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Linear magnetoresistance in compensated graphene bilayer
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We report a nonsaturating linear magnetoresistance in charge-compensated bilayer graphene in a temperature
range from 1.5 to 150 K. The observed linear magnetoresistance disappears away from charge neutrality, ruling
out the traditional explanation of the effect in terms of the classical random resistor network model. We show
that experimental results qualitatively agree with a phenomenological two-fluid model taking into account
electron-hole recombination and finite-size sample geometry.
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I. INTRODUCTION

Classical magnetoresistance is a perfect tool for experimen-
tal studies of multicomponent electronic systems [1] where
the conventional theory of electronic transport [2] predicts a
quadratic dependence of the resistance on the weak applied
magnetic field followed by a saturation in classically strong
fields. While most materials do exhibit quadratic behavior [3],
there is a fast growing number of experiments reporting
observations of linear magnetoresistance (LMR) in a wide va-
riety of novel materials, including multilayer graphenes [4–6],
topological insulators [7–14], Dirac [15–19] and Weyl [20,21]
semimetals, transition-metal dichalcogenides [22], as well
as in narrow-gap semiconductors [23] and three-dimensional
(3D) silver chalcogenides [24,25].

Semiclassical linear magnetoresistance has been predicted
for 3D metallic slabs with complex Fermi surfaces and smooth
boundaries [26,27], for strongly inhomogeneous, granular
materials [28], and for compensated two-component systems
with quasiparticle recombination [29]. Purely quantum effects
(and screening of charged impurities) lead to LMR in zero-gap
band systems with linear dispersion in the case where all
carriers belong to the first Landau level [30–32]. In weak fields,
quantum interference in two-dimensional electron systems
yields an interaction correction [33] to resistivity that is linear
in the Zeeman magnetic field.

The extreme quantum limit of Refs. [30,31] has been
realized in graphene [6] and in Bi2Se3 nanosheets [12]. The
quantum theory was also reported [7] to be applicable to
the novel topological material LuPdBi. The classical theory
of Ref. [28] was recently used to interpret the behavior
of hydrogen-intercalated epitaxial bilayer graphene [4]. It
was argued that large samples of epitaxial bilayer graphene
contain a “built-in mosaic tiling” due to dense disloca-
tion networks [34], making it an ideal material to re-
alize the random network model of Ref. [28]. At the
same time, neither theory can explain LMR in homoge-
neous topological insulators [35] and neutral two-component
systems [8,11,23].

In this paper we report the results of a systematic ex-
perimental analysis of magnetotransport in exfoliated bilayer
graphene. Precisely at charge neutrality, we have observed
nonsaturating LMR in a wide range of magnetic fields in
Hall bars of widths 0.5, 0.95, and 2.0 μm in a temperature
range from 1.5 to 150 K. Deviations from charge neutrality
lead to eventual saturation of the magnetoresistance. Our key
experimental findings are not accounted for within the random
resistor network model [28]. Indeed, this model is insensitive
to the relative concentration of different types of charge
carriers and thus cannot explain the observed saturation of the
magnetoresistance away from charge neutrality. This model
also does not explain the transition between the quadratic
dependence at very weak magnetic fields and LMR observed
at higher fields [8]. The extreme quantum limit is unlikely to
be reached in our system at 150 K for both electrons and
holes [8,35]. Moreover, the excitation spectrum in bilayer
graphene is quadratic, which rules out the quantum theory of
Refs. [30,31].

We are able to explain our results in terms of a semiclassical
description of finite-size, charge-compensated two-component
systems in moderately strong, classical magnetic fields [8,29].
The key element of the physical picture of Ref. [29] is the
electron-hole recombination [36]. When an external magnetic
field is applied, recombination processes allow for a neutral
quasiparticle flow in the lateral direction relative to the electric
current [37]. Although such neutral current cannot be directly
detected in our measurements, its presence leads to a redis-
tribution of charge carriers over the sample area, influencing
the nonuniform profile of the electric current in the sample.
As a result, the sample is essentially split into the bulk and
edge regions, which contribute to the total sheet resistance of
the sample as parallel resistors. The bulk and edge resistances
exhibit qualitatively different dependencies on the magnetic
field, yielding LMR. Away from charge neutrality, a nonzero
Hall voltage is formed, leading to the observed saturation of the
magnetoresistance.
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II. EXPERIMENTAL DETAILS AND SAMPLE
CHARACTERIZATION

We have prepared the sample by placing the exfoliated bi-
layer graphene sheet on a substrate consisting of a highly doped
Si wafer covered by a 330-nm-thick SiO2 film. Subsequently,
the sample was patterned into a triple Hall bar device, as seen
in an atomic force microscope (AFM) image [Fig. 1(b)]. The
sample consists of three sections 2, 0.95, and 0.5 μm wide.
The length of each Hall bar is 1.8 μm. The sample was purified
using an AFM tip (instead of annealing) which allows one to
considerably decrease the concentration of charged impurities
on top of the graphene. The carrier concentration n in the sam-
ple can be varied up to 5 × 1012 cm−2 by applying a gate volt-
age Vg to the conducting substrate, which acts as a back gate.

Magnetotransport was studied by a four-probe method with
simultaneous measurements of longitudinal Rxx and transverse
Rxy resistances in perpendicular magnetic fields from 0 to 7 T
and in a temperature range from 1.5 to 150 K passing an ac
current with an amplitude of 10 μA through the sample.

To characterize the sample and to define the charge
neutrality point (CNP), the field effect (FE) was measured
for each section of the device. Figure 1(a) shows the FE
dependences measured at B = 0 T and T = 25 K for the three
sections of the device. All three sections exhibit a graphene
typical FE with a sharp maximum corresponding to the CNP.
The precise value of V ∗

g corresponding to the CNP depends
on the Hall bar width and is shifted from 0.8 V in the widest
section of the sample toward 3.6 V in the medium and 10.4 V
in the narrowest Hall bar. The maximum resistivity in the
widest and middle sections is 5.6 k� while it exceeds 6.2 k�

for the narrowest section.
Far away from the CNP only one band contributes to

electronic transport and hence the carrier mobility can be
estimated with the help of the usual one-band model. The
estimate requires the knowledge of the charge density shown
in Fig. 1(c) for T = 1.5 K (far away from the CNP the charge
density coincides with the carrier density). We have measured
the charge density by three independent methods [i.e., using
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FIG. 1. (a) The gate voltage dependence of the resistivity mea-
sured at B = 0 T and T = 25 K for the three sections of the device.
(b) The AFM image of the sample (gray) with contacts (yellow). The
sample contains three Hall bar sections 2, 0.95, and 0.5 μm wide
(left to right). (c) Charge density extracted from the period of the
SdH oscillations (blue “+”), from the Hall effect (red “×”) and from
the capacity model (green “©”).

Shubnikov–de Haas (SdH) oscillations, the classical Hall
effect, and the capacity model], yielding almost identical
results. The resulting mobilities increase with the width of
the sample; we have obtained the following values for the
mobilities of the narrowest, medium, and widest sections:
2200, 3000, and 4000 cm2/V s for holes and 2600, 3000, and
3800 cm2/V s for electrons, respectively.

In proximity to the CNP, the one-band model fails and one
needs to consider the two-band model of electronic transport.
In the disorder-dominated regime, the two-band conductivity
is given by the sum of two independent contributions due
to electrons and holes. Assuming fast enough relaxation, we
can describe both bands by the same chemical potential. To
leading order, the chemical potential is proportional to the
gate voltage. The electron and hole mobilities can now be
found by fitting the resistance curves shown in Fig. 1(a).
This procedure yields the mobilities which are very close to
the above values. Hence, the electron and hole mobilities are
practically independent of the gate voltage.

The dependence of the mobility on the width of the sample
can be attributed to the fact that near the sample edges the
mobility is significantly reduced due to scattering off the edges
themselves as well as the additional defects inherent to the
boundary region [38,39]. Although the above mobilities are
not very high, the samples are of a good quality, having a clear
manifestation of CNP and exhibiting the quantum Hall effect.
Measurements of the Hall resistance in the wide section of the
sample at 1.5 K in a magnetic field of 9.5 T demonstrate the
features inherent to bilayer graphene following from filling
factors in the Hall plateaus equal to ν = ±4, ± 8, ± 12. In a
strong magnetic field the neutrality point is shifted towards
higher gate voltages (see Fig. 2). For the wide section of the
sample at 12 T, the CNP corresponds to Vg = 7 V. This effect
has also been observed in other sections of the sample.

III. LINEAR MAGNETORESISTANCE

We have measured the longitudinal resistance for all three
sections of the sample and the Hall resistance between the
widest and medium sections in the interval of gate voltages
from −20 to 32.2 V with a step δVg = 2.4 V that includes
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FIG. 2. Color plot of Rxx in the wide sample at T = 1.5 K as
a function of magnetic field and gate voltage (a). The fanlike peak
structure clearly demonstrates the Landau levels. The central peak
shows the shift of the charge neutrality point with magnetic field (b).

195430-2



LINEAR MAGNETORESISTANCE IN COMPENSATED . . . PHYSICAL REVIEW B 93, 195430 (2016)

the CNP for all three sections. The data for the wide section
of the sample at T = 1.5 K are shown in Fig. 2. To reduce
the conductance fluctuations, further measurements were
performed at higher temperatures: 25, 50, 100, and 150 K.
At such high temperatures the quantum effects, e.g., Landau
quantization, are not detectable in our samples while the
applied magnetic fields are not too strong, B < 7 T.

The magnetoresistance data for the thin section of the sam-
ple at the four temperatures are shown in Fig. 3. The data show
linear behavior close to the neutrality point (the black curve
corresponding to the gate voltage Vg = 10.6 V). Away from
neutrality, the data show linear behavior for an intermediate
range of magnetic fields, followed by a saturation at stronger
fields. Similar results were obtained for the other two sections
of the sample. At the same time, the Hall resistance grows in
amplitude in strong fields (see Fig. 4).

Although these observations are in good qualitative agree-
ment with the theoretical predictions of Ref. [29], there
are several additional factors that may (and probably do)
conspire to yield the observed behavior. The charge neutrality
point in our samples shifts towards higher gate voltages in
a high magnetic field. As a result, the same value of Vg

may correspond to different carrier densities in low and high
fields. Shifting away from charge neutrality can cause both
the saturation of Rxx(B), as exhibited by most of the curves
in Fig. 3, and the nonzero Hall resistivity [see Fig. 4(b)].
The latter can also be due to electron-hole asymmetry in
the sample, where the mobilities of electrons and holes are
sufficiently different [40,41]. Both effects may appear if the
sample contained macroscopic inhomogeneities or resonant
impurities, which strongly modify the density of states near
charge neutrality. Finally, in contrast to the theory worked out
in Ref. [29], the length of our samples is comparable to their
width and the samples cannot be considered infinitely long.

T = 150K

(a) (b)

0 2 4 6
5

7

9

11

R
xx

 (k
)

B (T)

0 2 4 6
5

7

9

11

R
xx

 (k
)

B (T)
0 2 4 6

5

7

9

11

R
xx

 (k
)

B (T)

0 2 4 6
5

7

9

11

R
xx

 (k
)

B (T)

T = 50K

T = 100K

T = 25K

(c) (d)

 CNP
5.8 V
3.4 V
1 V

FIG. 3. Magnetoresistance of the thin section of the sample at
(a) 25, (b) 50, (c) 100, and (d) 150 K for several gate voltages indicated
on the plot. The green dashed lines are linear guides to the eyes.
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FIG. 4. (a) Magnetoresistance of the wide section of the sample at
T = 150 K and Vg = 1 V, closest to the charge neutrality point. The
solid (green) line represents the experimental data; the dashed (blue)
line represents the theoretical fit using the semiclassical description
adapted from Ref. [29] [see Eqs. (1)], with the parameters given
in Table I. (b) Hall resistance of the wide section of the sample
at T = 150 K and Vg = 1 V. The solid (green) line represents the
experimental data; the dashed (blue) line represents a consistency
check for the theory (1) where the carrier density was obtained
from the experimental values of Rxy/Rxx(B); the brown curve
shows the theoretical fit where the carrier density was recalculated
from the observed dependence of the maximum resistance (i.e., CNP)
on the magnetic field (see Figs. 1 and 2).

Some of the above complications present a significant
challenge for an analytic theory. Nevertheless, we may attempt
to analyze the measured data with the help of the existing
theory of Ref. [29]. The simplest version of this theory
(applicable to a particle-hole symmetric system with parabolic
dispersion and energy-independent impurity scattering rate)
yields the following expressions for the longitudinal and Hall
resistivities of a two-component system near charge neutrality:

Rxx = R0
1 + μ2B2

1 + μ2B2
[

tanh(W/�R )
W/�R

(
1 − n2

ρ2

)
+ n2

ρ2

] , (1a)

Rxy = R0n

ρ

(1 + μ2B2)μB

1 + μ2B2
[

tanh(W/�R )
W/�R

(
1− n2

ρ2

)
+ n2

ρ2

] . (1b)

