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Abstract

Simple linear joint controllers are still used in typical industrial
robotic systems. The use of these controllers leads to non-negligible
dynamic path deviations for applications that require high path
accuracy. These deviations result from the strong influence of non-
linearities, such as multi-body dynamics and gear friction. Sophis-
ticated nonlinear control algorithms, known from the literature, are
still not used because they usually require an expensive change of
the control architecture. Therefore, different compensation methods
are compared in this paper which reduce the path deviations by
correction of the desired trajectory. This means that no torque inter-
face is required, only an interface for path corrections is necessary.
Such an interface normally exists so that the methods can simply
be implemented within standard industrial controls. Using the in-
dustrial robot Siemens manutec-r15 the methods are experimentally
compared with respect to their efficiency and practical applicability.
Starting from this, one method is chosen for application to the state-
of-the-art industrial robot KUKA KR15. The algorithm is based on
a complete nonlinear dynamic model of the robot. It is integrated
into the standard control KRCI. The experimental results prove the
efficiency and the industrial applicability of the method.

KEY WORDS—Industrial robots, modelling, dynamics,
feedforward control

1. Introduction

Nowadays there is a large gap between the sophisticated con-
trol algorithms developed in robotics research and the sim-
ple control techniques used in industrial robotic applications.
Typical industrial controllers disregard the nonlinearities of
robot dynamics, such as friction and couplings between dif-
ferent links. Although these linear controllers are sufficient for
applications that require only high positioning accuracy, they
lead to non-acceptable deviations for applications requiring
high path accuracy, e.g., laser-cutting.
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The nonlinear effects can be compensated for by powerful
control algorithms, like computed-torque and adaptive meth-
ods (Sciavicco and Siciliano 1996), which have been devel-
oped in robotics research some years ago. The problem with
these control algorithms is the necessity of a torque interface.
Such an interface is usually not present in standard robot con-
trollers. However, common industrial robots have an interface
which is designed for handing over path corrections from ex-
ternal sensor signals. An algorithm is proposed by Lange and
Hirzinger (1994, 1996, 1999a,b) which uses this interface for
the reduction of path deviations. Corrections of the desired tra-
jectory are calculated with respect to a linear model of each
link’s closed loop. Due to robot dynamics the resulting tra-
jectory is closer to the original desired path. In spite of using
linear models, nonlinear influences can be compensated by
taking into account measured path deviations.

The authors of this paper proposed another approach,
called nonlinear precorrection (Grotjahn et al. 1999). It com-
bines the main ideas and advantages of the computed-torque
method and the mentioned precorrection algorithm. As in the
computed-torque method, the inverse dynamics of the robot
are used to calculate the expected torques from the desired
joint motions. Since no torque interface is available for feed-
forward control, the resulting values are transferred into tra-
jectory corrections by an inverted controller model.

In this paper, the different approaches for model-based
feedforward control are discussed. The methods are ex-
perimentally compared using the industrial robot Siemens
manutec-rl5 in order to evaluate the improvement of path
accuracy and practical applicability. These experimental in-
vestigations reveal that the nonlinear precorrection method
combines excellent results with robustness. Therefore, it is
integrated into the standard KRC1 control of the present-day
robot KUKA KR15 and experimentally tested.

The paper consists of four main sections. In the next sec-
tion the causes of path deviations in robot dynamics are
discussed. Section 3 introduces two different modeling ap-
proaches and identifies the associated parameters. The differ-
ent control strategies are developed and applied to the Siemens
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manutec-r15 in Section 4. In Section 5 the application to the
commercial robot KUKA KR15 is presented. Finally, a short
summary is given.

2. Path Deviations in Robot Dynamics

Path deviations in industrial robotics arise from different rea-
sons. These reasons can be grouped into path-planning er-
rors, kinematic errors and dynamic errors. Path-planning and
kinematic errors can be taken into account by high perfor-
mance offline-programming and simulation tools, like the so-
called “Realistic Robot Simulation Interface” (RRS) (Bern-
hardt et al. 1995). Dynamic errors, however, are still a major
problem for applications that require high path accuracy.

The main deviating influences in robot dynamics result
from gear elasticity, backlash and tracking errors. Elastic-
ity and backlash are usually small, as in industrial robotics
very stiff gears are used. Furthermore, compensation for
these influences is difficult because normally only motor en-
coder measurements and no drive side measurements can be
obtained.

Therefore this paper concentrates on the reduction of track-
ing errors. These result from the fact that in industrial robotics
linear independent joint controllers are still used (see Sec-
tion 5.2.1). These controllers cannot compensate for the non-
linear effects which determine industrial robot dynamics.

