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Statistical Analysis of In Vivo Anticancer 
Experiments: Tumor Growth Inhibition 

Tumor growth inhibition data in in vivo anti- 
cancer experiments are commonly analyzed us- 
ing the treatment-to-control ratio (TCR). Para- 
metric and nonparametric confidence interval 
approaches for this ratio are introduced, en- 

proaches are proposed for complex designs, in- 
cluding several treatment or dose groups. This 
implementation makes decision making easier 
for the pharmacologists through the use of sim- 
ple diagrams for the treatment-to-control ratios 

abling a quantitative statistical decision. The 
growth curves are characterized by the area- 
under-the-curve technique, adjusted for animal- 

and their confidence intervals. Tumor inhibition 
and regression can be appropriately statistically 
analyzed by treatment-to-control ratios and 
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I N T R O D  U C T l  O N  
The effect of antineoplastic compounds can be 
tested in experiments in vivo by analyzing the 
appropriateness of an inhibition of tumor 
growth relative to a control. In some experi- 
ments, the tumor is characterized by repeated 
measures of tumor volume, and the correspon- 
ding number of survivors is recorded over time. 
The treatment-to-control ratio (TCR) of tumor 
volume at a selected measurement time is com- 
monly used for characterizing the effectiveness 
of therapy. For example, the tumor growth rate 
of human neuroblastoma xenograft was inhib- 
ited to a TCR of 0.3 after 16 days of treatment 
with the synthetic fumagillin analogue TNP-470 
in mice (1). 

Two specific statistical problems arise in test- 
ing: (a) accounting for missing values caused by 
mortality and (b) analyzing the ratio to control 
instead of the widespread used difference to- 
control. Inherently connected with the second 
problem is the question of biological relevance, 
that is, which TCR is meaningful as opposed 
to which has formal statistical significance 

Previous statistical approaches (2,3) have 
been based on a two-stage model of carcinogen- 
esis, which estimates the number of tumors over 
time and tests group differences. Moreover, a la- 
tent variable model for susceptibility and multi- 

(P < 0.05). 

plicity of tumor counts that takes informative 
censoring caused by mortality into account has 
been described (4). Such a model considers the 
continuous end point for tumor volume and not 
the number of tumors. For a paired design, the 
tumor volumes of the left flank of mice (treat- 
ment) were compared with the right (control) by 
a multivariate sign test (5). An overview of the 
statistical approaches from a pharmacological 
standpoint is available (6). 

Treatment differences were tested using the 
parameter estimates for both short- and long- 
term tumor growth based on a Gompertzian bi- 
exponential mixed-effects model (7). Recently, 
small-sample tests were proposed for incom- 
plete data with truncation because of very small 
tumor volumes and independent censoring 
caused by mortality (8). However, these tests 
were based on rather restrictive assumptions 
(eg, a multivariate normal distribution with a 
covariance matrix in Toeplitz format), and they 
yielded only crude P values. A small sample test 
for contrasts of time points was used for tumor 
inhibition and regrowth experiments in which 
the parameters were estimated by the EM algo- 
rithm assuming three forms of repeated meas- 
ures: complete, informative missing, and miss- 
ing at random (9). This idea was recently 
extended to a linear model approach for the 
analysis of different cycles of drug administra- 
tion (10). 
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S U M M A R Y  M E A S U R E  O F  
I N C O M P L E T E  G R O W T H  C U R V E S  
Depending on the design and duration of an in- 
hibition study, some animals die spontaneously 
or have to be sacrificed in moribund status be- 
cause of an unacceptably large tumor size. Not 
uncommonly, this causes a missing value prob- 
lem. An increasing probability of missings over 
time and a possible higher mortality rate in the 
treated group(s) can occur. Ignoring these so- 
called informative missings may cause serious 
bias when using standard statistical tests. One 
possible analysis is the selection of the last time 
point with complete data and evaluating that 
point using standard tests. However, increasing 
values for effect ratios between treatment and 
control are expected with longer durations. De- 
pending on the data, this approach may have an 
unacceptably high false-negative rate. Replace- 
ment of the missing tumor volumes with extrap- 
olated values (eg, using predicted individual 
growth curves or group means) may work in 
some examples, but such replacement uses non- 
experimental data to characterize the antineo- 
plastic activity. 

