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Transport measurements of the activation gap at fractional filling factor 1 /3 are compared to results of exact
diagonalization, allowing identification of a small anti-skyrmion as the lowest excitation in the low-field
regime. In agreement with theory, a crossover to spinless excitations at higher electron densities is observed.
Two samples of different quality are investigated. A detailed description of the theoretical calculation of
activation gaps is presented and features which should be taken into account are summarized: finite thickness,
Landau level mixing, and comparison between different sizes of the model system and—whenever possible—
also between different geometries �torus and sphere�. Within the chosen model of disorder �entailing a single
fit parameter� we obtain a good agreement between calculated energies and experimental results.
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I. INTRODUCTION

The existence of skyrmions is one of the remarkable
many-body phenomena accompanying the quantum Hall ef-
fects. After the existence of skyrmions was established1–4 in
the integer quantum Hall effect �IQHE� the question ap-
peared whether they can also be observed in the regime of
the fractional quantum Hall effect �FQHE�, given the com-
posite fermion �CF� mapping between the IQHE and the
FQHE.5 We report here on an experiment indicating that the
answer is positive.

A skyrmion can be viewed as a finite-size quasiparticle of
charge e�0 located at r0 in the parent ground state, which is,
e.g., the fully polarized �↑� completely filled lowest Landau
level �LL�. More precisely, it is the many-body ground state
at magnetic field B corresponding to the filling factor �
= �neh / �e�B�=1 minus one magnetic flux quantum �ne is the
electron density, h Planck’s constant, and e the elementary
charge of an electron�. In this state, called also a spin texture,
the expectation value of the spin is reversed �↓� at r=r0, it
remains unchanged �↑� for r→�, and it interpolates
smoothly between r0 and infinity.6 A size K �precise defini-
tion in Sec. III� can be attributed to a skyrmion, related to
how fast the spin changes with displacement from the skyr-
mion center. For magnetic fields of �=1 plus one magnetic
flux quantum, a symmetric quasiparticle of charge −e exists,
an anti-skyrmion.

Skyrmions at integer filling factors can be studied either
using Hartree-Fock6 and field theoretic methods7–9 on one
side or by exact diagonalization10–12 on the other side and all
these approaches are interrelated.13 The central conclusion is
that while the Zeeman energy favors small sizes K, meaning
a small average number of reversed spins, the Coulomb �ex-
change� energy favors spatially smooth spin textures, i.e.,
large skyrmions, where two neighboring spins are almost

parallel. The size of the skyrmion lowest in energy is
thus determined by the ratio of the Zeeman and Coulomb
energies, �=EZ /EC=�BgB / �e2 / �4���0����B, where �0

=�	 / �e�B is the magnetic length, �B the Bohr magneton, g
the effective electron Landé factor, and � the dielectric con-
stant. This conclusion remains valid also for integer filling
factors14 �
1, albeit the nonmonotonic Haldane pseudopo-
tentials imply richer skyrmion phase diagrams.11

Works related to fractional filling factors,7,11,15,16 most im-
portantly to �=1/3 which is the CF counterpart to �=1 of
electrons, lead to the same conclusion. However, apart from
quantitative differences in skyrmion energies, fractional and
integer systems showed some qualitative differences. The ex-
act symmetry between skyrmions ��


1
3

� and anti-skyrmions
���

1
3

� is absent11 and thus skyrmion and anti-skyrmion sizes
need not be the same in one system. Also, the temperature
dependences of the magnetization are different in the IQHE
and FQHE regimes.17,18

Experimentally, skyrmions were demonstrated in magne-
totransport and in the Knight shift of NMR or magnetoab-
sorption spectroscopy sensitive to the spin polarization of the
two-dimensional electron gas �2DEG�. The first method
probes skyrmion–anti-skyrmion pairs as an excitation on the
background of the fully spin polarized �ferromagnetic�
ground state at exactly �=1. The other two methods probe
the ground state at a slightly changed filling factor. Provided
the filling factor is not too far from 1, the ground state re-
mains the ferromagnetic state plus one skyrmion �anti-
skyrmion� per magnetic flux removed �added� to the system.
The depolarization in units of electron spin per one magnetic
flux is thus equal to the average size of a skyrmion, i.e., to
the number of involved spin flips.

From the transport activation gap at filling factor 1,
Schmeller et al.2 concluded that a typical excitation in a
GaAs heterostructure contains seven spin flips. If the excita-
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tion is a skyrmion-anti-skyrmion pair, each of these should
have a size of K=3. The number of spin flips �size� was
found to decrease with increasing ratio of Zeeman and Cou-
lomb energies �. The optical experiments3 and the NMR
experiments1 gave approximately the same result. Hydro-
static pressure reduces the effective Landé g factor in GaAs
and even g=0 is experimentally possible. It allows one to
access smaller values of � compared to performing measure-
ments at low magnetic fields where the QHE will eventually
disappear. Maude et al.4 observed skyrmions as large as K
=16 in magnetotransport at nearly vanishing Zeeman energy.