Besides the multi-body dynamics, friction is the main de-
viating nonlinear influence in industrial robotics. Figure 1
depicts the tracking errors of the second joint during a verti-
cal circle of the end-effector of the robots investigated by the
authors. The joint performs a motion with sinus-like velocity.
Tracking errors dramatically increase at the zero-crossing of
velocity. This reveals the strong impact of velocity dependent
friction. Due to a change of sign of the joint velocity a large
jump of friction torque occurs (see Section 3.1.1). This leads
to significant tracking errors which are only slowly reduced
by the integral part of the linear controller.

3. Modeling of Robot Dynamics

For the modeling of robots’ dynamic behavior two different
approaches are investigated. In the first one a nonlinear model
is used, which contains the main deviating influences. The sec-
ond approach comprises independent linear models of each
joint’s closed control loop. Although this approach is not ca-
pable of reflecting the nonlinear influences it can be used for
their compensation.

3.1. Nonlinear Modeling

The nonlinear model is divided into a gear model and a rigid-
body model. The gear model comprises the friction losses in
motors, gears and bearings.

3.1.1. Modeling and Identification of Gear Friction

Normally, very stiff gears with small backlash are used in in-
dustrial robotics. Therefore, gear elasticity and backlash do
not have to be considered for identification and feedforward
control of industrial robots’ dynamics. In addition to rigid
body dynamics, only the losses in gears and bearings are taken
into account by gear friction models. For their identification
friction has to be separated from other dynamic effects. By
using trajectories where only one axis is moved and selecting
parts of the measurement with constant velocity, the effects
of acceleration, centrifugal and Coriolis forces are avoided.
If gravitation has an influence on the torque of the regarded
axis, it has to be compensated by a model identified in ad-
vance. Thus, the following measurements can be assumed
to solely reflect the influence of friction in gears and bear-
ings. The identification of the gravitation model can be done
without an explicit friction model by the method proposed in
Section 3.1.2.

Friction losses of a single robotic joint are usually mod-
eled as a torque 7; ;; which is a function of its own rotational
joint speed ¢;. This nonlinear function is mostly described
by the sum of terms for viscous damping and dry friction
(Armstrong-Hélouvry 1991, de Witet al. 1991, Swevers et al.
2000, Pfeiffer and Holzl 1995, Seeger 1992)

T 1 = ;14 + a;»81gn(gq;) . (D

This simple model needs to be refined for more precise mod-
eling (Daemi and Heimann 1996, Priifer and Wahl 1994).
Figure 2(a) shows measured friction torques of some axes of
the Siemens manutec-r15 over their full speed range, normal-
ized to their maximum speed and maximum torque. It can be
seen that all axes show significant degressive characteristics,
not covered by the simple model given in eq. (1). A better de-
scription of the measured friction characteristics can be found
by using one of the following equations:

1
a;1q; + a;»sign(q;) + a; 54, 2)
a;1q; + a;»8ign(g;) + a; 3 arctan(a; 4q;). (3)

Ti.f2
Tif3 =

For a given measured friction characteristic, an analytical de-
scription with a least square model error can easily be cal-
culated for eqgs. (1) and (2), since they depend only linearly
on their parameters. For model (3) a nonlinear optimization
procedure is applied. As depicted in Figure 2(b), both mod-
els lead to much better results than the classic one (eq. (1)).
The mean quadratic error between the measured and modeled
torques is used to decide whether model (2) or (3) gives a
better description of the measured characteristics. It has to be
kept in mind that modeled parameters «; ; found in this way
no longer represent physical models (such as dry friction or
viscous damping) but merely force the sum of all effects of
the multistage gears into a mathematical description.

The major problem in friction modeling is the time vari-
ance of friction (Daemi and Heimann 1996, 1998, Priifer and
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Fig. 1. Influence of friction on tracking errors of joint 2 for a vertical circle.

Wahl 1994). Commonly, relatively large time constants are
assumed that arise from temperature variation in gears and
bearings. Thus, the typical approach for friction modeling in
robotics is to use some “warm-up” time where the robot is sup-
posed to reach stationary conditions (Armstrong-Hélouvry
1991, Seeger 1992, Daemi and Heimann 1996). The mea-
surements in Figure 3 reveal that this does not generally hold
for geared robots.

Figure 3 shows friction with respect to time for a multi-
stage robot gear which is continuously moved back and forth.
The torque is measured every 12s in periods with constant
velocity. The motion is interrupted at different times for short
periods (5 min, 1 min, and 2 min, respectively). It turns out
that after short breaks the friction becomes significantly larger.
This effect implies that not only temperature but also the dis-
tribution of lubricants determines friction conditions. That
makes it difficult to guarantee equal conditions for the fric-
tion characteristics at two separate measurements. Actually,
even during a precise friction measurement (which takes a
few minutes) operating conditions might change. So, friction
behavior cannot be exactly predicted. This can lead to sys-

tematic errors especially for rigid body identification but also
for control.

An effect often described in the literature (Armstrong-
Hélouvry 1991, de Wit et al. 1991, Swevers et al. 2000) is
the so-called “Stribeck”-effect—a falling friction character-
istic with increasing velocity. This effect occurs for very low
velocities. For example, it can be modeled by the following
equation:

T, 14 = a;1q; + a;28ign(q;) + a; ze” “

This effect has indeed been observed for the Siemens manutec-
rl5 (see Figure 4). Nevertheless, it is not included in our
model due its strong dependency on operating conditions.
The repeatability of friction is especially bad for low veloci-
ties. Comparisons between experiments and simulations have
shown that the “Stribeck”-effect has only a minor influence on
the dynamic behavior of the controlled system of the Siemens
manutec-r15 (Grotjahn and Heimann 1999).
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Fig. 2. Friction characteristics of the Siemens manutec-r15: (a) normalized characteristics of different axes; (b) adaption of
friction models to measured characteristics of axis 1.
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Fig. 4. Friction characteristic of axis 1 of the Siemans manutec-r15 for low velocities.
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3.1.2. Modeling and Identification of Rigid Body Dynamics

The dynamic equation of the robot’s rigid body model can be

written as

— 1=A4¢Q.4.9p.
()

T=M(@Q)q§+cQq,q +gq

The left equation represents the usual form of the dynamic
equation with the mass matrix M(q) as well as the vectors
of centrifugal and Coriolis forces c(q, ), gravitational g(q)
and joint torques t. The right equation is the corresponding
parameter linear form. The base parameter vector p consists
of the inertial and gravitational parameters of the links, e.g.,
masses and moments of inertia, and linear combinations of
them. It has minimal order to guarantee identifiability of all
elements p; and can be derived automatically for any serial
robot (Gautier and Khalil 1990). For typical industrial robots
dim(p) is relatively small because of their symmetric link
structure.

The base parameters can be divided into two groups: the
gravitational parameter vector p, comprises the parameters
that occur in g(q), whereas the inertial parameter vector p,,
consists of those parameters that only influence M(q) but not
g(q). This division leads to the following formulation of the
equations of motion:

T = AM,m(qr q)pm +AMg(q’ q)pg +A(?(qa q)P +Ag(q)pg .

M(g)§

c(q.9) 8@

(6)

There exists a vast amount of literature on the identification
of p. However, most of the methods are variations of the same
identification scheme. The robot is moved along a trajectory
which is optimized to guarantee maximum “excitation” of the
parameters. Joint motion and torque are measured and friction
is compensated by a model determined in advance.

This compensation leads to systematic errors due to the
time variance of friction. Another problem, which is more
important, is the fact, that optimized trajectories are needed.
Standard industrial controls can only generate very simple
trajectories. Even if the optimized trajectories are based on
simple joint motions, like polynomials (Daemi and Heimann
1996) or Fourier series (Swevers et al. 1997), the practical
realization is complicated. Therefore, optimized trajectories
can be used in the field of robotics research but usually not in
industrial robotics.

Therefore, another approach is suggested here. The method
consists of two steps. The method requires only very simple
trajectories and is, therefore, simply implementable in indus-
trial robotics. It is based on the grouping in eq. (6).

In the first step, gravitational torques and moments of iner-
tia are “measured” for a number of different joint configura-
tions, so-called operating points. Each measurement is carried
out by moving one single axis “back-and-forth” along some

trapezoidal velocity profile in the neighborhood of the oper-
ating point. Such trapezoidal trajectories are very simple to
generate by standard industrial controls. No specialized tra-
jectories are needed, as only one property has to be identified
and the trajectories are chosen to excite just this property.

For measurements of gravitational torque, long periods
with constant velocity have to be included. The mean of the
averaged torque at forward and backward motion gives the
desired gravitational torque. For the measurement of the mo-
ments of inertia, motions with a higher share of acceleration
are used. Gravitation is compensated and the moment of in-
ertia is identified in connection with a simple friction model.
The operating points are chosen by analyzing the structure of
M(q) and g(q) to “excite” all dominant dependencies on the
parameters p in order to include them in the estimation.

In the second step, the measurements of the gravitational
torques and the moments of inertia are combined. Then, the
parameters are estimated by using a weighted least squares
criterion. For more details on the identification method see
Daemi and Heimann (1998) and Grotjahn et al. (2001).

A comparison of the results for the Siemens manutec-r15
in Daemi and Heimann (1996) and in Grotjahn et al. (2001)
reveals that the two-step method leads to identification results
which are similar to those of the conventional approach. The
disadvantage of the two-step approach is the higher measure-
ment effort. In contrast to the conventional approach, which
needs only one trajectory, many experiments have to be per-
formed. For the Siemens manutec-ri5 the procedure takes
about 45 minutes. But, on the other hand, no optimization is
necessary as the choice of operating points could be performed
“by hand.” The single measurements are very simple. This
makes the approach applicable to standard industrial robot
systems, which is the decisive advantage of the method.