An alternative approach, standard in clinical 
trials with repeated measures data ( l O , l l ) ,  is the 
transformation of the individual growth curve 
into an area-under-the-curve (AUC) form using 
a simple trapezoidal rule. The AUC approach 
represents an integration transformation of the 
repeatedly measured tumor volumes into a uni- 
variate end point that can be evaluated with 
simple standard tests; that is, the AUC is a 
weighted mean of the repeated measures. The 
adjusted AUC can be calculated: 

represents the latest time with existing tumor 
volume), analogously to standardized AUCs in a 
clinical trial with informative missing values 
(12). No arguments for the assumption of a nor- 
mal distribution for this transformed variable 
exist, therefore, a nonparametric approach can 
be recommended. 

On the other hand, in several real studies, app- 
proximative normal distribution of the adjusted 
AUC was found. If baseline values are available, a 

AUC,dj,,,d=AUC/(t;-t,) with ti from t,  to ff inal  (t ;  

difference-to-baseline or ratio-to-baseline trans- 
formation can be performed before the AUC cal- 
culation to adjust for baseline heterogeneity. For 
details on choosing between difference- and ra- 
tio-to-baseline, see, for instance, (13). 

Alternatively, a modification of the nonpara- 
metric Wilcoxon test can be used in which the 
Mann-Whitney counts for the remaining pairs 
of data determine the test statistics (14). Howev- 
er, only the estimation of a p value is possible us- 
ing this approach; no confidence intervals are 
available. 

A further alternative is the transformation of 
the data into time required to reach a predeter- 
mined tumor volume and use of a standard cen- 
sored test (154, but the analysis of a derived vari- 
able depends on the threshold definition and 
does not allow direct interpretation of tumor in- 
hibition. The evaluation of the final tumor vol- 
umes by the all-pairs multiple comparison New- 
man-Keuls procedure recently used in the 
analysis of a study for tumor inhibition of 
triplex-forming oligonucleotides can be seri- 
ously biased (16). 

C O N F I D E N C E  I N T E R V A L S  F O R  
T R E A T M  E N T - T  0 - C O  N T R  0 1 R A T  I0 
Confidence intervals are often preferred to P 
values because they are scale variant and can be 
interpreted directly in the medical measure- 
ment's units of measure. Moreover, they simulta- 
neously offer information about the distance 
from the nullhypothesis. the direction of the ef- 
fect, and the variability. Confidence intervals for 
the difference are frequently used in biomedical 
research (eg, in the comparison of allogeneic 
transplant with chemotherapy for relapsed 
childhood acute lymphoblastic leukemia) (17). 
In answering some medical questions, it is more 
appropriate to use confidence intervals for the 
ratio to control or ratio to placebo (18); that is, 
percentage change versus control can be direct- 
ly medically interpreted (19). 

Sometimes, the ratio problem is transformed 
into a difference problem by taking the log of the 
end points, a technique well known in bioequiv- 
alence testing. This simple approach inherently 
assumes log-normal distributed end points (20). 
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Therefore, both a parametric approach, as- 
suming normal distribution, and a nonparamet- 
ric approach, assuming any continuous distri- 
bution, was worked out. A confidence interval 
for a ratio TCR = vTrealmenl / ~ c o n l r o l  is available 
for the parametric two-sample case (21). Be- 
cause medical interest lies only in tumor vol- 
umes that decrease after treatment, the one- 
sided upper confidence interval (-, Oupper) is: 

where p denotes the group mean of the tumor 
volumes, MSE is the common mean square error 
estimator, df is the degrees of freedom, and 
t d J , ,  is the quantile of the t distribution. The 
side condition ~2,-onlro,  > a is simply a one-sided 
test for control mean values larger than zero; 
that is this approach is limited to nonzero con- 
trol effects. Unlike some clinical studies in tu- 
mor inhibition experiments, this restriction is 
not problematic because the number of tumors 
in the control are expected to be higher than 
those in the treatment group. 

