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Abstract: Due to increased interest in comfort features, considerable effort has been spent on
the modification of brake prototypes in order to suppress brake squeal. Recently, piezoelectric
transducers have been investigated as an innovative way of controlling the vibrations of a
brake. This paper presents an efficient mechanical model for the description of a brake with
embedded transducers. Different control strategies are discussed and compared. Measure-
ments on a brake test rig validate the obtained results.
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1 INTRODUCTION

Brake noises with dominating frequencies above

1 kHz are typically termed ‘brake squeal’. While

these vibrations do not affect the brake function

itself, they cause considerable noise. The phenom-

enon of brake squeal is not wholly understood and

brake squeal remains unpredictable. Therefore,

brake manufacturers typically reduce the tendency

to squeal in a time- and cost-consuming process of

designing, building, and testing of prototypes in a

mostly empirical way.

Recently, piezoceramic actuators have been stud-

ied for an active feedback control of brake vibrations

[1, 2]. While this approach shows a very good

performance, the requirement of complex sensing

devices and amplifiers makes this technique expen-

sive. An alternative approach is piezoelectric shunt

damping [3]. This technique has been a very active

area of research over the past two decades [4, 5]. It

requires – in the simplest way – only one single

actuator, which is shunted with an electric branch.

Passive inductance–resistance branches offer high

energy dissipation [6], but they require precise

tuning to the squealing frequency. Negative capaci-

tance shunts increase the performance of passive LR

shunts [7–9]. A synthetic negative capacitance can

be realized by a negative impedance converter

circuit; hence it requires power for operation.

This work focuses on resonant LR and LRC shunts

with a synthetic negative capacitance. Based on a

linear, one-dimensional model, the shunted piezo-

ceramic actuator is described by its dynamic,

complex stiffness. It can be modelled as a spring–

damper element in parallel configuration, albeit with

frequency-dependent stiffness and damping proper-

ties. The second approach is a collocated pair of

sensor and actuator with an internal feedback loop.

It is described by its complex stiffness in a similar

manner to emphasize the likeness between both

techniques.

Designing the optimal controller to suppress

squealing requires a model of the brake. Because of

the high-frequency range of brake vibrations, the

models must be kept as simple as possible to be

eligible for real-time control. Therefore, multibody

systems with a moderate number of degrees of

freedom are chosen to simulate the dynamical

behaviour of the brake [10, 11]. They are compro-

mises of precise but time-consuming models, which

have to be reduced down to the essential properties.

Naturally, these models are not capable of reflecting

the dynamics of the brake system in all details.

However, they help to gain more insight into the

mechanisms that generate brake squeal.

*Corresponding author: Institute of Dynamics and Vibrations,

University of Hannover, Appelstr. 11, Hannover, D30167,

Germany. email: neubauer@ids.uni-hannover.de

SPECIAL ISSUE PAPER 1141

JAUTO592 F IMechE 2008 Proc. IMechE Vol. 222 Part D: J. Automobile Engineering



The transverse vibrations of the brake disc strongly

influence squealing; therefore one focus must be

placed on modelling the disc. Kirchhoff plate models

show a good accordance with measured eigenfrequen-

cies of a disc in the relevant frequency range. Simplest

models consider only one mode of the disc with a

corresponding frequency that is closest to the squeal-

ing frequency [11], but the models can be extended for

a multimode description of the disc [12]. The homo-

geneous plate model is only a rough approximation of

the real disc, which typically has a complex geometry.

Therefore, the dynamic impedance of the disc model

must be adapted in the frequency range by adjusting

disc parameters like height and mass per unit density.

However, these models do not fit all relevant natural

frequencies of the disc with the same precision [12].

Therefore, this paper compares the different boundary

conditions for the inner radius of the annular plates

that can be found in the literature [13] and determines

the conditions that meet all measured natural fre-

quencies best.