3.2. Linear Modeling

Lange and Hirzinger (1994, 1996, 1999a,b) proposed the use
of linear decoupled impulse response models of each joint’s
closed loop for reduction of path deviations. The model pre-
dicts the actual joint positions g; (k) based on the desired po-
sitions g, ;(k — 1) forl =my;, .., m;:

gk =Y &(Dgai(k—1). (7)

I=mg i

Here g; (/) denotes the estimate of one impulse response coeffi-
cient and m, ; the relative degree of the system. Theoretically,
m; must be infinite but for stable systems the first few g; (/)
are sufficient. The joint index i is dropped for simplicity in
the following.

The impulse response can be estimated using the extended
LS-method or the Inverse-Covariance Kalman Filter (May-
beck 1979) by measuring one simple trajectory. Here, we used
simple sinusoidal joint trajectories. No additional knowledge
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about the structure of the system or the controller is used dur-
ing the identification process. This is an advantage on the one
hand because the procedure can be implemented on unknown
systems. On the other hand, it can result in inferior model
quality since available information about the controller and
the physics of the system is not taken into consideration. Due
to its linearity, the model of the robot is incapable of incorpo-
rating the nonlinear effects, especially friction. Nevertheless,
it is possible to compensate even nonlinear effects by these
simple models (see Section 4.2). This is achieved by taking
into account measured tracking errors. Thus, the measured
data and not the model contain the information on the nonlin-
ear influences.

4. Feedforward Control

The compensation of nonlinear dynamics can only be per-
formed by using feedforward controllers, because there is
usually no possibility of changing the feedback controllers’
structure of standard industrial controls. Conventionally, only
the desired path can be changed by the feedforward controller,
as no other interface exists (see Section 5.2.1). In the follow-
ing section, a nonlinear feedforward control strategy, called
nonlinear precorrection, is introduced, which is based on the
friction and rigid-body model presented in Section 3.1. Sub-
sequently, two compensation methods are presented which
use linear models for improvement of path accuracy. Finally,
the different methods are experimentally compared by appli-
cation to the Siemens manutec-rl5.

4.1. Nonlinear Precorrection

For nonlinear precorrection an inverse model of the closed
loop system is used which consists of friction, rigid body
dynamics and the known controller parameters. The necessary
torques t, for a desired trajectory g, can be estimated using
egs. (2) or (3) and (5):

T, =M(q)q, +¢qs, q,) +8(qs) +T(q,)
=Aqs, 4, 4P +T7(q,). ®)

The vector 7, = [ ;,...,7,,] comprises the friction
losses of the different joints. The inverted controller model
F! converts the desired torques into corrections Ag.,, =
F>! 7, that have to be added to the desired trajectory to
achieve improved path accuracy. The structure of the com-
plete system can be seen in Figure 5.

The overall structure of the trajectory precorrection resem-
bles the well known computed-torque feedforward control
(Sciavicco and Siciliano 1996):

Tact Fcnm‘r (Aqd,cor + qd - ‘I)
Ty + Fcontr (qd - q) (9)

A(qch qda éd)p + tf(qtl) + antr(qd - q)

The advantage of nonlinear trajectory precorrection compared
to the computed-torque method is that one only needs to con-
vey path information to the robotic system and no additional
torque information. Only a path interface is necessary. So, the
approach is applicable to standard industrial robot systems
since such an interface is usually provided for integration of
external sensor information into the control circuit. A torque
interface, however, is normally not available without a costly
change of the controller.

4.2. Feedforward Control by Linear Models

Although the linear models disregard nonlinearities, they can
be used to their compensation by taking into account actual
path deviations. The advantage is that arbitrary effects can be
compensated, even effects which are not included in the com-
plex nonlinear model. This is done by a “learning” algorithm
that is presented in the following. Afterwards, the “training”
of a feedforward joint controller is explained.

