Coulomb crystallization of highly charged ions

To cite this article: L Schmöger et al 2015 J. Phys.: Conf. Ser. 635 022059

View the article online for updates and enhancements.

Related content
- Effect of Pt on Crystallization of Bi-Sr-Ca-Cu-O by Melt Process
 Toshio Umemura, Shin-ichi Kinouchi, Kunihiko Egawa et al.
- Influence of electron–ion collisions on Coulomb crystallization of ultracold neutral plasmas
 T Pohl, T Pattard and J M Rost
- Hole crystallization in semiconductors
 M Bonitz, V S Filinov, V E Fortov et al.
Coulomb crystallization of highly charged ions

L. Schmöger¹,², O. O. Versolato¹,², M. Schwarz¹,², M. Kohnen², A. Windberger¹, B. Piest¹, S. Feuchtenbeiner¹, J. Pedregosa³, T. Leopold², P. Micke¹,², A. K. Hansen⁴, T. M. Baumann⁵, M. Drewsen⁴, J. Ullrich², P. O. Schmidt²,⁶, and J. R. Crespo López-Urrutia¹

¹ Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
² Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
³ Physique des Interactions Ioniques et Moléculaires, Aix-Marseille Université, 13397 Marseille, France
⁴ Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
⁵ NSCL, Michigan State University, 640 S. Shaw Lane, East Lansing, Michigan, 48824, USA
⁶ Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

Synopsis
Sympathetic Coulomb crystallization of highly charged ions, retracted in a cryogenic radiofrequency trap, is demonstrated by an over seven orders-of-magnitude decrease in motional temperature.

In highly charged ions (HCIs), the electronic wavefunction is much reduced in size. Subsequent advantages for precision spectroscopy are: higher sensitivity to electron-nucleus interactions and QED terms in general, and an extremely suppressed sensitivity to external field perturbations. Further, electric dipole forbidden optical transitions found near level crossings in HCIs are extremely sensitive to possible drifts in the fine structure constant \(\alpha\) [1]. Thus, cold, strongly localized HCIs are of particular interest for bound-state QED studies (g-factor measurements), metrology (development of novel optical clocks) and the search for \(\alpha\) variation. We report on Coulomb crystallization of highly-charged \(^{40}\)Ar\(^{13+}\) ions through sympathetic cooling with co-trapped, laser-cooled \(^9\)Be\(^+\) ions to final translational temperatures of about 200 mK or less [2]. The \(^{13+}\) ions are produced in, and extracted from an electron beam ion trap (EBIT). They are decelerated and pre-cooled by means of two serrated interlaced pulsed drift tubes before they are injected into the cryogenic Paul trap CryPTEx [3]. Subsequently, they are forced to interact multiple times with a Coulomb crystal of laser-cooled Be\(^+\) ions, thereby losing enough energy to end up implanted as dark structures of spherical shape in the bright fluorescing Be\(^+\) crystal. The combination of an EBIT with a linear Paul trap operating at \(\sim 7\) K facilitates not only the formation of mixed-species 3D Coulomb crystals, but also of 1D Coulomb crystals down to a single HCI cooled by a single Be\(^+\) ion (Fig. 1). This is a necessary step for future quantum logic spectroscopy at a potential \(10^{-19}\) level accuracy. Our preparation technique of cold \(^{13+}\) is readily applicable to a broad range of other highly charged elements and is thus a significant step forward for precision spectroscopy of HCIs.

Figure 1. Top: A single \(^{13+}\) ion (position marked by cross) sympathetically cooled by a single laser-cooled Be\(^+\) ion. White scale bar denotes 20 \(\mu\)m. Bottom: A single \(^{13+}\) ion sympathetically cooled by several Be\(^+\) ions. White scale bar denotes 100 \(\mu\)m.

References

¹ E-mail: lisa.schmoeger@mpi-hd.mpg.de

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd