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Comparisons of several treatments with a control represent a standard situation in preclin- 
ical trials. Usually, they are considered with a single variable, resulting in multiple test 
procedures such as the Dunnett test (I). Here, the multivariate many-to-one problem is 
considered, where several variables are observed on each individual of the control and 
treatment groups. 

Classical MANOVA tests and their derivatives for the many-to-one problem require 
large sample sizes in order to be powerjiul if the dimension is high. In this papel; a new 
class of stabilized multivariate tests proposed by Liiuter (2) and Laurel; Glimm, and 
Kropf (3) is extended to this special design. The new tests are based on linear scores 
which are derived in a certain way from the original variables. They utilize factorial 
relations among the variables. 

It is shown here that the procedures keep the multiple level. In simulation experiments 
several versions of multivariate tests are compared with each other Standard approaches 
are included as well as different score versions and a comparison of Dunnett-like proce- 
dures with Bonferroni-type procedures. Generally, an improved power of the new tests 
compared to standard procedures is demonstrated. 

Key Words: Multivariate tests; Stabilized scores; Many-to-one procedures; Dunnett test; 
Principal component test 

INTRODUCTION 
MULTIPLE ENDPOINTS CAN occur in many different situations. A variable may be 
observed under different conditions or in the course of time, or there may also be different 
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variables related t o  a common object. I f a  testing problem with multiple endpoints is treated 
by more-fold univariate tests. then problems arise. for example, the type I error of the whole 
procedure can exceed the nominal level by far. A correction for the multiplicity is possible, 
for example, by the Bonferroni method. but then the correlation structure between the 
variables is still ignored and information is lost. Traditional multivariate methods, however, 
are derived under very general conditions. Thus, these tests have to handle a lot of parameters. 
and they require large samples when the dimension of the vectors of variables is high. 

Various authors, among them O'Brien (4). have proposed tests that utilize special parame- 
ter structures and combine advantages o f  univariate and multivariate tests. They did i t ,  
however. mainly in a heuristic approach which yields only approximate distributions of the 
test statistic under the null hypothesis. In two recent papers. Liiuter (3) and Lauter. Glirnm. 
and Kropf (3) proposed a new class o f  s o  called 'stabilized' parametric tests. In a similar 
manner as in the tests o f  O'Brien, linear scores are computed from the variables, and these 
scores are handled in standard tests. Special rules fo r  the derivation of the weight vectors 
for the scores ensure that the final tests with the scores exactly keep the type I error 
despite the preprocessing. Within the framework of these rules, there is a variety of special 
realizations. allowing for an adjustment t o  a broad field o f  practical demands. such as the 
utilization of  symmetry assumptions among the parameters or of factorial parameter struc- 
tures, the choice of  one-sided or two-sided problems. the inclusion of a selection of relevant 
variables, and s o  on. For the one-way layout which is the basis for the present paper, the 
results of the two papers can be summari/.ed as follows. 

Let 

IKI be K samples of independent p-dimensional observations of size it1", n'", . . . , n . let 
X = (x:~',  . . . , ~ ~ 1 ~ 1 )  be the combined ( p  x 11)-sample matrix, I A I  

I I A d" 

' I  A t  , I  

.v = ~ c c = X I,, with I', = ( I .  . . . . I )  

1 
the total sample mean vector, and X = .t I ' n  = ~ X I ,, I', the corresponding mean value matrix. 

I1 

From the vectors .v;" o f  observations. the score values 

are computed with weight vector\ (1 which are some unique function of the matrix 

G , , = ( X - X ) ( X - X ) ' = X ( I , , -  I I,,l',,]X' (I , ,  i s then  X U  identitymatrix). 
' 1  

Then an exact level a test of the null hypothesis H,,:pI = . . . = p, can be carried out in 
the usual ANOVA with the scores :;I1 as input ( F  test with K - 1 and n - K degrees of 
freedom). 

The mathematical basis for the proof is the theory o f  spherical distributions ( 5 ) .  Due to 
the sample-based weights. the usual normality and independence assumptions regarding the 
sample elements are n o  longer fulfilled for the scores. Special choices for the scores are. 
for example: 
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SS scores with weights d,, = [Diag(G,)]-"p. SS scores are favorable when the mean differ- 
ences of all variables have equal directions and approximately equal magnitudes (in units 
of the corresponding standard deviations), and 

0 PC scores with the weight vector dpC, that is, the eigenvector belonging to the largest 
eigenvalue of the problem Go dK = Diag(Go)hdK, &G,& = 1. These scores do not sup- 
pose such a symmetric behavior in the p variables as in the SS method. They are advanta- 
geous if there is one latent variable behind the observed variables which is responsible 
for the differences among the groups. For one-sided problems the absolute values of the 
coefficients of weight vectors are used. As a generalization, q-dimensional scores can be 
derived with a weight matrix consisting of the first q > 1 eigenvectors of the above 
eigenvalue problem. 