4.2.1. Linear Learning

“Learning” is based on the idea that measured path devia-
tions can be used to adjust the trajectory that is transmitted to
the controller so that the actual trajectory comes closer to the
originally desired one. Thereby, path accuracy is improved by
iterative optimization (Arimoto et al. 1984, Gorinevsky 1992,
Gorinevsky et al. 1997) (see block diagram, Figure 6). With
the desired trajectory q, = [qq(1), .., g;(N)]", the last com-
manded trajectory ¢} .., = [q] 0, (1), .., ¢ o (N)]", which
results from the last iteration p, and the actual trajectory
q’ = [g"(1),..,q"(N)]", the new corrected trajectory, are
calculated in the general case by

Drior = Qrcor +@a:4") = @l cor + AGGL,,. (10)
If the impulse response models (eq. (7)) are used for “learn-
ing,” the following system of linear equations arises:

g(d) 0o - Agli, (1 —d)
gd+1) gd O Agli (2 —d)
g(m) g(d) Al (N — d)

qa(1) —g"(1)
94(2) —q"(2)

du(N) — ¢”(N)

p+l

< GAq,_, =e". (11)

In order to solve this system of equations, the matrix G has to
be inverted, which is equivalent to an inversion of the joint’s
closed-loop. As it can not be guaranteed that the identified
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system is phase-minimum, an exact inversion is not always
possible. In that case, the resulting corrected trajectory would
include unacceptable oscillations. To avoid this, the extended
LS-method or the Inverse-Covariance Kalman-Filter is again
used. Norrlof and Gunnarson (2000) propose a simple But-
terworth filtering of the resulting desired trajectory. Other ap-
proaches for the inversion of non phase-minimum systems
can be found in Wagner (1999).

The main advantage of “learning” is the fact that, by using
the actual path errors, all systematic deviations influence the
corrections. That means that influences can be compensated
which are not reflected by the model. This holds not only for
effects not modeled by the linear models used for learning,
but also for effects not even reflected by the complex non-
linear model presented here. Another advantage is that the
actual deviations of end-effector position and orientation can
be taken into account if they are measurable. This is done by
calculating motor deviations from path errors by using the
Jacobian (Lange and Hirzinger 1999a,b).

The main disadvantage, however, is that every small
change of the desired trajectory necessitates a new learn-
ing process. Furthermore, each learning process is relatively
costly since the new trajectory has to be driven several times
and convergence of the presented learning algorithm cannot
be guaranteed. Therefore, an application by industrial users
does not seem to be possible.

4.2.2. Training of a Feedforward Controller

In order to avoid the disadvantages of “learning” described in
the previous section, Lange and Hirzinger proposed to “train”
a feedforward controller from the learned behavior in Lange
and Hirzinger (1994). For this, a feedforward controller model

is identified by using again the extended LS-method or the
Inverse-Covariance Kalman-Filter. For a block diagram see
Figure 7.

As a matter of principle, a feedforward controller has the
advantage that it can be calculated in real time. Therefore, it
can be implemented in commercial controls. Furthermore, a
powerful feedforward controller offers the possibility of trans-
fering the “learned” behavior to similar trajectories. With that,
small trajectory changes would not require new “learning.”

The choice of the feedforward controller structure is a cru-
cial point. A fundamental condition is that the model can
satisfactorily reproduce the “learned” behavior. Lange and
Hirzinger (1994) again used linear models:

m

Ga.cor (k) = qa(k) + Zr(l)(qd(k +1) = qu(k)).

I=m;

12)

This approach, however, cannot compensate nonlinear effects,
like friction. Figure 8(a) shows that the identification of the
linear feedforward controller leads to a mixture of two effects.
In addition to inertial influences, friction has a large impact
at the beginning of the motion. Therefore, the corrections of
the linear controller are too small in the beginning and too
large at later zero-crossing of velocity. To improve this, the
approach is extended by another term:

Qucor ) = qa(k) + Y r(1)(qutk + 1) — qa(k))

I=m;

+ ) s(l) (sign(@a(k + 1)) — sign (4a(k))) .
I=p:

13)

This auxiliary summand is suited to separate friction from
inertial influences. With it, “learned” corrections are repro-
duced much better than by the linear model (see Figure 8(a)).
As expected, this results in a much better tracking behavior
(see Figure 8(b)). Although the “training” does not yield as
good results as “learning,” it seems to be an alternative which
combines good results with simplicity.

4.3. Results for Siemens manutec-r15

The presented compensation methods are investigated by ex-
perimental application to the Siemens manutec-r15, in order
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Fig. 8. Behaviour of the first axis of the Siemans manutec-rl5 for a vertical circle: (a) “learned” and “trained” corrections;

(b) comparison of resulting tracking errors.

to evaluate their performance and their practical applicability.
For that, several different test trajectories are used. Here, the
results are explained by regarding two trajectories: a vertical
circle and an edge in the x-y plane with a change of orientation
by 90°.

The vertical circle has a diameter of 40 cm and a path
velocity of 0.6 m/s. This means that the circle is approxi-
mately completed after 2.1 s. The cartesian path deviations
o (1) = (e2(1) +€2(t) + €2(1))"/* are depicted in Figure 9. It
shows some general results which can be reproduced for all
tested trajectories. The “training” yields the worst results of
all methods. The nonlinear precorrection is much better. The
“learning” even yields slight improvements.

In order to numerically evaluate the results the following
error criterion is defined:

1 N
Ecar = (ﬁ ; [(-xd(.]) - x(]))z

(14)

1/2
+ (ya() =y + (za(j) — z(j))2]> .

For all investigated trajectories, “learning” leads to a decrease
of at least 80% after four iterations. The nonlinear precorrec-
tion reduces the criterion by at least 60%, whereas the “train-
ing” leads to a minimum reduction of only 35%.

Figure 10 reveals the reasons for these bad results for the
“training.” It shows the behavior for a motion where the end-
effector is driven along an edge in the x-y plane and the
orientation is changed by 90°. Although the path velocity
is only 0.02 m/s, joint velocities and accelerations are quite
high. Therefore, the couplings between different links have
a strong impact. These effects can not be compensated by
the decoupled “trained” feedforward joint controllers. Lange
and Hirzinger proposed the use of neural networks to take
these effects into account (1996, 1999b). Neural nets, how-
ever, are difficult to apply in industrial robotics because of
their complexity and lack of robustness with respect to the
use of arbitrary trajectories.

So, nonlinear precorrection is the only approach which
combines efficient compensation of nonlinear deviations
with practical applicability. “Learning” yields slightly better
results. But robustness and stability properties must be
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Fig. 9. Comparison of cartesian path errors for a vertical circle of the Siemans manutec-r15.
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Fig. 10. Path behaviour of the Siemans manutec-ri15 for an edge in the x-y-plane.

improved for the integration in standard industrial controls.
The proposed nonlinear “training” combines simplicity with
applicability but is only suitable for slow trajectories for which
couplings between the different links have only low impact.
Therefore, only the nonlinear precorrection is applied to the
KUKA KR15 and integrated in the standard KRC1 control.

5. Application to KUKA-KR15

In order to prove the applicability of nonlinear precorrection
in the area of industrial robotics it is implemented in a “state-
of-the-art” commercial robotic system. The aim was to use
no additional hardware, just to use the possibilities that the
standard control KRCI1 offers.

5.1. Identification of Robot Dynamics

As described in Section 3.1, the friction and rigid body models
are separately identified. The results are summarized below.

Figure 11(a) depicts the normalized friction behavior of
different joints of the KUKA KRI15. Similar to the Siemens
manutec-rl5,the KUKA KR15 shows degressive friction char-
acteristics. Especially for the main axes, however, the de-
gressive characteristic is not as significant as for the Siemens
manutec-r15 but still obvious. Thus, Figure 11(b) reveals that
the friction models, eq. (2) and (3), can reflect the behavior
much better than the classic model (eq. (1)).

The time variance of friction significantly complicates the
modeling of the Siemens manutec-rl5. The KUKA KRI5
also showed an obvious dependence on operating conditions
and gear temperature respectively. In Figure 12 the friction
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Fig. 11. Friction characteristics of the KUKA KR15: (a) normalized characteristics of different joints; (b) friction modeling
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Fig. 12. Time variance of friction with respect to operating conditions for the first and the fourth joint of the KUKA KR15.

characteristics of the first and fourth joint are depicted. The
characteristics are measured directly after switch on, after
thirty minutes and after sixty minutes of continuous opera-
tion. In contrast to the Siemens manutec-rl15, there are only
small differences between the measurements after 30 min.
and the measurements after 60 min. This implies stationary
conditions. Therefore, the usual approach of “warming up the
robot” seems to be acceptable.

Nevertheless, the rigid body model is identified by the
two-step method described in Section 3.1. Simple trajectories
with trapezoidal velocity profile are used. During the motion
motor angles and currents are recorded using the so-called
“oscilloscope”-function of the KRC1 control. In the first step,
the measurements are used to identify gravitational and in-

ertial torques for several different joint configurations. In the
second step, the overall parameter vector p is identified from
these single measurements.

For model validation, test trajectories are used which
strongly differ from the trajectories used for identification.
In Figure 13 a comparison is presented between the torques
calculated by the model and the measured torques. The pre-
sented trajectory is defined with respect to ISO standard 9283
(ISO 1996). The respective path is presented in Figure 14.
The cartesian path velocity is 500 mm/s.

The experiments show very good agreement between
model and reality. Only for the hand axes do some small
differences occur. These differences result from the stronger
impact of friction which cannot be predicted as precisely as
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Fig. 13. Comparison between measured and calculated torques for ISO 9283-trajectory.
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Fig. 14. ISO 9283-trajectory (edge length: 400 mm; inclined
by 45°; see appendix (A.5) of ISO (1996) for details).

rigid body dynamics. Nevertheless, these results are an excel-
lent base for the compensation of nonlinearities of the KUKA
KRI5.

5.2. Implementation within KRC1 Control

The KUKA KRCI1 control offers the so-called “sensor task”
for implementation of arbitrary C-code. The task is originally
designed for integrating external sensor signals, like force
measurements, into the control loop. It allows a change in
the desired trajectory but no direct access to motor currents.
In the next section, the control structure is presented. After-
wards, the identification of joint controllers and problems of
the implementation within the “sensor task” are discussed.

5.2.1. Control Structure

The control architecture is split into a central part and six
independent linear joint controllers. The central part runs on
a Pentium II-400 MHz processor. It consists of safety and
user-interface functions, as well as the calculation of desired
values for the joint controllers and the execution of the “sensor
task.”

These values are calculated from the desired cartesian path
by solution of the inverse kinematics. The inverse kinematics
are solved every 12 ms, the so-called “interpolation (IPO)
cycle.” Afterwards the values are interpolated in order to fit
to the joint controller cycle time of 2 ms. The “sensor task™ is
executed directly after the interpolation. Path changes made
by the “sensor task™ are added to the desired trajectory in the
next step of the IPO cycle. This causes an inevitable time delay
of 12 ms. Finally, the interpolated joint values are low-pass
filtered in order to eliminate shocks and jerks. As the filter
is not phase-minimum, it is not inverted for precorrection.

Instead, its time constant is reduced as much as possible. The
remaining influence is neglected.

The resulting desired trajectory is transferred to the joint
controllers. According to the control manufacturer, the joint
controllers are standard linear, cascaded P/PI controllers. The
identification, however, yields slightly different results (see
Section 5.2.2). The outer positional loop has a cycle time of
2 ms whereas the inner velocity loop runs with a 0.5 ms cycle.
The actual velocity is reconstructed by a low-pass differen-
tiator. For block diagram of the over-all control structure see
Figure 15.

5.2.2. Identification of Joint Controllers

As structure and parameters of the joint controllers are usually
not known by the user in advance it is necessary to identify
them. The actual controller cycle time (2 ms) and the IPO
cycle time (12 ms), which must be used for inversion and for
identification, are different by a factor of six. This is a problem
for identification because input signals are not constant during
one time step. Nevertheless, it is possible to obtain good model
quality for low-band dynamics.

In combination with the different cycle times, the integra-
tor makes controller identification difficult because the inte-
grator input is not constant during one IPO cycle. This leads
to accumulating errors if the integrator is approximated with
a higher cycle time. Therefore, the proportional and deriva-
tive feedback gains are identified separately from the integral
gain. To achieve this, the integral gain is set to zero and a
PD-controller of the form

upp(k) = kpe(k) +kpe(k) with e(k) = qu(k) — q(k)
15)

is identified. The derivative is approximated by numerical dif-
ferentiation of the form x (k) = (x(k) — x(k — 1)/ T;po. The
time constant of the low-pass differentiator is neglected be-
cause it is much smaller than the PO cycle time.

Experimental investigations reveal that the real behavior
is different from the structure given by the manufacturer. The
controller output contains additional influences strongly cor-
related with velocity and acceleration. Thus, the model is ex-
tended by two terms:

u(k) = kpe(k) + kpeé(k) + kg (k) + k,g (k). (16)
The model is identified by a simple LS-approach using
different trajectories. All experiments yield similar results.
Figure 16 shows a comparison between measurement and sim-
ulation. A good model quality is achieved in spite of the large
sampling time.

For the identification of the integrator gain, the PD-
controller is connected in series with a PI-controller. The pro-
portional gain is one, so that only one parameter has to be
determined. The motor current i (k) can be calculated from
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joint PD-controller of the KUKA KR15.

the output of the PD-controller u (k) by

i) =itk =1+ +kputk) —uk —1). a7
If k; is directly estimated by a LS-approach only the one step
prediction of the model is considered. Figure 17 shows that
this leads to drift as modeling errors accumulate. Therefore,
k; is estimated by simulation of the controller behavior. The
gain k; is optimized by numerical evaluation of the overall
quadratic error. Sophisticated optimization approaches could
be used for this approach. But, as the range of reasonable
values of k; is small, a simple evaluation of the LS-criterion
for a variety of value of k; is sufficient. Figure 17 reveals that
this approach yields much better results which, of course,
holds also for the inversion of the model.

robot q i_lg_mg__xd____—l
I |
I |
| Inverse |
___________________ I kinematics |
| 0.5ms [ , |
I Dy . +% corrections |
: ;L 2ms . ’ :
- + - qd |
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T + + *i] | |Interpolation |
I velocity controller | gl |
: position controller I :
[

—_——— = —_— e o

5.2.3. Implementation within Sensor Task

The precorrection scheme is implemented using the C pro-
gramming language. Although execution time is restricted it
is possible to calculate the complete inverse dynamics consist-
ing of egs. (3) and (5). Assuming proportionality, the desired
motor currents i, can be calculated from the desired torques
7, and the motor constants given by the manufacturer.

