantization of endomorphism bundles 215

in the Weyl quantization. With this product we denote the algebra by A" The infinitesimal
structure of My () will then be My(A").

Definition 3.0.5. A formal symplectomorphism of O, is a continuous automor-
phism of O, induced from an automorphism of

R[%1,. . % &1L Gl

that preserves the formal standard Poisson bracket {-,-} on Oy,.

Let G be the subgroup of automorphisms of My (A") such that ® € G if ® is / linear
and continuous. Moreover, ® mod /i becomes an automorphism @ of My (0y,), and @,
induces a formal symplectomorphism on O,.

If ® € G, we let ¢ denote the induced symplectomorphism on Oy,. In this case we will
say that @ is an automorphism over ¢.

Lemma 3.0.6. Every automorphism of My (A") over the identity symplectomorphism
is inner.

Proof. Let ®@ be such an automorphism. Since it is an automorphism mod /2 over the
identity, it is inner mod /z, and we can hence assume that ® is the identity mod /. In other
words,

®(a) =a+hDi(a)+---, ae My(0y,).
Since @ is an automorphism, D; is a derivation of My(0,,) and hence of the form

X +[4, -], where X is a formal vector field and 4 € My (0,,). If we assume that a, b € O,
we have that

{a, Di(b)} + {D1(a),b} = Di({a,b}),

since @ is an automorphism. This means that X is a formal hamiltonian vector field.
Therefore there exists an element x in O,, such that D, (a) = {x,a}. Hence we have

®oexp(—ad(x+ 4)) = id mod /%,
Continuing in this way, the result follows.

It is well known from [11] that the Lie algebra of G in the case where N = 1, is given

ia
90 = 7

and that any element of G is of the form exp(g), g € g,.

by

Clim
h 3y

ae A" areal mod/,ae ()%1,...,51,...)2 modh}/

We therefore see that the Lie algebra g, of G for arbitrary N is given by
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216 Aastrup, Deformation quantization of endomorphism bundles

gy = {%—H}'b e My(A"),a e A" a real mod 7,

ae(Xl,...,fl,...)zmodh}/q:[}[:m.

To this Lie algebra we add the derivations 05, ..., 651, ... and call the enlarged Lie al-
gebra g.

Let us suppose that we are given a deformation quantization A% of End(E). We
define

I, = {ae A" |a(m) = 0},

and we let I denote the nth power of the ideal I, in the undeformed product. The jet of A7,
in m is defined by

InAf = lim A} /I%.
k

Since the value of the product in A% in a point only depends on the derivatives in that
point, the product descends to J,, A%.

If we choose a trivialization of A% around m, we get an isomorphism
JnAl = My(A"). Any other trivialization will give an automorphism of My (A") in G.

As in the case of End(E) we do the following:
Definition 3.0.7. The frame bundle M Al is given by
My = {(m, ®)|me M, : My(A") = J,AL}.
As before M Al is a principal bundle with fibre G.
Proposition 3.0.8. For all (m,®) e M 4 there is a canonical isomorphism
O, d) * T(m,(p)]\ZA/é — g.
The map w these isomorphisms define from T M to g satisfies
(i)  w(d”) =4, A € gy,
(i) ¢*o=adp ', peQq,
(i) do+ % [w,0] =0,
where A is the fundamental vector field corresponding to A.

In other words, w is a flat connection with values in g.
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Proof. The same as the case of endomorphism bundles.

As in the case of endomorphism bundles, we get a flat connection V in the bundle
JA} = My x6 My(A"),
Proposition 3.0.9. The complex (Q*(M,JA%), V) is acyclic, and
kerV = A%
Proof. The same as the case of endomorphism bundles.

We see that H' = U(n) x PU(N) is a maximal compact subgroup of G. The U(n)-
component comes from a maximal compact subgroup of the symplectic group, SP(2n), and

PU(N) (the projective unitary group) comes from the maximal compact subgroup of the
action of Gly on My (C).

Since H' is a maximal compact subgroup of G, we can reduce the bundle M, to an
H' bundle P’, which is easily seen to be a reduction of the principal bundle consisting of
dual symplectic frames and frames of End(E). We thus see that JA% is, in fact, isomorphic
to P’ x A". We will denote this bundle by W.

Because we are working with an endomorphism bundle, the bundle P’ admits a lift to
an H = U(n) x SU(N) principal bundle P.

We introduce a grading on A" in which %y, ..., Xy, fl, e ,f,, has degree 1 and / has
degree 2. This also gives a grading on My(A"). Furthermore we see that the action of U(n)
on A" preserves the grading and we hence get a grading on W.