The power of the tests with the different approaches is demonstrated in the following 
fictional example. Suppose there are two independent samples of high-dimensional normal 
vectors (p 222). each of sample size 12. All p variables have a variance of one, painvise 
correlation coefficients of 0.3 (compound symmetry), and mean differences between the 
two populations of one. Figure 1 shows the power of the 'Bonferronized' univariate r tests 
(probability of at least one significance in the p tests), the power of the classical Hotelling's 
T' test (6.7). and the power of the PC test (SS test gives very similar results) when the 
number of variables enclosed rises from only one up to 22 (beyond this value the TZ test 
would not be applicable). The nominal level of both tests is 0.05. The power of the TZ test 
is derived from the noncentral F distribution; for the other tests simulations with 1O.OOO 
replications each have been done. Figure 1 demonstrates the advantages of the stabilized 
tests. Even in small samples, they can efficiently utilize the information from a large number 
of variables. In these weak correlated special data the T? test has no advantages with respect 
to the univariate r test procedure with a Bonferroni correction. 

The aim of the present paper is the transfer of these ideas to the many-to-one procedures. 
Such procedures are usually considered when a control group has to be compared to several 

0.0 I 

test 
t tests (Bonf.) 

O PC test 

= Ftest 

- 
II. 

..... 
0 3 6 9 12 15 18 21 24 

number of variables 

FIGURE 1. Power of Hotelling's test, PC test, and Bonferroni procedure with t tests 
for an increasing number of variables in the comparison of two samples of 12 each (for 

parameters cf. text). 
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treatment groups. The transfer is not a trivial step because the procedures have to keep the 
multiple error level, that is, even if some treatments differ from the control, then the error 
of the first kind has to be controlled for the remaining comparisons. In the computation of 
the scores, however, it is not known which treatments are equal to the control, so that the 
sphericity assumptions have to be restricted. 

In the next section multivariate many-to-one procedures are described. They are followed 
by simulation studies for the power of the procedures and by an example with data from 
experiments with Wistar rats. 

MANY-TO-ONE PROCEDURES 

The following situation is considered in this paper: A control group is to be compared to 
K treatment groups. The sample elements are assumed to be independent p-dimensional 
normal vectors with common covariance matrix in all groups xjt' - N , ( P ' ~ ' .  X), ( k  = 0. 
. . . , K ; J  = I .  . . . , nit'). The hypotheses to be tested are H k :  p'" = pIk' ( k  = I ,  . . . , K ) .  As 
the K comparisons treat a common phenomenon, the type I error is to be kept for the whole 
procedure regardless of the actual classification into true and false hypotheses. Regarding 
the alternative several cases can be considered: 

1. Unrestricted alternative: no assumptions about the order of mean values for the treatment 
groups, but one-sided comparisons with respect to the control group are possible, 

2. Total order restriction: assumption of a strictly monotone trend in the expected mean 
values of all variables, starting with the control group and ending with treatment K, often 
used in connection with increasing doses of a drug, and 

3. Partial ordering of expected mean values; not considered here (cf. [8]). 

Procedures for Univariate Data 

For univariate data a variety of parametric multiple test procedures has been proposed for 
the many-to-one problem. They are based on the multivariate t distribution (Dunnett test 
[ I ] )  or on an approximate multinormal distribution as in the paper of James (9). taking the 
correlation structure into account, or on a-adjustment methods applied on the pairwise 
comparisons. Furthermore, the proposals can be classified into single-step procedures and 
stepwise procedures (step-down: Holm [ 101, Marcus, Peritz, and Gabriel [ 1 I ] .  Dunnett and 
Tamhane [ 121; step-up: Hochberg [ 131, Hommel [ 141, Dunnett and Tamhane [ 151). For 
restricted alternatives, special methods are available, among them the proposal of Williams 
(16), stepwise tests of a priori ordered hypotheses (Hothorn and Lehmacher [ 171. Maurer, 
Hothorn, and Lehmacher [ 181) or contrast tests (Fligner and Wolfe [ 191. see also the summary 
paper of Tamhane, Hochberg, and Dunnett [20]). 

In this paper, the focus is on three basic methods: 