The Coulomb energy stabilizing skyrmions is much
smaller at �= 1

3 as compared to �=1. As a consequence, the
skyrmions in the FQHE regime are usually smaller. Leadley
et al.19 found excitations with three spin flips in magne-
totransport at nearly g=0 implying skyrmion sizes �KS� and
anti-skyrmion sizes �KA� with KA+KS+1=3. In contrast to
this, NMR measurements by Khandelwal et al.20 suggested
KA�KS�0.1. The reason for this very different result is un-
clear.

Experimental arguments in favor of skyrmions at �= 1
3 are

by far not so numerous as those for integer filling factors.
Owing to our experiments, which agree well with exact di-
agonalization calculations, we believe the existence of skyr-
mions in the FQHE is confirmed, as well as the skyrmion–
anti-skyrmion asymmetry, demonstrating the qualitative
differences between electrons and composite fermions.

We present measurements of the �= 1
3 activation gap � on

two gated heterostructures of different mobilities as a func-
tion of the electron density ne, i.e., the magnetic field B �Sec.
II�. We observe a rather linear ��B� behavior in a large re-
gion of magnetic fields implying that, roughly, the probed
excitation costs much Zeeman energy and little Coulomb en-
ergy. In order to identify this spin excitation we analyze the
measured ��B� �Sec. IV� and find that the lowest excitation
in the high-mobility sample contains two spin flips while it
has a single spin flip for the low-mobility sample. The Cou-
lomb energy obtained during the analysis agrees reasonably
with the theoretically calculated one of a pair of the smallest
anti-skyrmion and a quasielectron with reversed spin �QEr�
and, for the low-mobility sample, of a spin wave—a pair of
a QEr and a quasihole �QH�.

Moreover, we observe a clear transition to a different low-
est excited state for B�9 T in the high-mobility sample.
Again, an analysis of the measured ��B� was performed and
it suggests that the relevant excitation contains no spin flip.
This agrees with the usual statement that such excitations in
the high-B limit belong to the magnetoroton �MR� branch at
very large wave vector k. However, in the present case we
observe a remarkable coincidence between the activation gap
and the magnetoroton minimum, i.e., the MR at k�0�1.4.
We propose that this could be because the activation is a
two-step process where creation of the bound magnetoroton
is a bottleneck.

The exact diagonalization model used for theoretical cal-
culations of Coulomb energies is described in Sec. III. Start-
ing with ideal systems �ideally a 2D system, with no Landau
level mixing� we summarize how activation gaps due to
skyrmionic excitations can be calculated �Sec. III A�. Next

we focus on differences between ideal and realistic systems.
We take into account the finite thickness of the 2D electron
gas as well as the Landau level mixing �Sec. III B�, which
imply here only quantitative corrections to the energies cal-
culated in ideal systems �Sec. III C�. Modeling the disorder
ubiquitous in real samples by a B-field-independent gap
reduction,21,22 as the single fitting parameter �Sec. III B�, the
calculated Coulomb energies agree well with measured acti-
vation gaps.

II. THE EXPERIMENT

The investigated two-dimensional electron systems are re-
alized in Al0.33Ga0.67As/GaAs heterostructures. The sample
growth parameters are given in Table I.

The basic difference between the samples is their mobil-
ity. The high quality of sample 1 allows the study of several
different FQHE states, whereas the mobility below
100 m2/V s is sufficient only for studies of the most robust
FQHE state, �=1/3, in sample 2.

A metallic top gate allows us to vary the electron density
in a wide range. For sample 1 the electron density ne is
varied between 0.2
1015 and 1.3
1015 m−2 with a zero-
field mobility reaching 700 m2/V s at 40 mK. With sample
2, densities between 0.59
1015 and 1.6
1015 m−2 can be
accessed. Here the zero-field mobility reaches 79 m2/V s at
40 mK.

The experiments are performed in a dilution refrigerator
with magnetic fields up to 20 T. The longitudinal resistivities
�xx �Shubnikov–de Haas oscillations� of the two samples at
nearly the same electron densities are shown in Fig. 1, dem-
onstrating the different quality of the samples. While the
sample 2 exhibits only one minimum between filling factors
�=1 and 1/3, for sample 1 there is a series of different
fractional quantum Hall states in this region.

To obtain the activation energy for the different magnetic
fields we investigate the temperature dependence of the re-
sistivity minimum at �=1/3. The temperatures in our experi-
ment are varied between T=40 and 1000 mK. In this range
the error of measurement of the calibrated ruthenium oxide
sensor is ±1 mK. We extract the gap � out of Arrhenius-
plot data, using the activated resistance behavior
�xx�exp�−� /2T�. We assume that our total uncertainty in �
is less than 2%. The measured activation energies � are
shown in Fig. 2 for the two samples.

III. EXACT DIAGONALIZATION

Electron-electron interaction is the fundamental effect
giving rise to most of the phenomena occurring within the
lowest LL. Because of the extremely high degeneracy of

TABLE I. Parameters of the investigated samples.