We note that we have an extension of Lie algebras

(3.1) 0—>%iR+C[[ﬁH—>§—>g—>O,
where

- ia
9—{5‘1‘1)

ae A" arealmodh,be MN(Ah)}

with bracket given by commutators. The grading My (A”") also gives a grading on § and
therefore also on the subbundle of W // with fiber g, denoted by g,,. Let h = u(n) + su(N).
There is an embedding of Iy in g compatible with the quotient map g — g and the embed-
ding hh — g. This embedding is obvious in the case of su(N). Clearly u(n) embeds in sp(2n),
the Lie algebra of the symplectic group. Moreover sp(2n) embeds in g as the Lie sub alge-
bra generated by elements on the form

1 N 2
ih o, v,me{x,....¢&,...}.

The embedding of u(n) in g is the restriction of the embedding of sp(2n) in g given by

a1 a1 l A :
i ooy — ih v 2y +ﬁws,(v17vz), v, v € {x1,...,&,...}.
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Since H acts semi-simple on g, we get an H-equivariant lift of the quotient map
§ — g. We can therefore lift the connection V to a connection V taking values in §. This
means that we have a collection of local g-one forms {4;}, i being labels of trivializations
of W, satisfying

A; = gy dgji + 9;54;9;i,
where g;; are the transition functions.

This connection, however, is not flat. But because of the extension (3.1), the curvature

1 .. 1 . ..
dA; + 3 [4;, 4] is in Q? (M , %iIR + C[[h]]) Clearly the associated cohomology class is in-
. s . .\ 1
dependent of the choice of lifting of V. By checking the definition of V, one sees that the 7

) . )
component of V2is a where o is the symplectic structure.
i

So for each deformation quantization of End(E) we have a connection V in W such
that ker V is isomorphic to the deformation quantization, and the lifting of V to a g-valued
connection gives an element in

= (M, C[[A]).

Proposition 3.0.10. Let A’f g and Ag g be deformation quantizations with character-

istic classes 0 and 0. Then A{”E o AE’E if and only if 0, = 0, in % + H*(M, C[[H]]).

The proof of the above proposition relies on the following

Lemma 3.0.11. Let I, : TM — T*M be the bundle isomorphism induced by w. Since
T*M < W, the isomorphism I,, induces an element A in Q'(M,W). Put

A ~
A :E GQI(M79M)'

Then the complex
(Q*(M, 8ur)s AdA,l)
is acyclic.

Proof. Since the action of AdA_; commutes with the action of C*(M) on
Q*(M,g,,), it is enough to prove the statement locally. Locally the complex is just

(C*(R™) @ (i/hQ" + My(Q)[[H]),id ® d),
where (Q*,d) is the complex of formal differential forms. From this the lemma follows.

Proof of Proposition 3.0.10. Let V; and V, be the two connections with
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V? = V2 = 0. Note that we can actually assume that V? = V2 in _h+ Q*(M, C[[h]]). We
have

61—62:R0+R1+"', R,‘EQI(M,Q;M).

From the equality of the curvatures we get [A_;, Ry] =0, and hence by Lemma 3.0.11
we have an element gy € I'(g},) such that [g;,4_1] = Ry. Considering the connection
V10 = ad(exp g1) Va2, we therefore have

%—vz,ozRH““? R;EQI(M@}Q)-

Continuing by induction and using the Hausdorff-Campbell formula we get an element g in
F(Aut(g M)) conjugating V; into V,, and hence the deformations will be isomorphic.

Let us now assume that 4” ;. and A% 2. are isomorphic. This induces an isomorphism
between M 4 and M A compatible with the connections on M 4, and M 4 - In partic-

ular we get an automorphlsm of W mapping V; to V,, from Wthh we see that Ah 1. and
Ag ¢ have the same characteristic class.

Theorem 3.0.12. The deformation quantizations of an endomorphism bundle are clas-
sified by the affine space

&+ HA (M, O[],

Proof:  We only need to prove that for a class 6 in %4— Q*(M, C[[H]]), we have a

deformation quantization with characteristic class 6. To do this we start with a connection
in P and thus get an H-connection V in W. We have that

(VA V4 Ag] = 242V, 4] + [V, V],

One checks that [4_;,[V,A_1]] =0, and according to Lemma 3.0.11 we get an ele-
ment Ay € Q' (M, §,,) such that [4_;, o] = [V,4_1]. If we put Vo=V + A4_; + Ao, we
have

[Vo, Vo] — 0 = 0 mod Q*(M, §:2°).

Let us now assume that we have constructed V, with V> — 0 = 0 mod Q*(M, §,7").
By the Bianchi identity we have [V,, [V,, V,]] = 0, and therefore [4_;, ([V,,V,] —0),] =0,
where ([V,, V,] — 0), is the n-th component of [V, V,] — 0. As before, we get an element 4,
with [4_1, Ay] = ([V4, Vu] — 0),,, and considering V,,.; = V,, + 4, we have

n’

[Vn+lavn+1] 0=0 mOdQZ( ’~;;n+1).