" tk l  
1 

1. Dunnett test: The sample means X'" = - c xjk' ( k  = 0, . . . , K )  and the pooled sample 

(n't' - I ) S " ' ~  with v = n - K - 1 degrees of freedom are calcu- 

( k  = 0, . . . , K).  Then the test 

( k  = I ,  . . . , K )  are computed for the one-sided test 

n"' 
2 variances = 

c (xjk' - X't ' )2  lated. where n = c n"' and s ' ~ "  = - 

statistics = 

n - K - l  ~ 

K "IkJ 

k.O FI 

1 
n't' - 1 

,(tI - 
S 
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(greater mean values for the treatment groups under the alternative hypotheses). For a 
two-sided test (test against arbitrary mean differences), the absolute values of the mean 
differences are taken in the above formula for t"'. A null hypothesis Hk ( k  = I .  . . . , K )  is 
rejected, if the value of the corresponding test statistics is greater than or equal to the 
critical value to = tK,v,p.l+ This critical value depends on the number of groups (K). the 
degrees of freedom in s '  (v), the multiple level (a). and the correlation coefficients (p) 
between the K test statistics, which are functions of the sample sizes and are equal to 0.5 
if all samples have equal size. It is derived from the multivariate t distribution and can 
be taken from tables (eg, in Dunnett [ I ] )  or determined with special software (eg, SAS 
function PROBMC 12 1 I ) .  An enhancement of this procedure is given by a closed testing 
version of the Dunnett test. Dunnett and Tamhane ( 12) describe the following step-down 
procedure: The test statistics t'" ( k  = 1, . . . , K )  of the usual Dunnett test are ordered into 
t , , ,  I . . . I Starting with I = K. a null hypothesis H,,, (belonging to t ( / , )  is rejected, if 
rC,, 2 tl.v.p,la. As long as the hypotheses are rejected, the procedure continues with I - I .  
When at a certain step H,/, cannot be rejected, that is. t,,, < tl,v,p,,a. then the procedure 
stops, and all hypotheses HI,,, . . . , HI/, are not rejected. Thus, the first critical value is 
identical to that of Dunnett's original proposal. Due to the monotony of the multivariate 
t quantils with respect to the dimension (first subscript), every significant outcome of the 
Dunnett test will be significant in the closed testing procedure, too. It is possible, however, 
to find more significant results in the subsequent steps. Hence, the closed testing procedure 
is more powerful. 

2. BonferroniMolm adapted pairwise t tests: Pairwise t tests are carried out between the 
control group and each of the treatment groups. The P values of the K tests are ordered 

by increasing magnitude and then compared to the critical levels 2 m, K, . . . 
Starting with the smallest P value, the corresponding hypotheses are rejected as long as 
the P values are less than or equal to the corresponding critical level. If a P value does 
not fall below the critical level, then the procedure stops. The power of the procedure 
can be increased, if the variance is estimated from all samples instead of only those two 
samples which are compared at that moment (resulting in n - K - I degrees of freedom, 
'multiple f test'). Then there is a strong connection to the Dunnett closure test: Both 
procedures are based on the same test statistics, and the critical values, derived from the 
univariate t distribution at level aJK,, and from the KWJdimensional t distribution at the 
level a, respectively, are close together, especially for a small number of groups (Kmd 
denotes the reduced number of groups after the foregoing steps of the procedure), and 

3. Pairwise comparisons with a priori ordered alternatives: This procedure is often used for 
restricted alternatives. In this case, the pairwise procedure starts with a r test between the 
control group and treatment K and continues with the group K - I ,  K - 2, . . . as long as 
all tests give significant results at the unadjusted level a. The procedure stops with the 
first nonsignificant pairwise test. Other a priori orderings of the pairwise tests are possible 
by nonstatistical arguments. Again, the power can be increased when all comparisons are 
done with the pooled variance estimate from all K + 1 groups. 

a a  a 

T' Based Tests for Multivariate Data 

All of the above procedures can be extended for multivariate data by replacing the t test 
constructions by the corresponding versions of the T' test (5.6). Only two-sided tests are 
available, however: 

1.  Higazi and Dayton (22,23) gave a multivariate extension of the Dunnett test. The test 
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"'In l k l  

n + n  
statistics T,?,, = -(;'" - X"")'S-'(X"' - X"") ( k  = I ,  . . . , K )  with mean vectors 

and the pooled covariance matrix 

with v = n - K - 1 degrees of freedom are compared to critical values given in their paper 
for p I 5 and for the assumption of equal sample sizes at least in the K treatment groups. 
The corresponding closed testing procedure can be used analogously because the closed 
testing procedure works independently of the special constructions of the tests, 

2. Pairwise comparisons with Bonferroni/Holm adjustment are based on the same statistics 
with an additional constant factor, so that the F distribution can be applied: F,,, = 

Tfkl with p and f'" degrees of freedom, where f I k '  = n'"' + n"' - p - I ,  if the 

variance is estimated only from those two groups which are compared at that moment, 
and f k '  = n - K - p ,  if the variance is computed from all groups ( k  = I ,  . . . , K). The 
decision based on the P values of this pairwise test is made in the same way as in the 
univariate case, and 

3. The same statistics and P values can be used in pairwise comparisons with a priori ordered 
hypotheses (without a adjustment). 

"" 
(f"' + P - 1 )P 

Multivariate Tests Based on Linear Scores 

These tests are stabilized alternatives to the T' based tests. The basic methodology of the 
score method is simple: Compute a weight vector d according to the rules given in the 
introduction, and use it to transform all observation vectors into scores z:"=d'x:"' 
( k  = 0. . . . , K,j  = I ,  . . . , nk) .  These scores are treated with the standard tests for univariate 
data (see above) though they do not meet the standard assumptions of these procedures 
(independence, normality). In the same way, a p x 4 weight matrix can be evaluated, and 4 
scores can be computed per sample element (one per column of the weight matrix). Then 
the scores have to be treated with the multivariate tests from the last subsection, but now 
with a reduced dimension 4 < p .  This would be advantageous if more than one important 
latent factor is suspected behind the observed data. But this aspect is not considered here 
in more detail. 

For pairwise f tests with the covariance estimate based only on the two enclosed groups, 
it seems natural to also determine the scores on the basis of these two groups only, and to 
recompute them for each comparison. The validity of this procedure is given by the results 
reviewed in the introduction. 

In order to carry out tests with a variance estimate from all K + I groups, such as in the 
Dunnett test or in multiple t tests. the matrix Go from the introduction is calculated from 
all K + 1 groups, too. Hence, the scores need to be computed only once. The theoretical 
justification is not straightforward here, because for a comparison of one treatment group 
against the control group, the null hypothesis of equal expectations in these two groups 
does not include the assumption that all other treatment groups have the same expectation, 
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T, 
I T  L A  

I , -  H T T  
- 

.05. 

too. The corresponding theorems, however, can be generalized for this many-to-one situation. 
Thus, for the univariate tests considered here, the null distribution of the test statistics applied 
to the scores is the same as if they were applied to original independent univariate normal 
data, even though the global null hypothesis of equality among the expectations of all groups 
is not necessarily true. In this context, the Dunnett procedure with its K single comparisons 
is interpreted as a test of the intersection of all true hypotheses. The corresponding test 
statistic is F ( z )  = max f ' k ' ( z ) ,  where the maximum is to be taken over all groups k for which 
the null hypothesis is true. The local level of this test is the multiple level of the Dunnett 
procedure. 

scores 

SIMULATION EXPERIMENTS 
Simulation experiments have been done under the null hypothesis as well as under various 
alternative hypotheses for the comparison of a control group to three treatment groups. The 
nominal level of all tests was a = 0.05. Under the null hypothesis the type I error is guaranteed 
by the theory given above if all assumptions are met. That is why only the results of two 
little series are given here, demonstrating the importance of these assumptions. The rejection 
rates of the null hypothesis are shown for the Dunnett-like tests (rejection of the global 
hypothesis) with SS scores and PC scores, both being special cases for weight vectors 
derived uniquely from Go, and with O'Brien's ordinary least squares (OLS) scores. The 
weights for the latter are computed analogously to those of S S  scores, but with the pooled 
variances instead of the total variances. Thus, they are not within the restriction of the new 
class of tests. Figure 2a shows the results for 10 uncorrelated variables and groupwise 
sample sizes increasing from 5-30. Figure 2b gives corresponding results for a fixed sample 
size of five per group and the number of uncorrelated variables increasing from 2-10. Both 
figures include the confidence intervals for the rejection rates. All results are based on 
100,OOO replications. Whereas the tests with S S  scores and with PC scores are always close 
to the nominal level, the tests with the OLS scores are anticonservative to a moderate degree 
in small and high-dimensional samples. 

a s  
I - PC 

.03J31 ss 
5 15 30 

sample size per group 

FIGURE 2A. Global type I error with confidence Intervals from simulation experiments 
with one control group and three treatment groups of varying sample sizes in Dunnett 
tests based on scores. There are 10 uncorrelated variables used In the tests. One 

hundred thousand replications have been done for each parameter structure. 
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FIGURE 28. Global type I error with confidence intervals from simulation experiments 
with one control group and three treatment groups with a sample size of five per group 
In Dunnett tests based on scores. The number of uncorrelated variables varies from 
2-1 0. One hundred thousand replications have been done for each parameter structure. 

The parameter structures under the alternative hypothesis are chosen in such a manner 
that a one-sided pairwise r test between the control group and treatment 3 based on the 
'optimal' choice of weights for known parameters d = Z-'(p''' - p"')) would always have a 
power of 0.95. In structures labeled 's' (symmetric) all variables have equal mean differences 
and equal pairwise correlation coefficients of 0.66. In the asymmetric structures ('a') the 
same is true for half of the variables, whereas the other variables are uncorrelated and have 
no mean difference with respect to the control group. The other two treatment groups have 
reduced mean differences (factor 113 in Treatment 1 and 213 in Treatment 2) for all variables 
in the structures characterized by '0/1/2/3' and have the same parameters as Treatment 3 
in the structures characterized by '0/3/3/3'. 

Tables la and Ib show the rejection rates in 1OO.OOO replications for the comparisons 
with Treatment 1 and Treatment 3 (local power). In Table la the sample size per group is 
fixed to 15 and the number of variables varies between 2,4,  and 10; in Table Ib the number 
of variables is fixed to four and sample size per group varies between 5 ,  15. and 30. 