Sample
Spacer width

�nm�
Density �m−2�
T�40 mK, dark

Mobility �m2/V s�
T�40 mK, dark

1 70 1.3
1015 700

2 40 1.6
1015 79
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LLs, standard techniques like the Hartree-Fock approxima-
tion are inapplicable for describing these phenomena.

In the exact diagonalization �ED� approach,23,24 we start
with the complete many-body Hamiltonian. It comprises the
electron-electron interaction and the Zeeman energy,

H = 	
J,�

AJcj1�1

† cj2�2

† cj3�2
cj4�1

+ 	
j,�

EZ
�

2
cj�

† cj�,

J = �j1, j2, j3, j4�, � = ��1,�2� . �1�

Here ji is the orbital quantum number, �= ±1 is the spin, and
cj�

† are the operators creating the corresponding one-electron

states. A convenient one-particle orbital quantum number is
either the angular momentum or one component of the linear
momentum. These choices are typical for spherical geometry
and torus geometry, respectively. The last two notions de-
scribe the central approximation of the ED model. Instead of
an infinite plane, we study a compact manifold preferably
without edges, that is, we confine the electrons either to the
surface of a sphere25 or to a rectangle with periodic boundary
conditions26 �torus�. The Coulomb matrix elements AJ are
given explicitly in Ref. 26 for the torus and they straightfor-
wardly follow from the Haldane pseudopotentials on a
sphere.25 The Zeeman energy is just EZ=�BgB.

For the moment, we did not include any cyclotron energy
�	�=	eB /m*� term into �1�. All electrons are assumed to
stay in the lowest LL, which is true for the ground state and
low-lying excited states if 	��AJ ,EZ and ��2. This
approximation, exclusion of the LL mixing, is justified in the
high-B limit because 	� ,EZ�B, AJ��B, and 	� /EZ�60
�1.

The homogeneous magnetic field in the 2D system now
corresponds to Nm=2Q quanta of magnetic flux passing
through the surface of the sphere or torus. In this situation,
exactly Nm one-electron states exist in the system.23,27 If we
now put N electrons into the system, the filling factor is �
=N /Nm for the torus and �=N / �Nm+�� for the sphere. The
quantity � is of the order of unity �� /Nm→0 for Nm→�� and
it is related to the topology of the considered eigenstate.28

The number of all possible N-electron states is then finite.
The matrix of the Hamiltonian �1� in this complete basis is
evaluated and diagonalized, yielding the energies and many-
body wave functions. An important feature of the Hamil-
tonian is that both the total spin S and z component are good
quantum numbers. This fact is trivial for the Zeeman term
and also for the first term in Eq. �1� since spin does not
explicitly occur in it. The spin symmetry could be lifted, for
instance, by magnetic impurities present in the system.

A. Activation energy in transport

It has been widely accepted that the activation gap � is
the lowest energy needed to create a neutral pair of charged
particles and to separate them very far from each other.29,30

Starting from the Laughlin ground state at �= 1
3 , these par-

ticles are not an electron and a hole. Rather they are particle-
like many-body excitations31 with charge q and spin s �its
component along the polarization direction of the �= 1

3 state�.
They are usually called quasielectrons �q=e /3, s=1/2� and
quasiholes �q= �e� /3, s=1/2�, eventually with reversed spin
�q=e /3, s=−1/2� as regarding to the direction preferred by
the Zeeman energy. These quasiparticles will be denoted by
QE, QH and QEr, respectively. The creation energies of all
these three quasiparticles are different, even disregarding the
Zeeman contribution, owing to their actual many-body na-
ture. This is a fundamental difference from IQH systems.

Because of their charge e /3, all interactions between the
mentioned quasiparticles at �=1/3 �e.g., the skyrmion ener-
gies discussed below� are roughly weaker by an order of
magnitude compared to �=1. The interactions at long range
are similar to the common Coulomb repulsion or attraction

FIG. 1. Shubnikov–de Haas oscillations for both samples at
similar electronic densities.

FIG. 2. Gap energies at �=1/3 from samples 1 and 2.
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because the size of the quasiparticles is of the order of �0. At
short range, on the other hand, it is not guaranteed that the
interactions are similar to electrons because of the internal
structure of the quasiparticles.32,33 Unlike the QE, the charge
densities of QEr and QH are basically structureless and this
fact lies at the heart of the close analogy between low-energy
excitations at �=1/3 and 1.