This paper compares two techniques to control the

squealing, namely a PD (proportional derivative)-

feedback control and piezoelectric shunt damping

with resonant LR and LRC shunts. One focus is

placed on the improvement by a negative cap-

acitance and on tuning the shunt parameters. The

stability of the brake model is obtained in a com-

plex eigenvalue analysis. Experimental results are

conducted that validate the obtained results.

2 PIEZOELECTRIC MODEL

The description of the piezoceramic actuator is

based on a linear, one-dimensional model, as shown

in Fig. 1. Non-linear effects like hysteresis, etc., are

not covered by this model. The piezoelectric effect is

captured by the fundamental piezoelectric equation

s

D

� �
~

KE {e

e eS

� �
S

E

� �
ð1Þ

This matrix equation couples mechanical properties

(stress s and strain S) with electrical properties

(electrical field E and electrical displacement D). The

actuator is described in a mechanical way by its

modulus of elasticity KE and in an electrical way

by its permittivity eS. The piezoelectric constant

e couples mechanical and electrical subsystems.

Based on this equation the voltage at the electrodes

of the piezoceramic can be given as a function of the

deformation xp of the actuator in Laplace domain

Up(s)~{
1

1z sCpZ(s)
� �{1

c33d33

Cp
Xp(s) ð2Þ

The voltage depends on the parameters of the

actuator (stiffness c33, sensitivity d33, capacitance

Cp) and on the electrical impedance Z(s), which is

connected at the electrodes. Using the piezoelectric

transducer as a sensor requires a high electrical

impedance of the load, Z(s)R‘, so that the charge is

kept at the electrodes. From equation (2) it follows

that the change in deformation of the transducer is

proportional to the voltage

_uup(t)~{
c33d33

Cp

_xxp(t) ð3Þ

The force that is generated by the piezoceramic

actuator consists of two terms

Fp(t)~c33xp(t){c33d33up(t) ð4Þ

The first part corresponds to the restoring force due

Fig. 1 Model of piezoceramic and the attached LRC shunt
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to the mechanical stiffness of the actuator. The

second part is determined by the applied voltage on

the electrodes, which is the control voltage of the

transducer if utilized as an actuator in a feedback

control. If the transducer is shunted by a network

with impedance Z(s), the voltage results directly

from equation (2). Inserting this expression into

equation (4) yields a dependency between the

mechanical deformation xp of the shunted trans-

ducer and the resulting piezoforce Fp

Fp(s)~c33 1zK 2 Z(s)

Z(s)z(sCp){1

" #
Xp(s), K 2~

c33d2
33

Cp
ð5Þ

where K represents the electromechanical coupling co-

efficient of the piezoelectric transducer. The voltage

at the electrodes is treated as an inner degree of

freedom in this representation of the transducer.

2.1 Shunt damping with LR and LRC branches

Passive LR shunts consisting of an inductance L and

a resistance R are commonly used for piezoelectric

shunt damping. The branch impedance reads Z(s) 5

R + sL. This technique requires very precise tuning of

the electrical natural frequency which reads

velec~
1ffiffiffiffiffiffiffiffiffi
LCp

p ð6Þ

Inserting the impedance of the LR shunt into

equation (5) and separating into real and complex

parts yields

Fp(V)~ c33zc33K 2 CpL
� �2

V4z 4f2{1
� �

CpLV2

1{CpLV2
� �2

z4f2CpLV2

"

zc33K 2 2f
ffiffiffiffiffiffiffiffiffi
CpL

p
V

1{CpLV2
� �2

z4f2CpLV2
j

#
Xp(V)

ð7Þ

The damping ratio of the electrical LR branch is

denoted as f. The force dependency in equation (7)

can be considered as the dynamical, complex

stiffness of the shunted transducer which is valid

for the assumption of a harmonic excitation with

frequency V. Mechanically it can be represented by a

spring–damper element with frequency-dependent

stiffness and damping properties. The corresponding

parameters cres, dres are determined by equalizing

real and imaginary parts for the shunted transducer

and the spring–damper element

cres~c33zc33K 2 CpL
� �2

V4z 4f2{1
� �

CpLV2

1{CpLV2
� �2

z4f2CpLV2

dres~c33K 2 2f
ffiffiffiffiffiffiffiffiffi
CpL

p
1{CpLV2
� �2

z4f2CpLV2

ð8Þ

The shunt inductance L and the damping ratio f

influence both the real part and the imaginary part

of the complex stiffness. Therefore, the dynamic

stiffness and damping cannot be adjusted separ-

ately.

Previous publications mention the increase in

damping performance of a shunted piezoelectric

transducer with a negative capacitance. In the

following, the external capacitance C in the LRC

branch is normalized to the piezocapacitance Cp

d~
Cp

C
ð9Þ

A negative capacitance shunt is indicated by a

negative value of d. The natural frequency of the

piezoelectric system is influenced by the negative

capacitance. A positive capacitance increases the

frequency, while a negative value leads to a reduction

velec~

ffiffiffiffiffiffiffiffiffiffi
1zd

LCp

s
ð10Þ

The dynamic stiffness and damping of a transducer

with negative capacitance shunt can be obtained

in the same way as for the LR shunt. It results in

lengthy equations for the complex stiffness, which

are not given here. However, it is shown in reference

[14] that the dissipated energy of LRC shunts out-

performs the passive LR shunts

Ediss,LRC~
1

1zd
Ediss,LR ð11Þ

Performance is therefore maximized by tuning the

capacitance ratio dR21, which is the stability

boundary of the electrical branch. In practical

applications, the capacitance value must keep a

safety margin to the stability boundary, e.g. d 5 20.9.

2.2 PD-feedback control

A feedback strategy to stabilize a disc brake is

suggested in reference [1]. This technique requires at

least one additional sensor. In this context, a simple

Brake squeal control with shunted piezoceramics 1143
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PD-feedback with a collocated pair of identical

actuator and sensor is discussed. The voltage on the

sensor–transducer is fed back with constant gains

for proportional (gp) and derivative feedback (gd)

and applied at the electrodes of the actuator

uactuator~gpusensorzgd _uusensor ð12Þ

The collocated pair of sensor and actuator trans-

ducer with a local feedback loop can be expressed as

a complex stiffness. Inserting the control voltage

according to equation (12) and the sensor voltage

according to equation (3) into equation (4) results in

the following force of the pair of actuator–sensor

with a local feedback loop

Fp~ 1zK 2
� �

c33xpzc33xpzc33d33uactuator

~c33 2zK 2 1zgp

� �� �
xpzc33K 2gd _xxp ð13Þ

This expression can easily be modified for a sensor–

actuator pair with different transducers. Contrary to

the piezoelectric shunt damping technique, the

stiffness does not depend on the frequency. Real

and imaginary parts can be tuned separately by

feedback gains gp, gd.

3 BRAKE MODEL

The dynamical behaviour of the brake is described as

a multibody system with a flexible disc model. Such

multibody systems are a rough approximation of real

brake systems, which cannot model every phenom-

enon of brake squeal in detail. However, multibody

systems give better insight into the basic mechanisms

that lead to brake squeal and they allow an efficient

calculation, which is required for real-time control.

The brake model is depicted in Fig. 2. It consists of

the brake disc, two brake pads, and the embedded

transducer plus attached shunt or feedback loop.

System parameters like mass, stiffness, and damping

are adjusted so that measured frequencies of the

brake are met by the model. The PD-feedback loop

with collocated sensor–actuator pair is modelled by

the complex stiffness according to section 2.1. This is

also possible for shunted transducers, but in this

case the resulting damping and stiffness matrices of

the overall system are frequency-dependent. A more

convenient way of modelling shunted transducers is

to treat the voltage at the electrodes as an additional

degree of freedom. This increases the total degrees of

freedom (DOF) of the system by one, but with the

outcome of constant system matrices. An LRC-

shunted transducer placed between DOFs xi and xj

of a multibody is incorporated into the system

matrices of the overall system by adding the fol-

lowing submatrices according to reference [3]

0 0 0

0 0 0

{c33d33L c33d33L CpL

2
664

3
775

€xxi

€xxj

€uup

2
664

3
775

z

0 0 0

0 0 0

{c33d33R c33d33R CpR

2
664

3
775

_xxi

_xxj

_uup

2
664

3
775

z

c33 {c33 c33d33

{c33 c33 {c33d33

c33d33

C { c33d33

C 1zd

2
664

3
775

xi

xj

up

2
664

3
775~

0

0

0

2
664
3
775 ð14Þ

Fig. 2 Multibody system of the brake and 4/1 eigenmode of the disc
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In this case the vector of generalized variables

consists of seven mechanical DOFs and the voltage

as an electrical DOF

x~
xmech

up

� �
ð15Þ

3.1 Disc model

The brake disc is described as a flexible annular

Kirchhoff plate with an inner radius ri and outer

radius ra. Brake squeal usually occurs at low rotating

velocities; therefore rotational inertia and shear

forces can be neglected and the equation for

transverse oscillations w(r, Q, t) reads

rh
L2

Lt2
w r,Q,tð Þz2V

L2

LQLt
w r,Q,tð Þ

� �

zDdisc+4w r,Q,tð Þ~q r,Q,tð Þ ð16Þ

with mass per unit area rh, external transverse

pressure load q(r, Q, t) as a function of position

(radius r, angle Q) and time t, the bending stiffness

Ddisc, and the differential operator ,. The mode

shapes and eigenfrequencies are obtained by solving

the eigenvalue problem analytically. The vibration of

the disc can be discretized and separated in time and

space

w r,Q,tð Þ

~
X?

m,n~1

Rm,n rð Þ Am,n tð Þ cos mQð ÞzBm,n tð Þ sin mQð Þ½ �

ð17Þ

Parameters m and n represent the number of nodal

diameters and circles. The radial shape functions

Rm,n, which are sums of Bessel functions, result from

the eigenvalue problem, the circumferential part are

sine and cosine functions, and Am,n(t) and Bm,n(t) are

time functions.

The height of the disc is typically tuned in order to

adapt the eigenfrequency of the disc model to a

measured frequency response. This tuning is neces-

sary because a real vented brake disc differs from the

homogeneous Kirchhoff plate. One eigenfrequency

of the disc can always be tuned exactly to one

measured frequency by choosing an appropriate

height. However, changing the height shifts all

eigenfrequencies of the disc by the same percentage;

i.e. the ratio of different disc eigenfrequencies

cannot be influenced by the height. Therefore,

the height is chosen by a least error fit of all

eigenfrequencies in the relevant frequency range. It

cannot be expected that all eigenfrequencies are

perfectly matched.

The choice of boundary conditions affects the

radial shape functions Rm,n as well as the eigen-

frequencies of the disc. Particularly, the ratio of

different disc eigenfrequencies is influenced by the

boundary conditions of the disc. Comparing meas-

ured and calculated eigenfrequencies of the disc, the

boundary condition that fits the frequency ratio of

all relevant modes best can be found. Obviously, the

choice of boundary conditions also affects the

optimal height of the disc model. Apparently, the

boundary condition for the outer radius of the disc is

free but the choice for the inner radius of the disc is

not straightforward. Different conditions are sug-

gested in the literature: clamped, simply supported,

and free.

Figure 3 shows the measured frequency response

of a vented brake disc in the frequency range up

to 8 kHz. The disc is excited by a shaker and the

oscillations are measured by a scanning laser

vibrometer. A Kirchhoff disc with identical inner

and outer radii is modelled and the eigenfrequencies

are calculated for the above-mentioned boundary

conditions for the inner ring. During calculations,

the disc height is kept as a variable. Subsequently,

the mean error of all eigenfrequencies in the range

between 1 and 8 kHz is determined versus the disc

height according to the following equation

Df ~
Xn

i~1

fi,meas{fi,calc

�� ��	fi,meas

� �,
n ð18Þ

where fi,meas and fi,calc are the measured and

calculated eigenfrequencies of the disc. The result

Fig. 3 Measured frequency response of the brake disc
and calculated eigenfrequencies
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is presented in Fig. 4. The function of the mean error

is stepwise linear. For each boundary condition for

the inner radius (clamped, simply supported, and

free), one optimal height hopt can be found that

minimizes the relative error in frequencies. The

optimal height depends on the boundary condition.