The following procedures have been included: 

Higazimayton test and Dunnett-like test with S S  scores and PC scores, respectively. The 
Higazimayton test is denoted here as the T' version of the Dunnett test. It has not been 
performed for 10 variables because of missing critical values, 
The same tests using the closed testing principle with regard to the different treatments 
as described above for the Dunnett test, 

0 Pairwise tests with BonferroniIHolm a adjustment. The variance is computed only from 
the two groups involved. In the score tests, the weights are computed only from the two 
groups involved, and 
Pairwise tests as in the foregoing, but now without a adjustment. Instead of that the 
ordering of the pairwise hypotheses is fixed in advance (the control group is first compared 
to Treatment 3. then to Treatment 2. and finally to Treatment 1 ; if a comparison does not 
yield significant differences, then the procedure stops). 
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TABLE 1A 
Results of Simulation Experiments with a Varying Number of Variables 

Dunnett Dunnett Closure BonferroniIHolm A Priori Ordering 
Treatment 
Spacing p s/a T‘ SS PC T‘ SS PC T’ SS PC T’ SS PC 

2 s .602 .813 .813 .612 .824 .824 .556 .790 ,790 .722 .901 .901 
2 a ,603 .476 .476 .613 .492 .492 .555 .421 ,421 ,725 .614 ,614 

Treatment 3 4 s ,448 .811 .811 .459 .822 .822 .386 .787 .787 .568 .900 .900 
011 12/31 4 a .450 .582 .786 .460 .597 .798 .386 .536 .740 .568 .718 .869 

10 s .811 ,811 .822 .822 . 1 71 .787 .787 ,322 ,899 .899 
10 a .698 .807 .711 .818 .172 .661 .777 .322 ,816 .893 

2 s .061 .142 .142 ,102 .231 .231 .091 .219 .219 .079 .215 .215 
2 a ,061 .082 .082 .lo2 .125 .125 .091 .117 ,117 .079 .lo3 .lo3 

Treatment 1 4 s 43 .140 .140 .069 .227 .227 .058 .215 .215 .042 .210 .210 
011 /2/3 4 a 42 96 .133 .068 .151 .216 .058 ,142 .197 .043 .132 .190 

10 s .139 .139 .228 .228 .033 .216 .216 .014 .211 .211 
10 a .115 .138 .183 .226 .032 .174 .212 .014 .166 .206 

2 s .602 .813 .813 .673 .874 .874 .625 .855 ,855 .722 ,901 .901 
2 a .603 .465 .465 .675 .535 .535 .626 .479 .479 .725 .614 .614 

Treatment 3 4 s .448 .811 .811 .516 .872 .872 .443 .853 .853 .568 .900 .900 
0/3/313 4 a .450 .575 .788 .515 ,651 .853 .444 .606 .811 .568 .718 .869 

10 s .811 .811 .873 .873 .194 .853 .853 .322 ,899 .899 
10 a .693 .807 .767 .869 .194 .736 .844 ,322 ,816 .893 

2 s .599 .814 .814 ,672 .874 .874 .625 .854 .854 .492 .782 .782 
2 a .599 .463 .463 .672 ,534 .534 .625 .476 .476 .494 ,361 .361 

Treatment 1 4 s .450 .810 .810 .516 .872 ,872 .447 .852 .852 .301 .781 .781 
013/3/3 4 a .451 .572 .784 .518 .650 .850 .446 .605 .809 ,301 .492 .722 

10 s .812 .812 .872 .872 . 1 93 .852 .852 .085 .781 .781 
10 a ,694 .807 .769 .868 . 1 93 .736 .843 .084 .636 .769 

Local power of different tests for the many-to-one problem with a control group and three treatment groups (a 
= 0.05). All samples have a size of 15. Results are given for Treatments 1 and 3. The rejection rates are estimated 
from simulation experiments with 100,000 replications per parameter structure. s = symmetric structures, a = 
asymmetric structures (for more detailled explanation and for the group patterns ‘0/1/2/3’ and ‘0/3/3/3’ see the 
text) 

The results reflect very well the intentions and basic assumptions of the different proce- 
dures. The advantages of the score methods compared to the T2 based methods are obvious 
for the structures considered. That is remarkable insofar as the relationship of sample size 
and number of variables is not an extreme one. The differences decrease with increasing 
sample size and increase with an increasing number of variables. 

The SS scores and the PC scores yield similar results in the ‘symmetric’ structures. In 
the asymmetric structures the PC scores clearly have better results. Even in the asymmetric 
situations, however, the power of the SS versions is still greater than that of the T2 based 
methods. It should be noted here that all the parameter constellations of Tables l a  and lb  
are compatible with the idea of one latent variable (one-factor model, cf. Lauter [24]) and 
thus, support the PC scores. 

Comparing the results of the Dunnett-like procedure with those of its closure, one can 
state a distinct improvement by the closure. The amount of improvement is small only for 
Treatment 3 when the other two treatments have smaller mean differences than the control 
group and, hence, Treatment 3 is compared as the first group to the control group in most 
cases. In all other situations the gain in power is considerable. 

