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A trend test for dichotomous endpoints analogous to the nonparametric Jonckheere test 
is developed. The power of this and all other single trend tests for  dichotomous endpoints 
strongly depends on the shape of the dose response curve. Combined tests which have 
a stable power over a wide range of the ordered alternative are suggested. One can 
combine several contrast tests to a so-called adjustive test which is more powerful than 
a Cochran-Armitage test with equally-spaced scores. The latter was recommended by 
Armitage ( I )  in case there is no a priori knowledge of the type of the trend. 
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INTRODUCTION 

DICHOTOMOUS ENDPOINTS frequently occur in toxicological studies, especially in 
carcinogenicity studies. One observes whether the animal has developed a tumor or not. In 
this paper only crude tumor rates are considered, with no mortality-adjustment. An extension 
for stratified trend tests will be presented in a further paper. 

Tumors are rare events, therefore, the sample size per group ranges up to 100 rodents 
on authorities’ recommendations. Due to mortality and sacrifice, the sample sizes are often 
unbalanced. Table 1 displays lung tumor data from a study on 1,2-dichloroethane (2, p. 82). 
One can see unbalanced sample sizes, which are common in carcinogenicity studies. 

There are dichotomous endpoints in other toxicological studies as well, for example, 
nonneoplastic histopathological lesions. Moreover, it is possible to dichotomize a continuous 
endpoint according to a cut-off value of clinical relevance (3). 

A dichotomous endpoint can be represented by a random variable, which has a binomial 
distribution. In carcinogenicity as well as in other toxicological studies the many-to-one 
design with a negative control group and k different dose groups is commonly used. The 
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TABLE 1 
Lung Tumor Data from a Study on 1,2-dichIoroethane (2, p. 82) 

Dose 
0 1 2 

~ 

With tumor 2 7 15 
Without tumor 35 41 21 
Number of animals at risk 37 48 36 

k + I independent binomial distributed random variables are denoted by R,,. R , ,  . . . , R,, 
where Ro belongs to the control group. Let n, be the sample size of group i .  N = no + . . . + 
nk the total sample size, p ,  the binomial proportion, and r = R,, + . . . + RA the total number 
of tumors. 

The null hypothesis is the equality of all binomial proportions, that is, the equality of 
all crude tumor rates. The common probability is marked with p: 

Y, : po =PI = . . . = p 1 =  : p.  

The one-sided ordered alternative is considered: 

HA : po I p ,  5 . . . 5 p ,  with at least po < p k .  

Under this alternative, different shapes are possible. In an extreme concave shape there are 
no differences between the treated groups. Only the control group has a smaller binomial 
proportion: po < p ,  = pz = . . . =pi. More frequent in carcinogenicity studies are convex 
shapes. In an extreme convex shape only the highest dose group differs from the other 
groups: p,, = p I  = . . . = P , - ~  <pi. In most situations knowledge about the shape is lacking, 
that is, the shape is a priori unknown. The power of the trend tests, however, strongly 
depends on the shape. In the parametric case the likelihood ratio test according to Bartholo- 
mew (4) reveals a test with uniform power characteristics over the whole alternative HA, 
because the likelihood ratio test statistic may be expressed as the maximum of an infinite 
number of contrast statistics (5 .  p. 189). Since one deals with exact tests, however, the 
asymptotic likelihood ratio test for the dichotomous case is not considered ( 5 ,  p. 167; 6). 

SINGLE TESTS 

The United States Federul Register (7) recommends that the analysis of tumor incidence 
data is carried out with a Cochran-Armitage ( 1.8) trend test. The test statistic of the Cochran- 
Armitage test (hereafter, C-A test) is defined as this term: 

. .. 
= 1 I,, * 

with dose scores d, .  Armitage's ( I )  test statistic is the square of this term (T:.,,). As one- 
sided tests are carried out for an increase of tumor rates, the square is not considered. Instead. 
the above-mentioned test statistic which is presented by Portier and Hoe1 (9) is used. This 
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test statistic is asymptotically standard normal distributed. The C-A test is asymptotically 
efficient for all monotone alternatives (lo), but this result only holds asymptotically. And 
tumors are rare events. so the binomial proportions are small. In this situation approximations 
may become unreliable ( 1  I ) .  

Therefore, exact tests which can be performed using two different approaches: conditional 
and unconditional are considered. In the first case, the total number of tumors r is regarded 
as fixed. As a result the null distribution of the test statistic is independent of the common 
probability p .  The exact conditional null distribution is a multivariate hypergeometric distribu- 
tion. 