Using this confidence interval approach, the 
treatment effect is characterized by the TCR es- 
timator and its 95% upper confidence interval. 
When the high dose is compared with the 
control in the example data (see Table l), 
TCR = 0.80, and the one-sided upper 95% con- 
fidence limit is 0.97. This can be medically inter- 
preted as follows: 'the treatment reveals a mean 
tumor volume reduction of 80% with at least a 
97% reduction and a maximal false positive rate 
of 95%. 

The interpretation is simple. Whenever the 
upper confidence interval is lower than 1, a sig- 
nificant decrease in tumor volume exists; other- 
wise, no conclusion can be drawn. However, how 
relevant is a treatment with a TCR of only 80% 
and an upper confidence interval of only 97%? 
Formal decision making cutoff points for the 
TCR (not for its upper confidence interval) have 
been suggested (22): 5 42% for relevant antitu- 
mor activity and I 10% for highly relevant activ- 
ity. 

Let us assume two experiments have the same 
TCR of 22% but different upper confidence in- 
tervals of 38% and 79%. The relevance of the 
second drug study is much vaguer (although 
still formally significant) compared with the 
first. Therefore, a cutpoint for the upper confi- 
dence limit (eg, 8 = 50%) should be defined to 
include the effect size and variability. The a pri- 
ori definition of such a cut-off point is not need- 
ed for the confidence interval approach. The 
upper limit Oupper itself is an outcome of the ex- 
periment and can be interpreted by pharmacol- 
ogists according to relevance. Sample size influ- 
ences the variability; hence, an a priori selected 
sample size or an international guideline with 
an "at least xx animals/group recommendation" 
should be used. 

Generally, confirmatory decisions in statisti- 
cal tests are arbitrary when arbitrary sample 
sizes are used. For the parametric confidence in- 
terval for the ratio to control, a related algo- 
rithm for sample size calculation is available 
(23). The following formula approximates a bal- 
anced sample size for a given false-negative rate 
p, a false-positive rate a, the coefficient of varia- 

and a value from the alternative 
tion CVControl = JVarianCeControl / 'control 

eA = (PTreatment 1 P c o n t r o l )  is: 

From the example data in Table 1, a CVcontrol of 
about 35% can be concluded. Assuming a maxi- 
mum false-positive rate of 570, a maximum false- 
negative rate of 30%, 8 = 0.75, and BA = 0.5 re- 
sults in a necessary sample size of nj = 16. For an 
explicit discussion of the dependency of power 
on variance, sample size, and growth delay for 
the simple tumor-doubling time model, see ref. 
24. 

It should be noted that variance heterogene- 
ity, particularly larger variances in groups with 
fewer samples, violates the assumption of the es- 
timation. Therefore, equal sample sizes are pre- 
ferred in such experiments. Parametric intervals 
require the validity of the normal distribution 
assumption. Yet, sometimes skewed data or out- 

~________ 
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T A B L E  1 
TO T17 T21 T25 728 T3 1 

0 297 690 1368 2530 3956 
0 105 143 21 1 174 234 355 
0 187 635 1174 2050 2966 

0 128 529 865 91 3 1200 1545 

0 234 790 1313 2000 31 87 

0 100 438 770 1094 1679 1910 

0 72 302 448 957 1223 1310 
~ 

208 0 532 1091 
0 333 1229 1787 2020 1598 
0 173 640 777 840 987 1182 
0 113 322 1005 1346 1869 2202 
0 81 21 1 443 633 1100 1370 

0 249 833 1234 1164 1806 1893 

0 138 386 952 1296 1641 2470 
0 162 61 1 1100 1874 2364 

0 133 335 665 1185 1602 2341 
0 21 7 51 9 909 1105 2260 2771 
0 131 398 667 1020 1024 1809 
0 64 198 31 5 497 778 897 
0 346 792 1076 1850 241 8 2941 