The Coulomb energy of skyrmions and anti-skyrmions
can be obtained from the ED spectra on a sphere34 in a
system with one flux quantum less and one flux quantum
more, respectively, than what would correspond to �= 1

3 �Fig.
3�. For EZ�AJ, the lowest excitation to determine the acti-
vated transport will involve creation of a QE+QH pair. As
EZ decreases, the lowest excitation becomes QEr+QH, be-
cause the energy of a QEr �Coulomb “correlation” energy� is
lower11 than the energy of a QE �Fig. 3, left�. This will,
however, not remain true in the limit EZ→0. There are ob-
jects with even lower Coulomb energy than the QEr and QH.
For each K=1,2 , . . . there is one such object with total spin
K+1/2 and charge e /3 and −e /3. These are usually called
skyrmions �Sky� and anti-skyrmions �ASky�, respectively.
Contrary to IQH systems, the energies of the Sky�K� and
ASky�K� are different, implying that the skyrmion size KS

and the anti-skyrmion size KA need not be equal in the same
system. Sky�K� �ASky�K�� is the energy difference between
the QEr �QH� and the lowest state with angular momentum
and spin

L = LQEr,QH − K, S = SQEr,QH − K . �2�

In a system of N electrons, the angular momenta used are
LQH=SQH=N /2 and LQEr=SQEr=N /2−1. With this defini-

tion, ASky�0� is a QH and Sky�0� is a QEr, meaning that
ASky�K� contains K flipped spins while Sky�K� contains K
+1 flipped spins. The states in Fig. 3 of lower energy than
the QH can therefore be interpreted as quasiparticles
ASky�K� of spin S=K and Sz=−K existing on the back-
ground of the polarized Laughlin liquid with S=Sz=N /2 �Eq.
�2��.

Contrary to Eq. �2�, the field theoretic models of
skyrmions6–9 do not conserve L and S separately, but only
L+S. Such states can be decomposed into those obtained by
exact diagonalization as was shown by Rezayi.13 On the
other hand, the exact Hamiltonian �1� does conserve all S, Sz,
and L. Hence the number of spin flips involved in an excita-
tion, or the size of a skyrmion, must always be an integer.
Also note that we consider �small� finite-size skyrmions here,
which can be modeled by exact diagonalization, while some-
times the term “skyrmion” is reserved for K→�.

Figure 4 shows the competition between skyrmions of
different sizes as a function of magnetic field, which means
that the ratio between the Coulomb and Zeeman energies, �,
is varied. The Zeeman energy favors small skyrmions since
these include fewer spin flips. Thus, for fields above 3.2 T
�1.0 T� no anti-skyrmions �skyrmions� occur in an ideal sys-
tem as the Zeeman energy ��B� is then too large compared
to the binding �Coulomb� energy ���B�. Owing to a rather
high Coulomb energy cost, the QE becomes favored over the
QEr first at rather high magnetic fields; Fig. 4 �left�. It fol-
lows that skyrmions as well as anti-skyrmions with K
1

FIG. 3. Full skyrmion and anti-skyrmion spectra at �=1/3 mi-
nus and plus one magnetic flux quantum, respectively, and zero
Zeeman energy. The �anti-�skyrmion branches of �L=−K have
negative energy and they are well separated from the continuum of
excited states. For �
1/3, the quasielectron with reversed spin
�QEr� is lower in energy than the QE. This holds for systems of all
accessible sizes �here six and eight electrons�.

FIG. 4. Single skyrmion and anti-skyrmion energies at �=1/3
relative to the QEr and QH in an ideal system. More precisely, these
are the ground-state energies at �=1/3 plus �minus� one flux quan-
tum relative to the Laughlin state plus one QH �QEr�, as indicated
by the bars at the bottom of each graph. Energies obtained from the
exact diagonalization were extrapolated to 1/N→0.
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occur first at B as low as 1 T. These fields are far too low for
the FQHE to be observed, so the only spin-flip excitations
likely to be experimentally observed at �=1/3 are the QEr
and ASky�1�.

Once a neutral pair of quasiparticles Sky�KS� and
ASky�KA� has been created, they behave similarly to a mag-
netoexciton. In a magnetic field, the magnetoexciton has a
constant linear momentum k which is proportional to the
mutual distance �x between the quasiparticles. We would
expect its energy to be E��x��1/�x with proportionality
constant determined by the charges of the two constituent
quasiparticles. Such modes can be calculated within the
single-mode approximation35 or starting with the Hamil-
tonian theory of composite fermions36 but they can also be
directly identified in the exact diagonalization spectra �Fig.
5�. They are usually called the magnetoroton branch EMR�k�
for QE+QH and the spin wave �SW� ESW�k� for QEr+QH.
The limiting values for k→� are the energies necessary to
create a QE+QH �QEr+QH� pair and to separate them far
from each other. These are the quantities commonly used for
comparison to the transport activation gaps, because the SW
�MR� is the lowest excitation �at k�1.0�−1� among all states
with total spin S=N /2−1 �S=N /2�, i.e., with one �no� spin
flip.