. W .
For each class 6 in %+Q2(M ,C[[#]]) we can thus construct a connection Vg
i
with values in g and curvature 8. We therefore only need to check that the complex
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(Q*(M, W), V) is acyclic, that the kernel is isomorphic to I'(End(E)[[/]]), and that the
product induced by the product on W gives a deformation quantization of End(E). These
results, however, follow from the proof of the Proposition 3.0.10, since we locally can
conjugate Vg to a connection on the form

n

d— Z(@;, ® dx,- + 05 ® dél)

i=1

4. Lie algebra cohomology
Definition 4.0.13. A differential graded Lie algebra (g, d) over a commutative unital
ring k is a (Z/27 or Z) graded k-module g with a bracket operation [-,] : ¢/ x g' — g/
and a differential 0 : g/ — g'~! satisfying:

@ lgr,g2] = [0g1, 2] + (=1)"[g1, g,
i) [g1,90] = — (=Dl [gy g,
i) (g1, [g2, 93] + (=)D g, Tg, gol) 4+ (= 1ylerlleatleshig, 140 g1)] = 0,

where | - | is the degree.

A g module L* is a complex L* with an action of g, i.e. we have a map g’ x L/ — L™/
satisfying

G192l — (=1)21%lgo 901 = [g1, 2]
and
du-(gl) = (959)! + (1) g(01-1).

Given a differential graded Lie algebra g, we can define a differential graded Lie al-
gebra gle] as follows:

® gle] = g+ &g, where |¢| = 1,

* [g1,¢92] = ¢l91,92),

® [eg1,892] = 0,

® 0(g1 +¢92) = Og91 + g2 — €0q9>.

Also one can construct the enveloping algebra by setting

U(g) = T(8)/ (91 ® g2 — (=1)" g, @ g1 = [g1, 0n)),

where 7'(g) is the tensor algebra. Furthermore U(g) has a differential induced by the dif-

ferential on g by the graded Leibniz rule and a grading.
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We note that (U (gle)), 8) is a g module. Let ) denote a Lie sub algebra of g. For a g
module L* we define

C*(g,h; L") = Homy ) (U(gle]) @y &, L7).

This will have a differential induced by the differential on U(gle]) and the differential on L*.
The homology of this complex will be denoted by H*(g, b; L").

We are now going to give a construction of classes in C*(g,b; L") in special cases.
First we assume that L* is homotopically constant in the sense defined below.

Definition 4.0.14. A g-module L* is called homotopically constant if there exist op-
erations

lg:[l_*—>|]_*_1, geg
satisfying
[0,14] = Ly, [0,L,] =0,
Ly, 10:) = tig1,g0)s g1 10:] =0,
where we have denoted the action of g by L,.

In other words, we have an action of the differential graded algebra U(g[e]) on L*.

If we furthermore assume that there is an h-equivariant projection V : g — b of the
embedding ) — g, we get the usual Chern-Weil homomorphism, i.e. a map of complexes

CW: C*(hle], h; L) — C*(a,b; L")
given in the following way:

For an element g; A gy define R(g1 A g2) = [V(91),V(92)] — V([91,92]). Taking cup
product gives R : A?"q — A”el. By composition this gives a map

¢ : C*(ble],b; L) — C*(g, 7).
There are operations A" on L* given by
LA AGn = lg Vg, gVl
where / € L*. Finally we set

CW(a) = Y 7" U pla),

where U is the cup product. One checks that this gives a morphism of complexes.

Next we will give a construction of classes in C*(h[e], b; L*) for special cases of L*. To

this end we need the following
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Definition 4.0.15. A g-module L* is called very homotopically constant, if L* is ho-
motopically constant and we have operations

Lg:[L*—>[L*+l, gea,
zgzl]_*—>|]_*, gEag,
satisfying the eight conditions
[0, lg] =Ly -1, [G,Lg] =L, [lgl,lgz] =0, [lgl,lgz] =0,

[lglﬂL.(lz] = 1gi,90)> [lgUng] =0, [LgUng] = L[gl,gz]7 [LQZ?ng] =0.

In other words, we have an action of the differential graded algebra U(gle,#]) = U(gle][n])
on L".