It is plausible that the clamped boundary condition,

which introduces the most stiffness, results in the

smallest height.

None of the assumed boundary conditions results

in a perfect fit of all eigenfrequencies in the con-

sidered frequency range. However, relative error is

minimized with the boundary condition ‘simply

supported’, with a mean frequency error of less than

2.5 per cent compared with the measured frequen-

cies. The calculated eigenfrequencies of the disc with

this boundary condition is marked in Fig. 3. A

second best fit of eigenfrequencies is obtained with

the boundary condition ‘clamped inner ring’ with a

mean error of 9.6 per cent, followed by ‘free inner

ring’ with an 11.1 per cent difference. It must be

mentioned that these results are not general; using a

disc with vastly different geometry may lead to

different results. However, these measurements are

performed on a standard automotive brake disc, and

the result should be valid for the majority of similar

disc types.

As a result of the above results, the disc is

modelled with boundary conditions ‘simply sup-

ported’ at the inner ring and ‘free’ at the outer ring.

However, in the following calculations only the disc

mode m 5 4, n 5 1 is considered for disc vibrations,

which is closest to the measured squealing fre-

quency. Therefore, vibrations of the disc are de-

scribed by two coordinates, A(t) and B(t). This is a

plausible simplification, as the shunted transducer

must be tuned to one single mechanical mode, and

the remaining modes are not damped by the

transducer because of the small frequency band-

width with high energy dissipation.

The contact between the disc and brake pads is

simplified as a sector-shaped contact area and is

described by Heaviside functions H(r), H(Q). Oscilla-

tions of the pads in the in-plane direction with xpad,i

shift the contact area

H(r)~
1, r1vrvr2

0, else

(

H(Q)~
1, {bzxpad,ivQvbzxpad,i

0, else

(

ð19Þ

The contact is modelled as a layer with constant

stiffness and damping properties. Oscillations of the

disc and pads create a pressure distribution between

the disc and pads, which results in a friction force. A

constant coefficient of friction m is assumed.

4 STABILITY ANALYSIS

The stability of the linear electromechanical multi-

body system with an embedded transducer is ob-

tained by solving the matrix eigenvalue problem.

The maximum real part lmax of all eigenvalues

determines the stability. If the real parts of all

eigenvalues are negative, lmax , 0, the system is

mainly asymptotically stable. A positive maximum

real part indicates instability and the onset of

vibrations, which may lead to squealing. The phe-

nomenon of brake squeal is thoroughly discussed

in the literature [15]; it is mainly explained as self-

excited vibrations, which are caused by a decreasing

friction characteristic over relative speed and by

mode coupling because of a moving load. With the

obtained complex eigenvalues, the noise index a [16]

of the brake model is defined as

a~
<ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<2z=2
p ð20Þ

This index specifies the growth rate of brake vibra-

tions. It is only valid for small vibration amplitudes. In

reality, the vibration amplitudes depend on non-

linear effects like stick-slip limit cycles.

Figure 5 depicts the noise index of the brake

without shunting of the transducer. In the linear

model, the non-conservative forces are proportional

Fig. 4 Mean error of calculated eigenfrequencies versus
disc height for different boundary conditions
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to the product of brake pressure and coefficient of

friction (COF) m. Because of damping in the system,

the brake model is stable for low pressures and COF,

which is indicated by a negative noise index.

However, for realistic values for pressure and COF

the noise index is positive.

4.1 PD-feedback

Feedback gains gp, gd must be optimized with the

aim of stabilizing the brake. This is equivalent to

minimizing the maximum real part lmax of the

controlled system. For this purpose, the feedback

gains gp, gd are varied in a broad range, and the

resulting complex stiffness of the shunted transducer

according to equation (12) is calculated. Complex

eigenvalues of the system are calculated and the

maximum real part is shown in Fig. 6 versus feed-

back gains.