It is remarkable how much EMR�k� calculated on a sphere
and on a torus differ, on a quantitative level �Fig. 5�. Even
though the positions of the magnetoroton minimum match
well in both geometries �k�0�1.4�, the sphere gives seem-
ingly a higher energy of the minimum by as much as 20%. A
careful extrapolation to infinite systems �solid line in Fig. 5�,
however, matches excellently the results obtained on a torus.
This is not surprising, given the magnetoexcitonic character
of the MR. The MR of �x comparable to the radius of the
sphere will have the QE and the QH located near the oppo-
site poles. This situation is not compatible with a picture of a
plane wave of k=�x /�0

2 propagating along the equator. On
the other hand, with increasing radius of the sphere R this
becomes a finite-size effect if R��x. Based on Fig. 5, we
believe finite-system data from the torus are more suitable to
give quantitative estimates for magnetoroton and spin wave
energies.

For a Sky�KS�−ASky�KA� pair, we take ESW�k� with k
→� and add the creation energies of Sky�KS� and of
ASky�KA�. Instead of one system, as was the case for study-
ing the QEr+QH pair, we thus have to exactly diagonalize
three different systems: one for the quasiparticle-separation
procedure, one for the Sky, and one for the ASky. This more
complicated procedure suffers possibly less from finite-size
effects, since skyrmions are rather extended objects, in par-
ticular more extended than a bare QH or QEr. Recall that the
sizes of the Sky and ASky need not be the same.

B. Finite thickness, LL mixing, disorder

Aiming at the description of experiments under realistic
conditions, three ever valid facts should not be left unno-
ticed: the sample is actually three dimensional �finite extent
of the wave function perpendicular to the 2DEG�, the mag-
netic field is finite �mixing between Landau levels�, and the
system is never perfectly homogeneous �disorder�.

Nonzero thickness w of the 2DEG can be effectively in-
corporated into the Haldane pseudopotentials25 which com-
pletely determine the Hamiltonian of the lowest LL. Quali-
tatively, the larger the effective thickness w /�0, the more
softened becomes the effective electron-electron interaction
at the shortest distances.

Quantitative effects of the presence of the third dimension
have been studied since the early times of the FQHE, both
with the Laughlin state37 and the activation gap.38 In a het-
erostructure, electrons are confined to a nearly triangular po-
tential well. A standard choice for the wave function in the
growth direction is then the Fang-Howard trial wave
function,39 �FH�z�= �b3 /2�1/2ze−bz/2. We will mostly stay with
this choice, even though we are aware of other options for
��z� which may lead to slightly lower subband energies �Sec.
V in Morf et al.40�. Differences originating from these differ-
ent choices of ��z� should be smaller than the uncertainty in
the variational parameter b �or the thickness of the 2DEG�
relevant for our experiments. This has been checked with
�QW�z�=cos az, �z��� /2a, relevant for symmetric quantum
wells. Taking �FH�z� instead of ��z� is equivalent38 to using a
nontrivial form factor F�q� in the 2D Fourier transforms V�q�
of the Coulomb interaction,

V�q� =
F�q�

q
, F�q� =

8 + 9�q/b� + 3�q/b�2

�2 + 2q/b�3 . �3�

The quantity V�q� then enters the Coulomb matrix elements
in �1� as given in standard references.23,41 These can be in
turn reexpressed in terms of the Haldane pseudopotentials42

Vm. For reasonable values of b, only V0 changes appreciably;
it decreases by 25% for b−1=0.3�0.

The spatial extent of the wave function along z defined as
the full width at half maximum �FWHM� is w�4.9/b for
�FH and w= 2

3 /a for �QW. The wave function parameter b
depends on the form �steepness� of the triangular well poten-
tial and therefore it is not constant but it changes with the
applied gate voltage. This leads to38,39

FIG. 5. �Color online� The spin wave �SW� and the magnetoro-
ton branch �MR� seen in the ED spectra of ideal �=1/3 systems of
different sizes and geometries. In the legend, t stands for torus, s for
sphere, and the number indicates the number of electrons. The lines
�solid and dotted� were obtained from the 1/N→0 extrapolation of
the data �MR and SW� on the sphere.
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b = �33�m*e2ne/2�	2�1/3, �4�

which depends only on the electron density23 ne and the di-
electric constant �. If we assume the filling factor fixed at
1 /3, the density becomes a function of the magnetic field, so
that

� = �b�0�−1 � 0.23 
 �B�T��1/6. �5�

This is a formula relevant for both our samples. Thus, the
parameter � varies between 0.27 and 0.38 in the experiments
described herein.

The LL mixing is more difficult to include. If we admit
that higher Landau levels may also be populated even at �
�1, we must �i� add the cyclotron energy term 	nj��n
+1/2�	�cn

†cn to the Hamiltonian �1�. We also have to con-
siderably extend the many-body basis �ii� because we have
introduced a new single-particle orbital quantum number, the
Landau level index n. The former fact also implies that we
have a new energy scale proportional to B in the problem.
Recall here the criterion for the neglect of LL mixing: 1
�AJ /	��1/�B. Fortunately, the magnetic fields relevant
for the FQHE are still high enough for LL mixing to be
treated perturbatively. In practice this means that in the first
�second� order we allow for maximum one �two� particles to
be in the first LL �n=1� when constructing the many-body
basis. For the current purpose we allowed for up to two
particles in the first Landau level and verified in small sys-
tems that increasing this number does not change the ener-
gies perceptibly.