We now assume that L* is a very homotopically constant [)-module. We denote by
Ly, the elements / € L* with L,/ = 0 and L,/ = 0. We note that this is a complex. We get a
morphism of complexes Lj , — C*(ble], h; L") by:

Y e (I A )}

4.1. Examples. We are going to give some examples of relative classes in Lie alge-
bra cohomology.

Example 1. Consider the extension (3.1) and choose an h-equivariant lift V:g — g
of the quotient map g — g, where b is u(n) + su(N). We then define the class 6 in

¢ (a.bigclil) by

(4.1) 0(g91,92) = [Vg1,Vga] = V([g1,92])-

We want to show that 0 actually comes from a sort of Chern-Weil map. Let k : g — g de-
note the quotient map, and let h = k~!(b), i.e.

b=b+ R+ Cl]

Note that C*(g,b; L") and C *(@,f); L*) are quasi-isomorphic, when L* is a ¢ module. We
have a Chern-Weil homomorphism

CW : C*(ble],b; L) — C*(3,b; L)

as before. A choice of an Iy equivariant split V' : § — his given by V' = V" ok +id — Vo k,
where V" : g — b is an h-equivariant splitting of the embedding §) — g. Let 0 be the pro-

jection of f on % R + CI[A]]. It is now easy to see that under the quasi-isomorphism between

1

St

¢* (0. €l ) and € (5.5

in the start of this example.

C[[hﬂ), the class CW(—0) is the same as the 6 we defined
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Example 2. Some other classes in C*(g,l)) we need, are also coming from a Chern-
Weil construction. We consider an b-equivariant splitting V' of the embedding b — g.
Composed with the projection u(n) + su(N) — su(N), we get an b equivariant map
V : g — su(N). Using this we therefore get a Chern-Weil homomorphism

CW : C*(su(N)[e], su(N)) — C*(g,su(N)).

It is clear that this homomorphism in fact maps into C*(g,h). We therefore get the usual
classes; for example the usual chern character ch, which is

exp(R) = 5o Tr(R"),

where
R(g1,92) = [Vg1,Va2] — Vig1, 92].

Here Tr denotes the usual normalized trace on su(N). This class is of course the Chern-
Weil map on the symmetric polynomial ch on su(N) given by

1 1
Ch(hly s 7h}’l) = ; ZS E Tr(ha(l) o .ha(”))’

Since C*(su(N)[¢g], su(N)) embeds in C*(bl], ), the Chern-Weil construction given
in this example is just a particular case of the Chern-Weil homomorphism

CW : C*(b[e], b) — C*(8,D).

Example 3. We can of course do the construction from Example 2 for u(n) instead
of su(N), and in this way get a Chern-Weil homomorphism

C* (u(n)[e], u(n)) — C*(g.b).

This again can also be viewed as the composition

C*(u(n)le],u(n)) — C*(blel,b) — C*(8,).

We will in particular be interested in the symmetric polynomial A coming from the map

5. Cyclic homology

We consider a differential graded unital algebra (A4,0) over a commutative ring
k containing @, i.e. an algebra 4 that can be written as 4 = @ A", where A™’s are k-
n
submodules of 4 and A"4™ < A"*". Elements in A" are said to have degree n and we will
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denote the degree of an element a by |a|. Furthermore § : 4* — 4*~! has to be a differential
and satisfy 6(ab) = 6(a)b + (—1)"ad(b).

Define an operator 7 on A®+1) by

(el t1) S (1)
(ag® - ®a,) = (—1) =0 ay ®ag® -+ ® a1,

and consider the complex
b+o b+o

P 4) Im(1 — 1) £2 T (A) /Im(1 — 1) Z2

where C"*1(A4) denotes the set of elements of the form ay ® - - - ® ax with k + 3 |a;| = n,

n-l k"‘i |ai]
bag® - ®a)=Y(-1) & a® - Quu® - ®a,
k=0
(lan|+1) Y (|ail+1)+|an]
+(=1) i<n ) ® -+ @ dy_1
and
n N (al41)
o(ar ® -+ ®ay) =) (=1)= a® - Qd(a) ® -+ ® an.
k=0

The complex is denoted by C*(A4), and the homology is the cyclic homology of 4 denoted
by HC.(A4).
The reduced cyclic homology is given by the homology of the complex

P En4) Im(1 — 1) 22 (A) /Im(1 — 1) £

where C*(A) comes from considering 4®* instead of A®*, where 4 = A/k - 1.

The reduced cyclic homology of 4 is denoted by_H—C* (A), and the complex above,
computing the reduced cyclic homology, is denoted by C#(A4).