Here, n and ρ are the charge and quasiparticle densities, μ

is the mobility (which is assumed to be the same for both
electrons and holes), W is the sample width, R0 is the zero-
field resistivity, and �R is the field-dependent recombination
length. Assuming that the dominant recombination process
is the impurity-assisted electron-phonon coupling that can

195430-3



G. YU. VASILEVA et al. PHYSICAL REVIEW B 93, 195430 (2016)

occur anywhere in the sample with equal probability, the
recombination length found in Ref. [29] is given by

�R = �0√
1 + μ2B2

, �0 = 2
√

DτR,

where D is the diffusion coefficient and τR is the recombination
time in zero magnetic field. As a result, in classically
strong fields (μB � 1) and for W � �R , the magnetore-
sistance (1a) close to the charge neutrality point is linear,
Rxx ≈ R0WμB/�0.

The theory of Ref. [29] yields a quadratic magnetore-
sistance in the weak field and a linear dependence for the
classically strong magnetic field, in qualitative agreement with
our data. However, this simple theory does not quantitatively
describe our results in the whole range of magnetic fields
used in our experiments. At the same time, our data can be
quantitatively described by Eqs. (1a) and (1b) if we introduce
an empiric expression for the recombination length (describing
the differences between the edge region and the bulk of the
sample)

�R = �0√
1 + μ̃2B2

, (1c)

with μ̃ < μ. This modification turns out [42] to effectively
account for the following issues: (i) electron-hole asymmetry,
(ii) energy dependence of the electron-hole recombination
length and mobility, and (iii) spatial inhomogeneity of the
sample. In Figs. 4 and 5 we used μ̃ ≈ 0.5μ.

Electron-hole asymmetry manifests itself in the nonzero
Hall resistivity at charge neutrality. Moreover, for any value
of the carrier density, the Hall resistivity is a nonmonotonous
function of the magnetic field. As mentioned above, this effect
also leads to the apparent drift of the charge neutrality point (in
terms of the applied gate voltage) with the external magnetic
field.

At temperatures lower than the Debye energy the dominant
recombination process involves electrons and holes near the
bottom of the band. Indeed, far away from the neutrality point,
kinematic constraints preclude the “direct” process where an
electron from the upper band is scattered into an empty state in
the lower band by means of single acoustic phonon emission.
Instead, such “hot” electrons require an additional scatterer
(e.g., an impurity [43] or a second phonon) for recombination
to take place. In contrast, electrons close to the neutrality point
in bilayer graphene are slow enough so that direct, single-
phonon recombination is allowed. Hence, within the kinetic
equation approach [42], the effective length scale describing
the recombination processes depends on energy. Similarly,
the impurity scattering time or carrier mobility is, strictly
speaking, energy dependent as well. Now, the macroscopic
description of Ref. [29] involves quantities that are averaged
over the quasiparticle spectrum. Taking into account the
existence of several distinct recombination processes, we
arrive at the conclusion that after thermal averaging, the typical
recombination length �R may be described by slightly different
effective parameters (in particular, the electronic mobility,
μ → μ̃) as compared to, e.g., Drude conductivity.

The width dependence of the carrier mobility indicates that
the edge region of the sample is characterized by stronger
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FIG. 5. (a) Magnetoresistance of the narrow (top curves) and
medium (bottom curves) sections of the sample at 150 K and the
gate voltage closest to the charge neutrality point (Vg = 8.2 V and
Vg = 3.4 V, respectively). The solid (green) lines represent the
experimental data; the dashed (blue) lines represent the theoretical
fit using the semiclassical description adapted from Ref. [29] to our
sample geometry (see Table I for the complete set of parameters).
(b) Magnetoresistance of the medium section of the sample at 150 K
for several values of the gate voltage showing the onset of saturation
as the system is tuned away from charge neutrality.

scattering. As a result, all parameters describing electronic
transport acquire an effective coordinate dependence across the
sample. Since in strong magnetic fields the current is mostly
flowing near the sample edges [29], we expect that the effective
recombination length �R is determined by the lower mobility
typical of the near-edge region.

Theoretical results shown in Figs. 4 and 5 were obtained
by using expressions (1) with the parameters listed in Table I.
The theory (1) assumes that electrons and holes have the same
mobility. While plotting Figs. 4 and 5 we have treated the
mobility as a free parameter instead of using the values quoted
in Sec. II. The reason for this approach is that the experimental
estimates of the mobility rely on the Drude-like models of

TABLE I. Microscopic parameters obtained from analyzing the
experimental data with the theory (1) for the three sections of the
sample (see Figs. 4 and 5).