The area with a negative maximum real part

corresponds to a stable brake. For optimal feedback,

the maximum real part can be reduced to

lmax 5 21.5. The required feedback gains can be

seen in Fig. 6. A good result can already be obtained

by a feedback of the derivative part only, which adds

damping to the system.

4.2 LRC and LR shunt damping

Stability analysis for the shunted piezoelectric

transducer is performed in a similar way. The shunt

parameters L, R, d are varied simultaneously and the

corresponding complex eigenvalues are calculated.

The maximum real part is given in Fig. 7 versus

normalized shunt parameters. External inductance is

normalized to the optimal value for a tuned shunt.

The frequency dependency of these resonant

shunts can be seen clearly; the inductance L, which

influences the electrical natural frequency, must be

tuned very precisely. Up to some point, additional

damping in the network increases the frequency

bandwidth with a stable system, but choosing the

resistance too high will cancel the stabilizing effect

altogether. The performance increase due to a

negative capacitance is clearly visible (notice that

the slice with d 5 0 is a passive LR shunt). While the

damping ratio for passive LR shunts must be kept

very small, semi-active LRC shunts offer the broadest

stabilized frequency range for slightly larger damp-

ing ratios.

5 MEASUREMENTS

For a validation of the obtained results, an auto-

motive disc brake has been modified. The brake

prototype is depicted in Fig. 8. Three identical stack

actuators from the company MARCO with capaci-

tance Cp 5 23 nF are placed between the piston and

Fig. 5 Noise level of the brake model versus brake
pressure and coefficient of friction

Fig. 6 Stability graph of feedback control versus feed-
back gains

Fig. 7 Stability graph of the the LRC branch versus
normalized shunt parameters
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the inboard brake pad and connected in parallel for

shunt damping. The normal pressure on the piezo-

electric transducer consists of the brake pressure

and a superimposed sinusoidal-like fluctuating part

with the frequency of squealing. For shunt damping,

all three transducers are connected in parallel to one

single LRC branch; for the feedback control, one

transducer can be used as a sensor while the others

are actuators. The piezoelectric transducers are

protected against shear forces by a cap construction.

The brake prototype is examined on a brake test

rig at the Institute of Dynamics and Vibrations.

The test rig allows automatic brake sequences with

a control of the disc speed, brake torque, and

disc temperature. Sound radiation is measured by

a microphone during measurements. Squealing

occurs mostly at low disc speeds with 20–25 r/min

and brake pressures in the range of 10 bar.

Controlling the brake by an active feedback has

been shown in reference [2], where optimal feedback

gains are established. Immediately after turning the

control on, the vibrations of the disc are suppressed

and the brake remains silent, until the control is

turned off. A maximum control voltage of 50 V is

required for stabilizing the brake.

For realizing an LRC shunt a negative capacitance

board has been built with one single high-voltage

OPA445 operational amplifier as an impedance

converter (see Fig. 9). Negative capacitance values

can be gained by changing the amplification factor

of the amplifier. A tuneable shunt resistance was

incorporated into the circuit; the inductance is

connected externally. A voltage supply of ¡40 V is

applied to the board. During measurements at the

brake, the power consumption was not significantly

greater than during the idle state.

The frequency dependency of LR and LRC shunts

are analysed by the following procedure. Brake

pressure and disc speed are adjusted until a constant

and tonal squealing occurs. The optimum shunt

inductance is calculated from the measured squeal-

ing frequency according to equation (10). Afterwards,

Fig. 8 Photo of the modified brake

Fig. 9 Negative capacitance board
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the shunt is connected and disconnected periodi-

cally in 10-second intervals. After each connection

the shunt inductance is increased step-

wise. At the beginning of a measurement the

inductance value is set to a value smaller than

the optimal one and at the end of one measure-

ment the inductance value is higher than the

optimal one. In the middle of the measurements

the inductance is set optimally. One whole mea-

surement lasts up to 3 minutes. They are repeated

for different LR and LRC shunts.