The power in the pairwise tests with a Bonferroni/Holm adjustment is less than the power 
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TABLE 1B 
Results of Simulation Experiments with Varying Sample Sizes 

Dunnett Dunnett Closure Bonferroni/Holm A Priori Ordering 
Treatment 
Spacing n s/a T2 SS PC T2 SS PC T2 SS PC T2 SS PC 

5 s .367 .828 .828 ,377 ,837 .837 . I  72 .749 .749 .356 ,899 .898 
5 a .367 .550 .762 .377 .565 .774 .I73 .414 .620 .356 .639 .811 

Treatment 3 15 s .448 ,811 .811 .459 .822 .822 .386 .787 .787 .568 .900 .900 
011 1213 15 a .450 .582 .786 ,460 .597 .798 .386 .536 .740 .568 .718 .869 

30 s .469 .808 .808 .479 .818 .818 .438 .792 .792 .608 .898 .898 
30 a .468 .591 .795 .478 .607 ,806 .436 .563 ,768 .607 .734 .882 
5 s .041 .I46 .146 .064 .241 .241 .037 .212 ,212 .018 .211 .211 
5 a .040 .092 . I  29 ,064 .I45 .212 .036 .127 .169 .017 . I  18 .I 62 

Treatment 1 15 s .043 .140 .140 .069 .227 .227 .058 .215 .215 .042 .210 .210 
011 /2/3 15 a .042 .096 .I 33 ,068 . I  51 .216 .058 . I  42 .I 97 .043 .I 32 . I  90 

30 s .044 .139 .I 39 .070 .225 .224 .064 .217 .217 .049 .211 .211 
30 a .044 .096 .I 36 .070 .I 53 .219 .064 .I 45 .207 .049 .I 34 .201 
5 s .367 ,828 .828 ,432 .888 .888 .I 98 .830 .829 .356 .899 .898 
5 a .367 ,525 .760 ,430 .603 .829 .200 .479 .705 .356 .639 .811 

Treatment 3 15 s .448 .811 .811 .516 .872 .872 .443 .853 .853 .568 .900 .900 
0/3/3/3 15 a .450 .575 .786 -51 5 .651 .851 .444 .606 ,811 .568 .718 .869 

30 s .469 .808 .808 ,534 .869 .869 ,497 .855 .855 ,608 .898 .898 
30 a ,468 .587 .794 .533 .663 .857 .496 .633 ,834 .607 .734 .882 
5 s .369 .828 .828 .433 .888 .888 .199 .830 .830 .I05 .778 .778 
5 a .368 .527 .759 ,430 .605 .830 .I 98 ,481 .705 .I 04 .393 ,619 

Treatment 1 15 s .450 .810 .810 .516 .872 .872 .447 .852 .852 .301 .781 .781 
0/3/3/3 15 a .451 .572 .784 ,518 .650 .850 .446 .605 .809 .301 ,492 .722 

30 s .467 .807 .807 .533 .869 .869 .495 .855 .855 .345 .781 .781 
30 a .468 .585 .792 ,534 .662 .857 .496 .633 .833 .345 .515 .750 

Results of simulation experiments as in Table 1 a, but now the number of variables is fixed to four and the sample 
size per groups varies. 

in the Dunnett-like tests, but the differences are not very large. Of course, the power of the 
procedures with a priori ordering is always greater than that of the other procedures with 
respect to the comparison of the control group to Treatment 3, which is compared first. This 
difference can be considerable. For Treatment 1 ,  which is compared last, this advantage 
disappears in the constellations with equal group spacing (‘0/1/2/3’), and it is reversed in 
the cases where all treatments have equal effects (‘0/3/3/3’). In the latter case, the procedures 
with a priori ordering are the only ones that have different results for Treatments 1 and 3 
(up to random variations in the other procedures). 

EXAMPLE 

As an example, a chronic toxicological study in Wistar rats is considered. A control group 
is compared with a low dose group and a high dose group of some substance. From each 
animal the liver mass and the concentration of ASAT, ALAT, and AP in the serum is 
recorded. For the purpose of demonstration only six animals per group are used (Table 2). 

To characterize the example, groupwise means and standard deviations and pooled correla- 
tion coefficients are calculated: 
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Groupwise Means and Standard Deviations Pooled Correlation Coefficients 
Variable Control Low Dose High Dose l.mass ASAT ALAT AP 

liver mass 12.05 f 2.24 12.48 f 1.81 13.57 f 1.60 1.000 0.157 0.268 0.002 

ALAT 0.39f0.20 0.76f0.21 0.94f0.28 0.268 0.545 1.000 0.161 
ASAT 1.96f0.18 2.27 f0.30 3.09f0.45 0.157 1.000 0.545 -0.104 

AP 0.26f0.04 0.31 f0.04 0.28f0.07 0.002 -0.104 0.161 1.000 

Thus, in the example the sample sizes are rather small, but the number of variables is small, 
too. The correlation between the variables is small or moderate. The means show a monotone 
trend with increasing values with increasing dose of the substance. This trend (when ex- 
pressed in units of the standard deviation) and the pairwise correlations are not equal for 
the four variables, however. 