It is well known, see [10] and [2], that there is an exact sequence
(5.1) - HCy(k) — HCy(A) — HCy(A) — HCy_1 (k) — -+

~ We will briefly give a construction, due to Brodzki, of the connecting morphism
HC.(A) — HC._ (k) at the level of complexes, see [3] and [2]; i.e. a morphism of com-
plexes

Br: CX(4) — C/ (k)

giving the connecting homomorphism at the level of homology. Let / : 4 — k be a k-linear
map with /(1) = 1. Put
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pla) =1(6(a)), aceA,
plar ® ax) = l(a1)l(az) — l(a1a2), a1 ®az € A®2,

p=0 onA®" mz=3,
and define Br: C*(4) — C% (k) by setting

m > (laxl+1) ¥ (Jax]+1)
Br(ao®~-~®am):Z(—1)k<f k=i (P@@P)

i=0
(@G ®  ®ay@ay® - @ai)(n+ 1) 19!

on C3,.,, and letting Br be zero on C3, Br.

We now consider the differential graded algebra k[r], where 5 has degree one, 72 = 0,
and the differential is given by 0,. For a differential graded algebra 4 we define A[] to be
A ® k[n], where ® is the tensor product of differential graded algebras. It is not difficult to
see that HC,(A[y]) = 0, and we therefore have

Proposition 5.0.1.  The morphism
Br: CH(Aln)) — CLy (k)
is a quasi-isomorphism.

Since it is not standard, we mention that the reduced cyclic homology is Morita in-
variant; at least in the case of algebras and matrices over these algebras. To see this, let A
be an algebra, and let / : 4 — k be a map needed in the construction of Br. Let tr denote
the normalized trace tr: M,(4) — A. We have a commutative diagram

| | |

— . HC*A) —— HCYA) 2 HC k) ——

where Br: HC*(My(A4)) — HC* (k) is induced by /otr. According to [10],
tr: HC*(M,(A)) — HC*(A) is an isomorphism. The result therefore follows from the ex-
act sequence (5.1).

5.1. Operations on the periodic complex. For the periodic cyclic complex we con-
sider [T4 ® A®". We give this a Z/27 grading by

a0 ® -+ ® an| = n+ }|a;| mod2.

On this complex we consider the differential b + B + 6, where b and ¢ are given as before,
and
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B(a0®"'®an)

Y (gh+) ¥ (al+)
(_1)]§' jzitl 1®ai®...®an®a0®...®a[71_

o

i=0

We will denote this complex by CCP(A).

The main feature about cyclic periodic homology that we are going to need, is the
following (see [14] for complete formulas):

Theorem 5.1.1.  There is a morphism of complexes
C(Aln) ® CCP(4) — CCP(4)
satisfying the following:
o nly®tl.q =y for ae CCP(A).
® The component in A of (b ® -+~ ® by) - (a0 ® -+ ® a), where
bi®---®b, e CL(A),

is zero when m £ n and equal to
1 i(n—
S D aglbiy,an - by ani)lbr, ani] - [br, ]

when m = n.

The framework underlying Theorem 5.1.1 also gives other operations on CCP*'(A4),
see [14] for details. Let (C*(4,4),b) be the Hochschild cohomological complex, i.e.
C*(A4,4) = Homy(A4®*, 4), and

b(ﬂ(a17®7an+1) = (_l)nal(p(a% cee aan+1)

(—1)"+jq)(a1, ey iy 1) — QAL ).

e

+
1

J

Given two elements, ¢ in C"(A4, A) and ¢ in C"(A, A), define

@ o l//(alv DR 7an+m—l)

= ;(—1)(}171)](0(611, Ce ,aj,lp(ajH, e ,aj+m), .. )
JZ

Set

o] = po v — ()" Ny o g,
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With this bracket and a suitably defined grading, C*(4, 4) actually becomes a differential
graded Lie algebra.

For p € C"(A, A) one can construct operations
L,: CCP*'(4) — CCffrnH(A),
I CCP" (4) — CCP(4)
such that
[Ly, Ly] = Liy,y);

Ly, Ly) = Iiy ),

[B+b,1,] =1p, + L,.

6. The fundamental class

We consider the reduced cyclic homology complex of My (A" [A™!]. According to
Lemma 5.1.1 in [2] and the Morita invariance of reduced the cyclic homology, the homo-
logy is given in the following way:

HC/(My(AME") =Cllh,h7"], i=1,3,....2n—1,
HCi(My(AM[H ') =0 otherwise.
A concrete generator for the homology in dimension 2n — 1 is given by

1

Uy :W > (Vg(1) ® -+ - @ Vg(2m)),

JESzn
where (v1,...,02) = (X1, &1, ..., %, &)

Let  denote the inverse image of ) under the map g — g. Note that U is invariant
under the action of I and therefore, by the result on HC, (My(A"[i'])), extends uniquely
in homology to a class

U e C*(ble],b; CL(Mn(A"A'))).