Sound pressure is recorded with a microphone

and the mean sound pressure level (SPL) in dB for

each 10 seconds of connection and disconnection is

calculated. Figure 10 depicts the time history of the

recorded sound pressure for one connection of an

LRC shunt. During the 10 seconds of connection

the sound pressure is immediately reduced to a

constant, low state. After disconnection of the LRC

shunt the squealing reappears. The reduction in SPL

between the connected shunt and disconnected

shunt is shown in Fig. 11. Each interval of con-

nection and disconnection results in one measure-

ment point; they are plotted versus the inductance

ratio for LR and LRC shunts. The measurements

show a good accordance with the analytical results.

Calculated stability boundaries for optimal tuned

shunt (inductance and resistance) are included in

the figure. The boundary for a negative capacitance

shunt with d 5 20.86 shows a perfect agreement

with the predicted result. The measurements with

d 5 20.66 and d 5 0 (passive LR shunt) have a

smaller stabilized frequency range than predicted.

This is due to the fact that the internal losses in the

electrical elements are higher than the required

optimal damping ratio, so that the optimal damping

ratio could not be set during measurements.

All types of shunts are capable of suppressing

squealing when optimally tuned. The negative cap-

acitance shunts outperform the passive LR shunts

because of the strongly increased frequency band-

width in which the brake can be stabilized. Meas-

urements prove the binary character of squealing:

either the squealing is totally suppressed, which

leads to a SPD reduction of approximately 20–25 dB,

or the squealing is not influenced, with a reduction

of less than 5 dB.

As a concluding remark it must be noted that not

all squeal occurrences could be suppressed during

measurements. Possible reasons are in-plane oscil-

lations of the disc, which are not detected and

influenced by the transducers in the current design.

Further, the orientation of the disc mode cannot be

influenced by the actuators. Energy out-take is only

possible if the vibration nodes are not in the contact

area of the disc and brake pads.

6 CONCLUSIONS

This paper presents two innovative techniques

involving piezoelectric transducers to control brake

squeal: a local feedback control with collocated

piezoelectric transducers and piezoelectric shunt

damping. An efficient modelling of disc brakes and

shunted transducers is proposed, which is utilized to

determine an optimal feedback loop and optimal

shunt parameters.

Stability analysis provides the robustness of

passive LR and semi-active LRC shunts for variations

of the squealing frequency. A negative capacitance

shunt significantly increases the frequency range

with a stabilized brake, which is necessary for a

robust performance. A validation of the obtained
Fig. 10 Time history of sound pressure with the LRC

branch

Fig. 11 Reduction of SPL versus normalized induc-
tance and capacitance ratio
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results is performed by measurements on a modified

disc brake.
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APPENDIX

Notation

cres resulting stiffness of the shunted

piezoelectric transducer

c33 mechanical stiffness of the piezo-

electric transducer

C capacitance value

Cps capacitance of the piezoelectric

transducer

dres resulting damping value of the

shunted piezoelectric transducer

d33 sensitivity of the piezoelectric trans-

ducer

D electrical displacement

Ddisc bending stiffness of the brake disc

e piezoelectric constant

E electrical field

Ediss,LRC dissipated energy per vibration

period of the LRC–shunted

piezoelectric transducer

Fp force generated by the piezoelectric

transducer

gd derivative feedback gain

gp proportional feedback gain

K electromechanical coupling coefficient

of the piezoelectric transducer

KE modulus of elasticity

L inductance value

ra outer radius of the brake disc

ri inner radius of the brake disc

R resistance value

Rm,n radial mode shape

S strain

uactuator voltage at the actuator

up voltage at the electrodes of the

piezoelectric transducer

usensor voltage at the sensor

w transverse deformation of the brake

disc
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xp mechanical deformation of the

piezoelectric transducer

Z(s) impedance of the electrical

network

a noise index

b angle of the contact area

d capacitance ratio

es permittivity

f damping ratio of the electrical network

m coefficient of friction

rh mass per unit area

s stress

velec electrical natural frequency

V excitation frequency
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