The unconditional model treats the sum of all tumors as a random variable. Then the 
exact unconditional null distribution is a multivariate binomial distribution. The distribution 
depends on the unknown probability. This nuisance parameter can be eliminated by consider- 
ing the worst-case scenario according to Suissa and Shuster (12). Storer and Kim (13) utilize 
the maximum-likelihood estimate for p and obtain an approximate unconditional test which 
is numerically simpler than the test of Suissa and Shuster ( I  2). 

Mehta and Hilton ( 14) wrote: "Whether the conditional or unconditional distribution 
. . . should be used for inference has been the subject of intense controversy over a period 
of 50 years. It involves deep questions about the logic of inductive inference and the 
foundations of hypothesis testing. It is still unresolved because ultimately the choice is 
philosophical rather than statistical." 

Thus. no one model is preferred, instead both are studied. In the unconditional model the 
suggestion by Storer and Kim (13) is used. 

Because the C-A test is only asymptotically optimal. other trend tests are also considered. 
Contrast tests can be applied for the dichotomous case as well, the test statistic is in general: 

This contrast test statistic does not take the value of the dose scores into account. Therefore, 
a lower power could be expected than for the regression test from the C-A type. I t  will be 
demonstrated, however. that the power of contrast tests can also be higher. Robertson et al. 
( 5 ,  p. 168) mentioned contrast tests for dichotomous data, but they only refer to the parametric 
results which asymptotically hold in the dichotomous case. 

For dichotomous endpoints the same contrasts can be used which are used for parametric 
tests: the Helmert ( I  5.16) and reverse-Helmert (16) contrasts, the linear contrast (16), the 
maximin contrast ( I  7). the pairwise contrast ( 1  6,I8), and so forth. The different contrasts are 
displayed for four groups ( k  = 3) in Table 2. A trend test (19) analogous to the nonparametric 
Jonckheere (20) test was also developed. with the test statistic as the following sum: 

TABLE 2 
Contrasts for k = 3 

Contrast a, a, a2 a3 

Helmet-! -1 -1 -1 3 
Reverse-Helmet-! -3 1 1 1 
Maximin -0.87 -0.13 0.13 0.87 
Pairwise -1 0 0 1 
Linear -3 -1 1 3 
Analogon -1 -0.67 -0.17 1.83 
Reverse-analog on -1.83 0.17 0.67 1 
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FIGURE 1. Results of the simulation study: Size of conditional tests ( k =  2, n,= 20, 
a = 0.05). 

This test was called the analogon test; it is a contrast test, too. A reverse-analogon test can 
also be considered. 

These tests are compared in a simulation study. The size and the power for a variety of 
shapes were estimated by simulating 10,OOO replications. For the C-A test equally-spaced 
scores are used. They are suggested by Armitage ( I )  and Graubard and Korn (21) in case 
there is no a priori knowledge of the type of the trend. 

Figure 1 shows the size of some exact conditional tests. The C-A test is not of the largest 
size. For small probabilities, which are common in cancerogenicity studies, all tests are very 
conservative. 

In convex shapes the analogon test and the Helmert test are more powerful than the C- 
A test (Figure 2). For concave shapes the reverse tests have the highest power. For linear 
shapes the maximin, linear, reverse-analogon, and C-A test have a similar power. Conse- 
quently, the C-A test is not the best test. Which test is more powerful depends on the shape 
(Table 3). 

If the total sum r is not fixed, the sample space is larger, so that there is a less discrete 

0 0.1 0.2 0.3 0.4 

e 

FIGURE 2. Results of the simulation study: Power of conditional tests for a convex 
shape(p,=p,=O.l, p , = O . l  + 8 ,  k = 2 ,  n,=50, a=0.05). 
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TABLE 3 
Results of the Simulation Study: Power of Conditional Tests for 

Various Shapes (k= 2, n,= 50, a = 0.05) 

Power 

Single tests Adjustive permutation tests 

Reverse Equally Analogon + Helmert t 
Analogon analogon spaced reverse- reverse- 

Shape P o 7  Pi9 P2 test test C-A test analogon Helmert 

Linear 
0.1, 0.15, 0.2 
0.1, 0.2, 0.3 
0.1, 0.25, 0.4 
Convex 
0.1, 0.1, 0.2 
0.1, 0.1, 0.3 
0.1, 0.1, 0.4 
Concave 
0.1, 0.2, 0.2 
0.1, 0.3, 0.3 
0.1, 0.4, 0.4 
Umbrella 
0.1, 0.2, 0.15 
0.1, 0.3, 0.2 
0.1, 0.4, 0.3 