0 68 261 508 652 1285 1754 
1 66 171 298 705 889 1123 
1 143 41 4 558 726 1033 1302 

1 1 80 573 923 835 1229 1663 
1 133 41 6 698 1034 1441 1776 
1 161 327 804 1078 1242 1754 
1 75 108 116 106 129 115 

1 190 478 772 1281 1590 
1 175 632 1285 537 
1 121 258 474 733 896 1381 

453 627 1218 1698 

1 94 21 3 592 834 
1 87 407 550 876 1146 

1 254 764 1437 1636 1950 
1 292 1136 1584 1994 1723 21 90 
1 220 451 934 1580 2302 281 8 

1 190 455 1189 1589 2255 2365 
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TO T17 T21 T25 T28 T3 1 

1 158 467 964 999 1530 1654 
1 54 120 357 870 1726 1013 
1 188 892 1291 1464 21 36 
1 166 339 395 446 796 772 
1 78 389 735 1086 1547 1200 
2 76 156 361 568 602 993 
2 66 171 298 705 889 1123 
2 143 414 558 726 933 1302 
2 180 573 923 835 1229 1663 
2 133 41 6 698 1034 1441 1776 
2 161 327 804 1078 1242 1754 
2 75 108 116 106 129 
2 190 478 772 850 951 
2 175 632 577 537 
2 121 258 474 733 896 1381 
2 97 299 453 627 1018 1698 
2 94 21 3 592 734 
2 87 407 550 876 1046 
2 254 764 1437 1636 1850 
2 292 1136 1584 1664 1723 21 90 
2 220 451 934 1580 2302 281 8 
2 190 455 1189 1188 1055 2365 
2 158 467 964 999 1430 1654 
2 54 im 357 870 1026 1013 
2 188 892 1291 1464 1734 
2 166 339 395 446 796 772 
2 78 389 735 1086 1547 1 200 

liers can be observed. Moreover, heavily tied 
data occur (eg, zero number of tumors or odd 
numbers of metastases). Therefore, an alterna- 
tive nonparametric confidence interval ap- 
proach in analogy to t test/Wilcoxon’s u test is 
proposed (25). For the parallel group design, the 
appropriateness of the log transformation of the 
ratios, the use of asymptotic nonparametric 

confidence intervals (26), and the back-trans- 
formation of the ratios was demonstrated. 

S I M U L T A  N E 0 U S C 0 M P A  R I S 0 N 0 F 
S E V E R A L T R E A T  M E N T 0 R D 0 S E 
G R O U P S V E R S U S A C O N T R O L 
A design with a control and k treatment or dose 
groups is frequently used. Here, the multiplicity 

T A B L E  1 
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problem occurs; that is, the experimentwise 
false-positive rate should be controlled at the 
predefined 01 level of 5%. For this many-to-one 
comparison problem, multiplicity-adjusted con- 
fidence intervals are recommended. Recently, 
the use of the simple Bonferroni adjustment 
was proposed (27), that is, the use of the quan- 
tile td,-+k, as long as the coefficient of 
variation of the mean of the control 

volumes of the control are large in tumor inhibi- 
tion experiments, this criterion will frequently 
be fulfilled. 

In designs with dose groups, the question aris- 
es of whether a global trend exists at all, and if 
so, what is the minimal effective dose? The 
dose-response analysis can be performed step- 
wise using the unadjusted intervals (28). Start 
with the comparison of the high dose with the 
control. If this upper confidence interval is 
smaller than 1, conclude that a trend exists up 
to Dhish and continue with the comparison ver- 
sus otherwise, stop (see the example 
section). The lowest significant dose in the pro- 
cedure is the minimal effective dose 