Without higher LLs, the energies EC of Hamiltonian’s �1�
Coulomb part were conveniently evaluated in the Coulomb
units e2 / �4���0�. Then the energies were magnetic-field in-
dependent for EZ
0 and depended via Sz trivially on B for
EZ�0, in particular EZ / �e2 / �4���0���Sz

�B. With other LLs
included in addition to the lowest one, EC / �e2 / �4���0�� be-
comes a function of B or better of41 �=	� / �e2 / �4���0��.
However, since variations of EC / �e2 / �4���0�� as a function
of B��� are typically small �see Fig. 6�, we will adhere to the
Coulomb units.

Disorder is to the best of our knowledge the only relevant
effect not described microscopically within this work. A
common notion is that the disorder reduces the incompress-
ibility gap.43 In fact, randomly distributed potential impuri-
ties included into the system �1� change the energies of both
the ground state and the excited state. Because the excited
states in question consist of two microscopic quasiparticles
on the background of the Laughlin ground state, we will
assume for our purposes that the disorder reduces the exci-
tation energy by a constant.21,22,44 The reduction Ed was de-
termined by fitting within the present work �see below, Sec.
IV�, and it is typically of the order of 1 K �cf. Fig. 9�. Even
though Ed depends primarily on the sample quality �larger
mobility—smaller Ed�, it is likely that it is also not the same
for different excitations �skyrmions, magnetorotons� within a
single sample. This fact renders any model calculations
�without a very detailed microscopic theory of disorder� only
capable of giving estimates, rather than exact values of Bc
where crossovers between the two lowest excitations should
occur. For instance, in order to determine the QEr-QE tran-

sition properly �Fig. 4, left�, we would have to shift the QE
energies by a constant Ed

QE−Ed
QEr downward thereby shifting

the intercept of the QE and QEr curves considerably. How-
ever, this is not a major trouble as long as we study only one
excitation �or several excitations separately�.

C. Numerical data

The finite thickness of the 2DEG and the LL mixing do
not change the SW and MR dispersions qualitatively. Their
effect is that the ideal dispersions EMR�k� and ESW�k� be-
come multiplied by a nearly k-independent coefficient. The
limiting values for k→� are reduced, both for nonzero
thickness and LL mixing �Fig. 6�. Since the SW energies in
Coulomb units vary only slowly with B and �, the energies
calculated at B=5 T and its corresponding �=0.3 �Eq. �5��
can be taken as representative for most of our experimental
data. Exceptions for higher values of B will be explicitly
mentioned.

Our best estimate of ESW�k→�� starts with the torus
�Table II column �a��. Finite thickness ��=0.3� reduces this
energy by about 10% �columns �b� and �d��, and so does the
LL mixing at B=5 T �column �e��. Combination of these two
effects gives ESW�k→���0.035e2 / �4���0�. As we argued
at the end of Sec. III A and in Fig. 5, we believe this value
would not change in a larger system and the 1/N→0 ex-
trapolation can be omitted. Note that with increasing mag-
netic field, � of the heterojunction increases, Eq. �5�, while
the LL mixing becomes less important. Quantitatively, the
latter effect is stronger so that the indicated value of ESW�k
→�� in Coulomb units will very slightly increase with in-
creasing magnetic field �cf. Fig. 6�. In the case of EMR�k
→�� and the magnetoroton minimum, the LL mixing is
found to have a minimal influence on the resulting energies
�column �e� in Table II�. The finite thickness is then the main
effect leading to the best-guess energies, 0.078 and 0.052,
respectively.

FIG. 6. �Color online� The effect of the finite thickness and the
LL mixing on the magnetoroton �MR� minimum and on the best
approximation to the k→� energies of the spin wave �SW� and the
MR branch. A finite system �seven electrons� on a sphere is consid-
ered, except for the single curve marked “torus.” Energies labeled
with B include the Landau level mixing which vanishes for B→�.
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The skyrmion and anti-skyrmion spectra at �= 1
3 have

been introduced in Fig. 3. Given the magnetic fields of our
experiment, only the smallest �anti-�skyrmions, Sky�1� and
ASky�1�, may be relevant �Fig. 4�. Contrary to the spin
wave, their condensation energies relative to a bare QEr and
QH, show a slight dependence on the system size �Fig. 7�. A
linear fit in 1/N leads to �anti-�skyrmion energies about 10%
lower at 1 /N→0 than they are for N=7 �Table II, columns
�d� and �f��. In contrast, the QE energy becomes reduced by
as much as 35%.