The T2 based methods use the inverse of the pooled covariance matrix 

0.11752 0.04124 0.05336 0.00194 

3.60644 0.09803 0.11752 0.00024 
0.09803 0.10746 0.04 124 -0.001 78 

0.00024 -0.00178 0.00194 0.00272 

The Higazi/Dayton statistics art found to be T:,,=9.021 and Tt2,=38.057. From the ta- 
bles in Higazi and Dayton (22), the critical values for p = 4 variables and v = 18 - 2 - 1 = 15 
degrees of freedom and equal sample sizes in all groups are 20.2 for a = 0.05 or 32.4 for 
a = 0.01, respectively. Thus, only the high dose group differs significantly from the control 
group ( P  < 0.01). Going on into a stepwise closure procedure, the critical values can now 
be revised for only one remaining nonsignificant comparison. As this results in 16.37 for 

TABLE 2 

to be Compared with Two Dose Groups 
Data for the Experiment with Wistar Rats. A Control Group is 

Liver 
Group mass ASAT ALAT AP 

Control 11.6 1.82 0.71 0.29 
12.6 2.30 0.46 0.24 
10.5 1.99 0.45 0.23 
16.2 1.90 0.31 0.22 
11.5 1.94 0.18 0.29 
9.9 1.81 0.20 0.30 

Low dose 11.3 2.27 0.47 0.28 
14.2 2.73 0.89 0.27 
11.2 1.79 0.55 0.25 
14.5 2.31 0.77 0.34 
13.5 2.32 0.99 .036 
10.2 2.19 0.87 0.33 

14.0 2.60 0.81 0.26 
14.6 3.74 1.40 0.21 
12.8 3.00 1.05 0.32 
11.4 3.52 0.86 0.31 
15.9 2.91 0.98 0.39 

High dose 12.7 2.76 0.56 0.21 
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a = 0.05 and 27.67 for a = 0.01 no further significances can be found, and the procedure 
stops. 

If pairwise comparisons are carried out with the variance computed from only the two 
corresponding groups, then F(,)  = 2.236 and F(2) = 6.965. With degrees of freedom four and 
seven this corresponds to P values of 0.166 and 0.014. If the order of hypotheses to be 
tested had been given in advance (what is useful in this example with increasing doses) 
then these values are the basis for the decision. Otherwise a Bonferroni/Holm correction 
would double the second P value according to the approach of adjusted P values of Wright 
(25). In any case, the results would state no significance for the low dose group and only 
a significance at level 0.05 for the high dose group, thus having weaker results than the 
HigaziDayton test. Using the covariance estimate from all groups, however, corrects this 
disadvantage. Then F(,) = 1.804 and F(2) = 7.61 1 with degrees of freedom four and 12, which 
yields P values 0.1929 and 0.0027 (or with BonferronUHolm correction 0.1929 and 0.0054). 
Thus, all T 2  based procedures find the effect of the high dose treatment at least at level 
0.05, but not the effect of the low dose treatment. 

When the comparisons are based on scores derived from all three groups, then first the 
matrix: 

61.420 6.937 4.183 0.060 
6.937 5.693 2.414 0.013 

0.060 0.013 0.077 0.046 
Go = (' - ')(' - ')' = 4.183 2.414 1.770 0.077 

is computed. The inverse square root of the diagonal elements gives the weik,,ts for the S S  
scores 

dS< = (0.128 0.419 0.752 4.642), 

whereas the weight vector for the PC method is determined from GodK = Diag(Go)hdK, 
dP;GOdK = 1 as 

dK' = (0.057 0.252 0.477 0.869). 

The score values for both methods are given in Table 3. 

TABLE 3 
Score Values for the Three Samples Derived 

by the SS Method and by the PC Method on the 
Basis of all Samples, Respectively 

SS Scores PC Scores 

Control Low High Control Low High 
Group Dose Dose Group Dose Dose 

4.12 4.05 4.17 1.71 1.68 1.87 
4.03 4.88 4.69 1.73 2.16 2.07 
3.58 3.75 5.46 1.52 1.57 2.63 
4.12 4.98 5.17 1.74 2.07 2.27 
3.76 5.11 5.02 1.48 2.14 2.22 
3.56 4.41 5.80 1.38 1.84 2.45 
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With the Dunnett test applied to these score values the following results can be obtained 
(equal sample sizes, d.f. = 15): 

0 For SS scores: 
low dose: t(,) = 2.390 P value one-sided 0.0274 and two-sided 0.0549, 
high dose: t(z) = 4.265 P value one-sided 0.0006 and two-sided 0.0013, and 

low dose: t(,) = 2.394 P value one-sided 0.0273 and two-sided 0.0545, 
high dose: q2) = 4.950 P value one-sided 0.0002 and two-sided 0.0003. 

0 For PC scores: 

As in both cases the high dose treatment is significant at the level 0.01 or higher, the results 
for the low dose group can be checked in a second step of the closure procedure with the 
one-dimensional t distribution, yielding P values of 0.0152 (SS) and 0.0151. Thus, the 0.01 
level cannot be ensured either. 