S P E C I F I C  C O M P A R I S O N  O F  T H E  
M O  R T A  L I T Y - T I  M E R E  L A T l O  N S H I P S  
In addition to the analysis of tumor volume, the 
comparison of the mortality-time relationships 
can be used for demonstrating antitumor activ- 
ity. In an inhibition study, the primary end point 
is the tumor volume, whereas in a survival study, 
the primary end point is t ime to sacrifice. Al- 
though both study types are practiced, they are 
rarely combined because of ethical limitations. 
There is an extensive body of literature on sur- 
vival analysis. Some animal anticancer experi- 
ments only count the individual days until mor- 
tality and the survivors' day of terminal sacrifice 
without noting cause-of-death information (ie, 
spontaneous death is assumed to be tumor-re- 
lated without consideration of any competing 
risks). The standard non-parametric log rank 
test reduces to the Savage scores test, and 
Gehan's test reduces to the U test if the censor- 

ing point is equal over the groups. In such inhi- 
bition studies a simple, Wilxocon U test can be 
used for comparing the survival times. Exact 
permutative versions are recommended be- 
cause the sample sizes are small to moderate. 

A N  E X A M P L E  
A new potential antineoplastic compound was 
investigated in a study on a special mice strain 
inoculated with certain human tumor cells. Af- 
ter an initial growth phase for establishing 
measurable tumor volumes, 64 animals were 
randomized to three treatment groups: a control 
(0) and two dose groups (1,2). The baseline tu- 
mor volumes were measured. Tumor volumes 
were observed on days 17,21,25,28, and 31; the 
individual raw tumor volume data are given in 
Table 1. The box plots of the tumor volumes in 
Figure 1 indicate variance heterogeneity over 
time, symmetric or skewed distribution, and 
outliers; the box plots of the baseline tumor vol- 
umes reveal some heterogeneity between the 
randomized groups. 

The analysis begins as a simple control versus 
high dose two-group comparison. The TCR for 
the final time point (T31) alone is 0.875 with an 
upper confidence interval of 1.12, indicating no 
significant change in the high-dose group with 
respect to the control. However, six values are 
missing in the control and seven in the high- 
dose group because of mortality, so analysis of 
the final time point is biased. Depending on the 
mortality pattern, this bias can be positive or 
negative. Using the adjusted AUC approach un- 
til the final time point TCR of 0.756 results in an 
upper confidence interval of 0.984, indicating a 
significant change. One-sided confidence inter- 
vals are appropriate because only decreases in 
tumor volume are of interest. The correspon- 
ding one-sided upper parametric interval for 
the adjusted AUC approach is 0.943. Due to the 
baseline heterogeneity, differences to baseline 
were used for analysis. The box plots indicate 
skewed distributions with outliers: hence, the 
nonparametric approach seems to be appropri- 
ate for these data. The associated TCR is 0.743 
with an upper confidence interval of 0.899. The 
more sensitive estimates are not surprising, but 
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like the t test versus U test selection problem, 
care is needed in choosing between the para- 
metric and nonparametric approaches. The 
high dose reveals a significant reduction in tu- 
mor volume according to the tumor growth 
curves in comparison with the control of about 
74% with a false-positive rate of 90% to 95%. 
Using the above 75% threshold, this effect is sig- 
nificant but not biologically relevant. 

Now, the entire data set will be analyzed. It can 
be assumed a priori that if a treatment effect in 
the low-dose group occurs, such an effect must 
also hold for all higher doses. Therefore, the up- 
per (1 -a) confidence intervals for the high- 
dose and the low-dose groups versus the control 
can be estimated. Figure 2 presents both the 
TCR and the upper confidence intervals. 

The decision procedure works as follows. Start 
with the upper confidence interval of the high- 
est dose versus the control. If it is smaller than 1, 
the highest dose is effective, so continue with 
the next comparison. Otherwise, stop with the 
conclusion that neither dose is significant. If 
the upper confidence interval of the low dose is 
smaller than 1, this low dose is not significant. 
Therefore, stop with the conclusion that only 
the high dose is significant and therefore is the 

minimum significant (effective) dose. This pro- 
cedure can also be performed with the rele- 
vance criteria 8. Using 8 = 75% the procedure 
stops in the first comparison with the conclu- 
sion that neither dose is effective. Simultaneous 
confidence intervals for 8 are available (28). 