Narrow Medium Wide

W 0.52 μm 0.95 μm 2 μm
μ 0.25 m2/V s 0.35 m2/V s 0.42 m2/V s
�0 0.43 μm 0.79 μm 1.2 μm
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electronic transport that do not take into account interaction
effects, most notably the mutual friction of electrons and
holes. Far away from the CNP and in the disorder-dominated
regime such models describe the observed effects more or
less accurately. Here, the mutual friction is ineffective since
with exponential accuracy only one band is partially filled
and contributes to low-energy physics. In contrast, close to
charge neutrality, the draglike friction effects should be take
into account. At the same time, the resulting values of the
mobility listed in Table I do not deviate from the values quoted
in Sec. II by more than 20%, in accordance with theoretical
expectations [44–46].

The values of the recombination length �0 shown in Table I
show a significant dependence on the sample width (roughly,
�0 ∼ W ). We interpret this observation as an indication of
a much larger recombination length that would characterize a
very large (in theory, infinite) sample (if it would be possible to
fabricate without strong structural disorder [4,34]). Assuming
that the electron-hole recombination is dominated by an
electron-phonon interaction (either impurity or edge assisted),
we argue that in narrow samples the phonon spectrum is
modified (compared to an idealized infinite system), leading
to a much shorter recombination length of the order of the
sample width.

The Hall resistance (1b) is expected to vanish at the neu-
trality point. However, as we have already mentioned, in our
sample the neutrality point shifts toward higher gate voltages
when a strong magnetic field is applied. Recalculating the field-
dependent carrier density from the observed dependence of the
resistance maximum (see Figs. 1 and 2), we find a reasonable
agreement with the results of the theory (1b) and the measured
data [see the brown curve in Fig. 4(b)]. As a consistency
check of the theory, we have used the fact that the ratio of
the Hall resistance (1b) to the longitudinal resistance (1a) is
proportional to the charge density Rxy/Rxx = μBn/ρ. Using
this ratio to extract the field-dependent quantity μBn/ρ, we
then substituted the result into Eq. (1b) and found a “perfect”
agreement with the data [see the blue curve in Fig. 4(b)]. At
the same time, the longitudinal resistivity (1a) is much less
sensitive to small deviations of the charge density. Indeed, the
field dependence of the density in our sample does not lead to
visible changes in the calculated curve shown in Fig. 4(a).

The shift of CNP with magnetic field was observed directly
(see Figs. 1 and 2). Assuming that the maximum of the
longitudinal resistivity corresponds to CNP, we can extract the
field dependence of the chemical potential (and, hence, carrier
densities) from the data. Using the thus obtained dependence,
we recalculated the Hall resistance [see the brown curve in
Fig. 4(b)]. The result shows reasonable agreement with the
data, with the visible deviations perhaps stemming from the

mismatch of temperatures in the two data sets in Figs. 2 and 4
(T = 1.5 K and T = 150 K, respectively).

Finally, away from the neutrality point, the data show
a tendency towards saturation in high magnetic fields [see
Fig. 5(b)]. The theoretical fits where performed with a set
of parameters depending on the gate voltage and taking into
account the shift of CNP with magnetic field. In particular, the
mobility appeared to show a slight increase from 0.35 m2/V s
(close to CNP; see Table I) to 0.44 m2/V s at Vg = −3.8 V. At
the same time, in that range of gate voltages, the recombination
length �0 appears to be almost unchanged from the value shown
in Table I.

IV. CONCLUSIONS

In this paper we reported the experimental observation of
linear magnetoresistance in narrow bilayer graphene samples.
The observed behavior is in good qualitative agreement with
the two-fluid model of Ref. [29]. The observed effect is
specific to the charge neutrality point. Away from neutrality the
magnetoresistance shows an approximate linear behavior only
in a limited intermediate range of magnetic fields, followed by
a tendency to saturation. Our observations are incompatible
with the quantum theory of Refs. [30,31] and with the random
resistor network model of Ref. [28], but are accounted for in the
semiclassical theory of two-component compensated systems
of Ref. [29].

Using an empirical modification of the simplest theoretical
model (1), we were able to describe our data in a quantitative
fashion. A microscopic theory accounting for the physics
that is beyond the simplest version of the two-fluid model
of Ref. [29] should be based on the quantum kinetic equa-
tion [42,47]. Further aspects of the phenomenon of linear
magnetoresistance will be the subject of future experimental
work, especially in novel materials with charge-compensated
two-component systems.
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