The finite thickness ��=0.3� also reduces the Sky�1�,
ASky�1�, and QE energies by about 10%, 10%, and 15%,
respectively �Fig. 8 and Table II, column �d��. On the other
hand, the Landau level mixing �second order, B=5 T� in-
creases these energies by 15%, 15%, and 25%, respectively
�Table II, column �e��. These two effects together with the
1/N→0 extrapolation lead to our best guesses for the ener-
gies relevant in our experiment: −0.0058 for Sky�1� and
−0.0102 for ASky�1� for B=5 T and corresponding �=0.3.
For a QE we obtain 0.0280 through the same procedure. All
these energies will definitely be reduced when magnetic field
is swept up because both LL mixing and finite thickness have
this tendency. For instance at B=15 T and corresponding �
=0.35, the QE energy is only 0.0240.

IV. INTERPRETATION OF THE EXPERIMENTAL DATA

Our analysis of measured gaps, ��B�, begins with a gen-
eral observation that the gap can change either proportional
to B �Zeeman energy� or proportional to �B �Coulomb en-
ergy�

��K� = EC50.2�B�T� + ��Sz/	�0.295�B�T�� − Ed. �6�

Here the Coulomb energy EC should be put in units of
e2 / �4���0� and ��Sz /	� means the number of spins flipped
in the excitation. Except for the disorder term, this equation
is exact:45 the energy difference between any two eigenstates
of the Hamiltonian �1� at fixed � scales23 proportionally to
1/�0��B. If �Sz�0, a term proportional to B must be sim-
ply added since Sz is a good quantum number. Naturally, EC
and �Sz can be different for different excitations, introducing
kinks into ��B�. Between the kinks, however, ��B� should
follow Eq. �6�. With Landau level mixing and finite thickness
taken into account, EC in Eq. �6� becomes a function of B.
However, these changes are very small in our range of mag-

TABLE II. Energies in e2 / �4���0� extracted from Fig. 6 �SW, MR, MR min� and Fig. 7 �Sky�1�,
ASky�1�, QE�. The “best guess” is the torus value for �=0.3 and B=5 T �SW, MR, MR min� and it is the
value from the sphere with �=0.3, B=5 T extrapolated to 1/N→0 �Sky, ASky�. For the QE we used �
=0.35 and B=15 T together with the extrapolation 1/N→0.

Torus Sphere

�a� �b� �c� �d� �e� �f�

Ideal Finite width
�=0.3

Ideal Finite width
�=0.3

+LL mixing
B=5 T

�=0.3
�

1/N→0

Best guess

SW 0.045 0.039 0.057 0.052 0.047 0.035

MR 0.093 0.080 0.102 0.089 0.087 0.078

MR min 0.063 0.054 0.076 0.069 0.067 0.052

Sky�1� −0.0062 −0.0056 −0.0065 −0.0050 −0.0058

ASky�1� −0.0112 −0.0102 −0.0118 −0.0088 −0.0102

QE 0.0385 0.0335 0.0424 0.0222 0.0240

FIG. 7. �Color online� Extrapolation of the �anti-�skyrmion and
QE energies to the thermodynamical limit 1 /N→0. Sphere, no LL
mixing, finite width �=0.33.

FIG. 8. �Color online� Analogous to Fig. 6 but for the QE energy
relative to the energy of the QEr as well as for energies of the
smallest skyrmion and anti-skyrmion. All data were obtained on a
sphere, solid symbols refer to energies under no LL mixing.
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netic fields �cf. Sec. III C� so that EC can be considered con-
stant with a sufficient precision in the following analysis.

The reader may allow a short digression here: if we wish
to have a fit-free model and neglect the disorder �Ed=0 in
Eq. �6��, the energies calculated in the previous section and
plugged into Eq. �6� can still qualitatively explain the experi-
ments, as indicated by the thin lines in Fig. 9. In particular,
we find that the gap is determined by more than one excita-
tion across the range of magnetic fields in Fig. 9.

Including the disorder effects, the general line of the
analysis for each single excitation is the following: �i� deter-
mine ��Sz /	�, �ii� obtain EC, Ed by least-squares fitting, and
�iii� compare EC to the exact diagonalization. It should be
noted that it is also possible to completely avoid the fitting
procedure if the disorder is neglected. Energies calculated in
Sec. III can be directly put into Eq. �6� �with Ed=0� and the
obtained gap ��B� gives qualitatively the same result as ob-
served experimentally �Fig. 2�. Nevertheless, such calculated
gaps are by �2 K too large and also the values of the mag-
netic field at transitions between different excitations are
shifted. Since we aim at a quantitative understanding of the
gaps seen in experiments where disorder is ever present we
will use the former method.

The B dependence of the activation gap in the sample 1
shows an apparent transition slightly below 10 T. Let us di-
vide the investigated range of magnetic field into three re-
gions as depicted in Fig. 9: I �low field�, II �transition�, and
III �high field�.

In the following we wish to argue that the lowest excita-
tion which determines the activation gap in region I is a
QEr–anti-skyrmion �KA=1� pair. In region III, QE-QH pairs
without spin flip are observed while the QEr-QH pairs likely
show up in region II.