0.35 
0.75 
0.95 

0.48 
0.90 
0.99 

0.25 
0.55 
0.80 

0.07 
0.1 1 
0.34 

0.37 
0.79 
0.97 

0.30 
0.67 
0.91 

0.45 
0.89 
0.99 

0.26 
0.62 
0.95 

0.35 
0.78 
0.97 

0.39 
0.82 
0.98 

0.33 
0.75 
0.96 

0.12 
0.27 
0.72 

0.38 
0.79 
0.97 

0.44 
0.87 
0.99 

0.39 
0.84 
0.99 

0.20 
0.53 
0.92 

0.31 
0.72 
0.95 

0.38 
0.85 
0.99 

0.33 
0.81 
0.99 

0.18 
0.56 
0.94 

distribution. Hence, in unconditional tests, higher values in size and power are possible. The 
power is practically identical for sample sizes of 40 and up (14). In the case of smaller 
sample sizes, the relative power comparisons of the conditional tests hold in the unconditional 
model. Detailed simulation results are referred to by Neuhauser (22).  

COMBINED TESTS 

The shape is usually a priori unknown. But the power of the different single tests depends 
on the shape. Which test should be applied? 

One can use the C-A (single) test according to guidance. The authors’ recommendation 
is a test principle, which is called an adjustive test (22).  Two tests are carried out and the 
null hypothesis is rejected if at least one of the two P-values is smaller than d 2 .  One test 
should be powerful for convex shapes, the other for concave shapes. An adjustive test is 
also possible with more than two tests. 

A “Bonferronization,” however, is not the optimal approach. Instead, the maximum of 
some test statistics is used as a new test statistic. It is similar to the multiple contrast method 
(5, p. 188ff), but in this general situation the distribution of this new statistic is unknown. 
Therefore, a permutation test is carried out. Analogous to the maximin efficiency robust test 
(23)  one can put two extreme contrasts (optimal for convex and concave shapes) together 
to an adjustive test, for example, the analogon and the reverse-analogon test or the Helmert 
and the reverse-Helmert test. 

The adjustive permutation test is almost as powerful as the best test and more powerful 
than a C-A test with equally-spaced scores. Figure 3 shows this result for a convex shape. 
Table 3 contains representative results for various shapes. In reality the shape is unknown, 
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FIGURE 3. Results of the simulation study: Power of conditional tests for a convex 
shape(p,=p,=O.l,h=O.l +€I, k = 2 ,  n,=50,a=0.05). 

so one does not know which test is best. The adjustive test, however, is always relatively 
good. The adjustive permutation test with analogon contrasts is more powerful than the one 
with Helmert contrasts (Table 3). 

The evaluation of the example data is shown in Table 4. The P-values of the adjustive 
tests are close to each of the smallest P-value in their groups. One can compute a single 
exact C-A test with StatXact or SAS. Conditional contrast tests and adjustive permutation 
tests can be carried out with an algorithm according to Williams ( 1  1). An easy modification 
makes the unconditional test possible, but these tests need a long computation time. An 
alternative is a simulation-based permutation test according to Berry (24). An algorithm for 
the adjustive versions will be published. 

CONCLUSIONS 

A single C-A test is not the optimal test. The asymptotic version should be avoided for the 
sample sizes and binomial proportions which are common in carcinogenicity studies. In 
these studies the shape is a priori unknown, but for rare tumors convex shapes are more 
likely than other shapes. Considering different studies, both sexes and all tumor sites, however, 
the shape has to be considered as a priori unknown. Armitage ( I )  wrote: “In the absence 
of any a priori knowledge of the type of the trend to be expected, it seems reasonable to 
choose . . . equally-spaced [scores].” This recommendation was confirmed 22 years later by 

TABLE 4 
PValues of the Lung Tumor Data 

P-Value 

Test Conditional Unconditional 

Analogon test 
Reverse-analogon test 
Adjustive permutation test 

Helmert test 
Reverse-Helmert test 
Adjustive permutation test 

C-A test with equally-spaced scores 

0.000050 0.000053 
0.0001 22 0.000177 
0.000052 0.000058 
0.0001 98 0.0001 24 
0.005338 0.003997 
0.000926 O.OOO815 
0.000066 0.000037 
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Graubard and Korn (21). The authors’ recommendation, an adjustive permutation test, is a 
more powerful strategy. There are further applications of the adjustive approach, for example, 
with nonparametric trend tests (22). These further applications are not presented here. 
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