A N A L Y S I S  O F  T U M O R  R E - G R O W T H  
A more relevant objective is the proof of tumor 
regression instead of only inhibition. For the 
treatment groups i of an inhibition study, a tu- 
mor regression factor TRh = (VTo - VTfinali ) / VTo 
can be defined. Parametric and nonparametric 
confidence intervals for this one-sample vari- 
able are simple to estimate. If the lower bound is 
positive, then significant tumor regression oc- 
curs in this treatment group. Another possibility 
is to demonstrate that no or only moderate tu- 
mor regrowth took place after substance admin- 
istration of a successful tumor inhibitor. The 
baseline value (ie, the day of the last tumor inhi- 
bition measurement under treatment) will be 
compared with repeated measures of a period 
after substance administration. The comparison 
for each time point j versus baseline within the 
treatment groups i seems to be appropriate; that 
is, a paired comparison problem for Regrowth - 

I 

F I G U R E  1 

Em-plots for tumor vd- 
umes (baseline and repeat- 
ed measures). 
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F I G U R E  2 

TCR and upper confidence 
intervals for the dose- 
response analysis. 

c vs. low C vs. high 

Ratio = Vji/VBaseline,i or Regrowth - Diff = Vji/VBme. 
exists. According to the above approach, 

one-sided upper confidence limits can be esti- 
mated: for example, the values of the highest 
dose group of a study were observed at day 31 
under treatment and without treatment from 
day 35 until day 63. Since some animals had im- 
measurable tumor volumes (ie, Vsmeline = 0), the 
regrowth differences and their parametric lower 
95% confidence limits were calculated for a 
one-sided, one-sample t test and are given in 
Table 2 . 

I f  an a priori selected regrowth difference of 
up to 100 mm3 is tolerated as equivalent, no 
meaningful regrowth took place until day 49 be- 
cause its lower confidence limit is still less than 
the threshold. 

C O N C L U S I O N S  
Biostatistical design and evaluation of tumor 
growth inhibition inherently accompanies in 
vivo anticancer experiments. The TCR of the tu- 
mor volume is a commonly used measure for ef- 
fect size. Inhibition percentages are easily inter- 
pretable. The confidence interval for this ratio 
to control enables quantitative decision making 
that takes effect size, variability, and upper 

bounds for the false-positive decision rate into 
account. The upper bound for the false negative 
decision rate is controlled by an a priori sample 
size calculation that has recently become avail- 
able for the test of ratio to control. The growth 
curves can be fitted by models or more robustly 
characterized by the AUC approach, adjusted 
for animal-specific survival. Modifications for 
simultaneous comparisons of several treatment 
groups versus control and identification of the 
minimal effective dose in dose-response experi- 
ments are available. Tumor regression experi- 
ments can be analyzed analogously; however, 
only raw data or ratio-to-baseline transforma- 
tion guarantee the necessary side condition of a 
nonzero control effect. 

The final result is a straightforward diagram 
for the TCRs and their confidence intervals that 
can be easily interpreted, particularly with re- 
spect to relevance. 

The proposed approach is simple and appro- 
priate for pharmacological interpretation. It is 
directed toward experiments in tumor growth 
inhibition/regression with some mortality but 
not for a combination of tumor growth and sur- 
vival. In contrast to the existing published ap- 
proaches, the proposed approach focuses on 

T A B L E  2 I Day without treatment 35 38 42 45 49 52 56 59 63 
Difference to baseline 4.1 4.9 64.4 108.8 165.1 249.6 360.8 469.5 693.3 
Lower confidence interval-limit -0.74 4.9 33.3 60.0 97.0 147.0 213.3 284.9 419.1 

I 
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the interpretable TCR and its confidence inter- 
val based on simple mortality-adjusted integral 
summary statistics for the individual growth 
curves. 
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