We wish to work with the differential graded algebra My (A"[i~'])[y] instead of
My(A"[A7'). In the complex

CL(Mn(A"[1]) )
we define %) = kly®k+l,

We also define operations on CZ(My(A"[i™"))[5]) by
Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet
Heruntergeladen am | 13.04.18 13:52



228 Aastrup, Deformation quantization of endomorphism bundles

g(ao ® - -- ® ap)

2. (lax|+1)(lg|+1)
(~1)= WO QLRI Qa,

e

0

where g € My (A"l ")) [y]. Put 1, = 1,y and L, = L,,, g € My(A"[li"']). Here L denotes the
usual L operation on the reduced cyclic complex.

With these operations C/(My(A"[i""])[#]) becomes almost very homotopically
constant over the commutator Lie algebra of My(A”[i']). (Instead of the relations
0,1y = Ly — 14 and [0, L] = L, we have the relations [0,1,] = L, +1, and [0,L,] = —L,.
Phrased differently: C7(My(A"[~'7)[4]) is very homotopically constant if we replace 1,
and L, by 1_,and L_,.) B

As in the case of very homotopically constant modules, we get a morphism of com-
plexes

CHMy (A" — C* (ble], b; CZ(My (A" '])[n]))
given by
I — ((he, ... hye) — (=) -1 1).

Note that n©) € CZ(My(A"[h~"])[n]), ., and we therefore get classes

b+h’
n' i C*(ble], b C(My (A" (") 1))
given by
(e, hpe) — (=1 1 1™
Lemma 6.0.2. The formula

U= S (d-e"-ch )yl gl

m=0
holds in H* (ble], b; C-(Mn(A"H7)[1])).

Proof. It is well known from [2] that there is a splitting principle, i.e. the inclusion
morphism

H* (ble, bs C (My (A"~ "])ln]))
— H*((dy + su(N))[e], (0, + su(N)); CL(My (A"~ [n]))
where b, = b, 4+ /' C[[A]] and b, is the set of n x n diagonal matrices, is injective.
Therefore we only have to identify the two classes in

H* (0, + su(N))[e], (b, + su(N)); CH{ My (A E)) 1))
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We note that we can factor the classes at hand in the following way: Write
My = A @ - @ A © My (AN,
where A’f is the formal Weyl algebra in one variablee We can write

U=U x e X Uy x U/, where U; is the extension of the fundamental class in
C*(d1[e], d1; CH(AA™! 7)), and U] is the extension of the fundamental class in

C*((dy + su(N))[e], 01 + su(N); CH( My (AR ).
We thus need to identify U; and Uj.
In the first case we can represent U; by

w1

(6.1) Ui =% —((h)'¢® %)Mt

m=1

where ¢; is the first Chern class.

Recall that the definition of A[A~"] is C[[%, &]][[4, 7] with a product *. Given an
element f in A?[h_l], we can regard f as a function in the variables X, ¢ with values in
Cl[[h, A~']. Hence, given f in A%[A~'], we can define /(f) = £(0,0). With this / we get, ac-
cording to section 5, a quasi-isomorphism of complexes

Br: CLHA"n, 5]) — CH(Clm, i),
One checks that this gives a morphism of complexes
* I i g— Br * A -
C* (el dus CHAMH " n])) 2 € (e, o CH(Cll, 1))

and therefore a quasi-isomorphism of complexes.

A computation shows that
© ~
Br(U) = S 14,
m=0
where 10" = m!(m + )'1® (2m+1) "and 4 is as in example 3 in section 4. On the other hand
we have Br(y") = 10" where 77['" is the class
edy, ... edy — (—1)kzd],7 e ldwn(’”), d; edy.
Since Br is a quasi-isomorphism, we have

Sl -1
m -
= Z n A2m
m=0
. CAApTTE—]
in H*(dy[e], dy; LAY, 7).
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We note that we have a morphism of complexes
C* (D1 + su(N))[e], by + su(N); CHMy (A1)
|
C*((f)l + su(N))[e], by + su(N); CHAMRT)),
where in the bottom row su(N) acts trivially, and Tr denotes the morphism of complexes
CHMy(ADIEY) — CXAJR)
induced by the normalized trace Tr.

In the top row we have the class U] that in homology is the unique extension of the
fundamental class. In the bottom row we have a class U’ given by the same formula as
in 6.1. Also this is, in homology, a unique extension of the fundamental class. Therefore
Tr(U) =U'"in

H*((dy + su(N))[e], by + su(N); CHA"A))).
We further note that there are morphisms of complexes

C*((d1 + su(N))[e], b1 + su(N); CZ(My (A" ') [n]))

|

C* (01 + su(N))[e], By + su(N); CZ(A" [ ][n)))

y

C*((dy + su(N))[e], by + su(N); CAH(C[[h, 7)),
where Br is the Brodzki map as before. We thus have

Be(Tr(U]) = X 431,

m=0

Note that

Br(Te(y")) = - 171 chy.

where 6 is given in example 1 in section 4 and ch is given in example 2 in section 4.
Since Br o Tr is a quasi-isomorphism, we get

-1
2m

Ul = i (A-e? (ch)™"), n™

in H*((d1 + su(N))[e], b1 + su(N); CH(My(A2A)[7]))
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The lemma now follows, since A is multiplicative.