When the same test values are evaluated by the univariate t test with the same degree 
of freedom. then the one-sided P values are: 

SS: low dose 0.0152, high dose 0.0003, and 
0 PC: low dose 0.0151, high dose 0.0001. 

Two-sided P values are obtained by doubling these values. If the a priori ordering of the 
hypotheses is not assumed, then the ‘more significant’ values, that is, those from the high 
dose, also have to be doubled (BonferrondHolm correction). 

When the pairwise comparisons with t tests are based on scores that are derived from 
the two involved samples only, then in the t tests with 10 degrees of freedom the following 
unadjusted one-sided P values are found: 

SS: low dose 0.0081, high dose 0.0006, and 
0 PC: low dose 0.0047, high dose 0.0002. 

The adjustment for two-sided tests and the BonferronikIolm correction is done in the same 
way as above. 

Though carried out with fewer degrees of freedom, the results for the low dose group 
are better (P < 0.01) than those with scores based on all three samples. This could be a hint 
that the ‘global’ scores are dominated by the more distinct differences between the control 
group and the high dose group, whereas the ‘pairwise’ scores are better adapted to each 
individual comparison. 

Summarizing, this example demonstrates: 

0 The advantage of score-based tests with respect to conventional multivariate tests in small 

A further advantage by the possibility of carrying out one-sided tests, 
0 The higher flexibility of PC scores compared to SS scores, 
0 The advantage of the use of a priori ordered hypotheses (as far as possible), 
0 The similarity of the results of the Dunnett procedure and those of the multiple univariate 

0 The advantage of the closure procedure for the ‘less significant’ treatment. 

samples, 

t tests with Bonferroni correction, and 

DISCUSSION 
The simulation experiments and the example also demonstrate the advantages of the use of 
stabilized linear scores. The exactness of these tests with regard to the type I error is a 
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consequence of the theory of spherical distributions and is guaranteed under the usual 
ANOVA assumptions. The rules for the derivation of the weight vectors are general enough 
to allow for a variety of adoptions to practical problems. 

These rules utilize special restrictions in the data structures such as information on 
underlying factorial structures or on a ‘similar behavior’ of the variables. In particular, 
they enable one-sided tests to be conducted. The power of the resulting tests is dependent 
on the validity of the special assumptions. But in small samples andor with high-dimensional 
data, stabilized procedures have advantages compared to T2 based methods, even if the 
assumed models are given only in rough approximation. Thus, the stabilized tests are of 
special interest for practical problems with restricted sample sizes, as, for example, in 
toxicology. 

Earlier proposals for stabilized tests such as those from O’Brien (4) or from Tang, Geller, 
and Pocock (26) have the same intentions, but are not exact tests. They should be replaced 
by the new versions. 

As exact level a tests, the score tests can be used in a closed test procedure in order to 
evaluate the influence of single variables or of subgroups of variables (as proposed by Kropf 
[27] and Lehmacher, Wassmer, and Reitmeir [28]). In the example in the last section the 
difference between the control group and Treatment 3 can be found not only with all four 
variables, but also with ASAT or ALAT alone and with all combinations of these variables 
with others at a multiple 0.05 level when the one-sided Dunnett like test with PC scores is 
used. 

PC scores are more flexible than SS scores. The score versions SS and PC are only 
examples, however, other proposals can be given (3). This includes the possibility of selection 
procedures for important variables (without loosing exactness!), otherwise summary score 
tests would not be effective when only a small part of the variables had the expected effects. 
In the end, however, summary statistics need some kind of common behavior of several 
variables to be effective. If only a single variable or very few variables is/are effective, then 
univariate tests with Bonferroni adjustment or the control of the multiple error (with regard 
to the p variables) by permutation or bootstrap techniques (29,30) might be more powerful. 

The extension of the Spherical theory to multiple test problems given here can also be 
used with other tests for univariate data to make them the basis for score tests. In that way, 
for example, contrast tests (eg [20]) can be used with scores. 

In pairwise tests, the inclusion of all samples into the estimation of variance enhances the 
degrees of freedom for the tests. On the other hand, with regard to robustness considerations it 
can be better to avoid the information from other samples, for example, in order to restrict 
the influence of samples with enlarged variances. 

When heavy deviations from the normal distribution are known or suspected, then a rank 
transformation can have positive effects on the type I error and on the power of the score tests 
(cf. Bregenzer and Lehmacher [3 I]). The test with SS scores applied to ranks corresponds to 
the nonparametric proposal of O’Brien (4). 

The calculation of scores from the data is easy with standard tools in the statistical 
packages, especially for SS scores and PC scores in the one-way layout. Macros for the 
packages SAS or SPSS can be obtained from the authors. 

The results of the Bonferroni (Bonferroni/Holm) procedure are not much worse than 
those of the Dunnett (Dunnett closure) test. The use of a priori ordering can be very effective, 
but only when the order, given in advance, meets the real situation. 
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