In the next step, the controller eqs. (16) and (17) are in-
verted. For that, the following substitutions have to be made:

qd L= qd,(‘orv q = Cld» e = Aqd,z‘orv

u:=uy; and 1i:=1i,.

This leads to the following equations:

lq(k) —ig(k — 1) + ua(k — 1)
1+ k

ug(k) =
Aqd,cor (k) =

a(k) + kpAgacor(k = 1)/ Tipo — kiga(k) — kaga(k)
kp+kp/Tipo

qd.cor(k) = qd(k) + Aqd.cor (k)

Equation (18) shows that u, converges to zero in the static
case for a reasonable choice of k; > 0. This means that the
static accuracy is not affected by the approach.

As mentioned in Section 5.2.1, the corrections are trans-
ferred to the joint controllers with a time delay of 12 ms. The
only possibility to avoid this time-delay is the deactivation of
the standard path-planner. For this, the original desired trajec-
tory isrecorded once. Then, not only the corrections Agy .o (k)
but also g4, (k) are calculated in the sensor task by adding
the stored g, (k) and the calculated Ag, ., (k). Thus, the influ-
ence of the time delay can be experimentally investigated by
comparing the results with and without standard path-planner
respectively.

18)
19)

(20)
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Fig. 17. Simulation results for PID-controller with “directly estimated” and “optimized” integrator gain: (a) absolute values;

(b) deviations.

5.3. Experimental Results

The effectiveness of the presented approach is investigated
by using trajectories designed with respect to the ISO 9283
standard (ISO 1996). For all trajectories, the end-effector is
moved in a plane in the middle of the workspace, which is
inclined by an angle of 45°. Three test trajectories are used.
Trajectory 1 is given in Figure 14, and trajectories 2 and 3 are
located in a cube with an edge length of 400 mm. Trajectory 2
is a triangle with an edge length 320 mm and trajectory 3 is
a circle with a diameter of 320 mm. The cartesian speed of
trajectory 1 is 500 mm/s, the speed of the other trajectories is
630 mm/s.

Figure 18(a) shows the remaining positional errors for tra-
jectory 1. The improvements are significant. In particular, the
reduction of the errors of the base axes leads to these excel-
lent results. This is pointed out by Figure 18(b), in which the
robot’s behavior is depicted for a single axis motion of the
second joint. The results for the hand axes are not as good.
But their influence on positional accuracy is much smaller so
that this worsens the path accuracy only slightly. For quantita-
tive evaluation the previously defined cartesian error criterion
(eq. (14)) and maximum position error

E,.. = max

V() = x(G))? + Ga() = Y + za() — 2())?
2

are used. Table 1 shows the results for the different trajec-
tories. The maximal error is reduced by at least 30%, crite-
rion (eq. (14)) by more than 60%. The remaining deviations

result particularly from improper friction modeling (see Sec-
tion 3.1.1) and the remaining influence of low-pass filtering
of the desired trajectory (see Section 5.2.1).

A closer look at Table 1 reveals the influence of the time
delay resulting from the shift by one IPO-cycle in the case
that the original path-planner is used. There is no explicit dif-
ference for the maximal errors, whereas the error criterion
(eq. (14)) shows that the average path deviations increase be-
cause of the time delay. Nevertheless, even with the conven-
tional path-planner the results are excellent in comparison to
the original results. This proves the applicability of the pre-
sented method in industrial robotics.

6. Conclusions

In this paper different algorithms for model-based feedfor-
ward control in industrial robotics are presented. The different
methods are experimentally compared by application to the in-
dustrial robot Siemens manutec-r15. The so-called nonlinear
precorrection is an adaptation of the well known computed-
torque method. It combines excellent results with practical
applicability. Therefore, it is implemented within the “state-
of-the-art” industrial robotic system KUKA KR15. No addi-
tional hardware is used because the algorithm is integrated
into the standard control. The experimental investigation
yields excellent results and proves the applicability in the in-
dustrial field.
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Fig. 18. Path deviations of the KUKA KR15: (a) ISO 9283 trajectory; (b) single motion of the second joint

Table 1. Results of Nonlinear Precorrection for KUKA KR15 in mm

Original Corrected with Time Delay Corrected without Time Delay
Emax EC(ZI‘ (10_6) Emax Ecar (10_6) Emax Ecar (10_6)
Trajectory 1 0.27 6.7716 0.13 2.4065 0.19 1.9284
Trajectory 2 0.23 6.2481 0.14 2.9473 0.14 2.3570
Trajectory 3 0.17 6.8524 0.13 1.6579 0.10 1.4984
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