It is well known, see [2], that the restriction homomorphism
C*(alel, b; CH(Mn (A" ])) — C*(blel, b; CL (M (A" [~ [n]))

is a quasi-isomorphism. But in C*(g[e], b; C/(My(A"[~'])[y])) there are two classes that
map to 7! under the restriction homomorphism, namely CW(5!")) and the class

(6.2) (918, .-, 9p8) = (= 1)1y -+ lgpnry(’”).
Therefore CW (5!) and the class (6.2) are equivalent in
C* (gle]. b CH(My (A" ) )-
Considering the restriction homomorphism
C* (alel, bs C2 (M (A"~ D))) — €7 (b CZ (M (A" [n]))
we get that in the righthand side CW(y") is equivalent to #"). For g-modules L* we

have that C*(g, b; L*) is quasi-isomorphic to C*(g, ; L*). Combining these observations we
have:

Theorem 6.0.3. Let U be an extension of Uy to a class in

c* (g, b; Ci‘ (MN(Ah[hfl])[’?])) :
In o, CE (M A1) we e the following equai:

U= (d-¢" (ch)y™), -5,

m=0

7. The Gelfand-Fuks construction

We consider a g-module L*, where g is as in section 3. Given a deformation quanti-
zation A%, we can consider the bundle

MAZ XG L*

and also consider the differential forms with values in this bundle. We will denote this by
Q*(M,*). Furthermore we get a flat connection V induced from the connection on M Al
Using this connection and the differential on L*, we get a complex Q(M, L*). The Gelfand-
Fuks construction gives a morphism of complexes

GF : C*(g,; L") — Q*(M, L")

defined in the following way:
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Choose a U(n) x SU(N) trivialization of M 4r X L*. In a given trivialization write
V =d + A, where A4 is the connection one form. Given vector fields Xi,..., X, and / in

C*(g,bh; L"), define
GF()(Xi,...,X,) =I(X1,...,X,).

The Gelfand-Fuks construction applied to the examples of classes in C*(g,b; L")
constructed in section 4 gives the following:

Example 1. GF(0) is the characteristic class of the deformation quantization.
Example 2. GF(ch) is the Chern character of End(E).
Example 3. GF(A) is the 4 class of TM.

The main example we are going to look at, is the case where L* is C#(My(A") [hil]).
We first note that

Lemma 7.04. Let Al be a deformation quantization over R>. The complex
(Q*(R2”, C? (1\{ N(Ah))),V) is acyclic, and the cohomology consists of jets on the diagonal
of elements in C{(My(W3)).

Proof.  We can assume that V is of the form d — z(a ®dx; + 0: ® d¢;). We have
a short exact sequence of complexes

0— (Q* (Ran/A’ MN(Ah)()gk), V) N (Q* (Ran, MN(AE)GBI() 7 V)
(@ (R, My(A)®5), V) — 0,
where ¢ : R¥ — R is the map onto the diagonal . From the associated long exact se-
quence, we see that (Q* ([RZI‘ , M, N(Ah)®k), V) is acyclic and that the cohomology consists

of jets on the diagonal of elements of M N(%)®k. By considering the following short exact
sequence of complexes

0— (Q(R* 1@ My(A" @ - ® My(A") +
+ My(A") @+ ® My(A") ®1),)
— (Q(R¥, My (A"®F), V) — (Q"(R*, My (A")®F),V) =0

we see that (Q* (R, My (A")®K), V) is acyclic and that the cohomology consists of jets on
the diagonal of elements in My (¥,,)®*

Let a be an element in Q* (M, My(A")®*/Im(1 — 7)) with V(a) = 0. We can then

lift @ to an element G e Q*(R*, My (A")®K), where V(a) € Q" (R*,Im(1 — 7)). However,

1A=l ) k=1 )
b= % >~ 7'(a) is also a lift of @, and V(b) = >~ 7'V(@) = 0. The lemma follows from this.
i=0 i=0
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8. Traces on deformation quantizations and index theory

We consider a deformation quantization A% of an endomorphism bundle End(E)
over a symplectic manifold M of dimension 7. Let Al be the algebra of elements in A%
with compact support. This algebra has a canonical C[[h h ] valued trace defined in the
following way:

Let (V;, ®;) be a cover of M and d);l : My(#,) — Al local isomorphisms over V;. Let
py. be a partition of unity with respect to the covering. For an element a € A’,;c we define

ZI tr(®;(p; * @)l

where wy; is the standard symplectic form on R?, and tr denotes the normalized trace on
My. That Tr is independent of the choices made, and that it is a trace, hinges on the fol-
lowing two propositions.

Proposition 8.0.5. Let E be the trivial line bundle. Then Tt is a trace and independent
of the choices made.

Proof.  See [7].

Proposition 8.0.6. Suppose W, is the Weyl algebra over some contractible open subset
U of R*", then every automorphism over the identity map of My(W5,) is inner.

Proof- More or less the same as Lemma 3.0.6, see also Lemma 2.0.4.

We consider the trace as a functional on CCP(A% ), and we want to compute the
trace at the level of homology. To this end we consider the following situation:

Given an element b in C/(A%[A~",7]), we define y1,(h) in CCj (Al ) in the follow-
ing way:

xi(b)(a) = Tr(b - a),

where - means the action of C/(A%[n~ 1,17]) on CCP‘“(A’}EC[ 1), see Theorem 5.1.1. We
will now extend this to elements in the Cech complex C* (M CHALR™",5))) with values in
the presheaf V' — C%(4 E‘V[h ! 5]). This is done in the following proposition.

Proposition 8.0.7.  Take {by,..y,} in C*(M, Cj(A’]E[h_l,n])) and a in
ccral i),
Define

rm{br. )@= 3 xrevo,)Up, [B+D,1,]... [B+b,1,, ]a).

VO ) V[)
This gives a morphism of complexes

Ak Al AR per/ 4% -1 -1
C* (M, CHAE" 7)) ® CCP (A ([h]) — Cl[h, h™").
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Proof. See [11].

8.1. The fundamental class in the Cech complex. Recall that we have the canonical
coordinates xi, ..., Xy, &, ..., &, on R¥. We will also use this notation for the associated

coordinate functions and consider these coordinate functions as elements in %/,.

The fundamental class Uy in C/(My(#;)[i"]) is given by

1
U= —
0 2n(ih)n0§2n(vm ® ®Uf72n)7
where (v1,...,02) = (X1, , X1, E1y o5 En)-

By the same argument as in the section on the fundamental class in Lie algebra co-
homology, this class extends uniquely in cohomology to a class U in C*(M, CH(A%[E™"])).
In order to connect this class to the fundamental class defined in Lie algebra cohomology,
we introduce the complex

C* (M, Q" (M, CH My(A"R')))).

According to Lemma 7.0.4, this complex is quasi-isomorphic to the complex
C*(M, CH(A%[h™"])). Furthermore we have the Gelfand-Fuks morphism

GF : C*(g,b; CH(Mn (A1) — C* (M, Q" (M, CH(My(A"H'])))).

Because of uniqueness we get that GF(U) = U in cohomology. By Theorem 6.0.3 and the
splitting principle, we therefore get

Theorem 8.1.1.  In the complex C*(M, (_?f(A%[hfl,r]])) the two classes

U and > (A€ Ch)z_Wll -yt

m=0
are equivalent.
With this we are now in position to prove:
Theorem 8.1.2. y1.(U)(ay ® - -+ ® ax) has no singularities in h and
1 (U)(ag ® - ® ag) = (=1)"[ch ™' (End(E)) ch(V)(do ® - - - ® k) mod /.
Here a; is a;mod h, and ch(V) is the J.L.O. cocycle associated to V (see also [8)), i.e.
ch(V)(ao ® -+ ® ax)

— [ tr(@oe ™V V(@)e "V - V(a)e V) dig - - iy,
A

where tr is the normalized trace on End(E).
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According to Theorem 8.1.1, we therefore have that
Tr(ap® - ®ap-e?) = (=1)"[4-ch(V)(@ ® - -- ® d) mod /.

Proof. Because of Morita equivalence, it is enough to look at the case where a; is
scalar for all i. We have that

x1e(U) (a0 ® -~ ® ax) = X (Vo) (Lw (@0 ®@ - ®@ ag)) + -+,
Vo
and it is not difficult to see that . .. is zero modulo 7. The explicit formula for y,.(Up) gives

A N
ZXTr(UO)([/IVo(ao ® s ® azn)) = (—1) ﬁfao da1 s daz,, mod 7.
Vo :

The result follows from this.

By adopting the arguments in [12] one sees that

d -0y _
%Tr(we )=0

when a is a cycle in CCP*"®(A4}; ). The notation CCP™¢(47}; ) means cyclic periodic ho-
mology of Ag . as a C-algebra. Together with Theorem 8.1.2 we get

Theorem 8.1.3. The identity
Tr(a) = (—1)"[ A - e’ - ch(V)(a)

holds when a is a cycle in CCfer’C(Agc)-
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