The experimental data in region I, Fig. 9, show a remark-
ably precise linear behavior. Within the uncertainty of the
measurement, this linearity does not necessarily mean that
the Coulomb contribution to the gap entirely vanishes, but it
sets a rather stringent upper limit of approximately EC
�0.025. The choices ��Sz /	�=0 or 1 would lead to EC

larger than that �0.068 and 0.045�; in other words if any of

these choices had been correct, ��B� would have exhibited
a significant curvature in region I. On the other hand,
��Sz /	��3 leads to EC�0 and there is no support for such
excitations in the theory. Even though skyrmion condensa-
tion energies are negative, the positive QEr-QH energy is
always larger. The last option, ��Sz /	�=2, leads to EC
=0.021 and Ed=2.8 K. There are three possibilities for an
excitation with two spin flips: ASky�2�+QE, ASky�1�
+QEr, QH+Sky�1�. However, quasielectrons are likely to be
relevant first at higher magnetic fields �beyond 10 T� and
skyrmions at quite small magnetic fields �around 1 T�.
Therefore, in this case, the most likely pair of charged par-
ticles created by a thermal excitation will be a QEr-ASky
�KA=1�. The energy cost of this excitation, two spin flips
plus Coulomb energy EC�0.035−0.011=0.024 �Sec. III C�,
is in nice agreement with the value mentioned above.

As the magnetic field increases, the KA=1 anti-skyrmion
becomes more energetically costly than a plain quasihole
�Fig. 4�. The gap should then amount to creation of a QH-
QEr pair, i.e., to one spin flip plus EC�0.035. Taking
��Sz /	�=1 and focusing on region II, we obtain by fitting
EC=0.033 and Ed=2.3 K. However, as region II is not very
large �Fig. 9�, it might be that we observe in fact just a
smooth transition between regions I and III.

Finally, for yet higher magnetic fields, it is more favorable
to create a quasielectron in a higher CF LL than to flip its
spin �QE preferred over QEr; Fig. 4, above�. In line with the
situation of the B→� limit, we expect a QH-QE pair to be
the lowest excitation. Indeed, assuming ��Sz /	�
0 in re-
gion III leads to negative Ed and unrealistic EC with no jus-
tification in the calculated spectra. On the other hand,
��Sz /	�=0 gives EC�0.045 and Ed=1.5 K.

The last mentioned Coulomb energy is almost by a factor
of 2 smaller than EMR�k→�� from the exact diagonalization
�Fig. 6 and Table II�. However, it is remarkable how close
the value EC�0.045 lies to the energy of the magnetoroton
minimum. It is then tempting to conclude that the activation
process goes in this case in two steps, creation of a magne-
toroton and unbinding of the constituent QE and QH. The
former step costs more energy, roughly EMR�1.4�0

−1�
=0.05EMR�k→��−EMR�1.4�0

−1�=0.08−0.05=0.03 for the
unbinding of a magnetoroton �cf. Table II�. The creation is
therefore a bottleneck for the whole activation process and it
determines the activation energy measured in transport in the
limit of high Zeeman energies. Such a two-step process is
not possible for the spin-flip excitations because the spin
wave dispersion has no minimum which could lead to a
stable intermediate state. We wish to stress that the activation
gap smaller than the theoretical predictions of EMR�k→��
has been observed many times43,46,47 but the problem was
never conclusively resolved. Usually, this discrepancy was as
a whole attributed to the disorder. Here we propose that the
smaller observed gap for no-spin-flip excitations is only in
part due to the disorder. For the sample 1, this B-independent
reduction is Ed�1.4 K. The other, “traditional,” interpreta-
tion that the disorder reduces the Coulomb energy, meaning
Ed=0 and a modified value of EC in �6�, is in conflict with
the gaps observed in region I �Fig. 9�, which obviously do
not extrapolate to �=0 at B=0. It should be noted that we

FIG. 9. �Color online� Gap energies of the sample 1 �Fig. 2�
interpreted as an anti-skyrmion plus QEr for low B �region I� and a
QE-QH pair for high B �region III�. The disorder-induced gap re-
duction �Ed� obtained by fitting is 2.8, 2.3, and 1.4 K for regions I,
II, and III, respectively. Thin lines correspond to Ed=0 and no
fitting.
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indeed found different gap reductions for different excita-
tions within the same sample �Fig. 9�. An attempt to take the
value of Ed=2.8 K related to ASky�1�+QEr �region I� and
use it also for region III leads to only a slightly changed EC
while the quality of the fit is worse.

The data of sample 2 suggest that we measure a single
excitation in the whole range of accessible magnetic fields
�Fig. 10�. Again, we point out the striking linearity of ��B�.
When identifying the probed excitation, other choices than
��Sz /	�=1 lead to apparently wrong fits. Compared to the
experimental data they either lead to a steeper ��B� even for
zero EC or diverge too much from the linear behavior �dash-
dotted and dashed lines in Fig. 10�. The only feasible exci-
tation with ��Sz /	�=1 is a spin wave �QEr-QH pair�. The
calculated energy of a spin wave is somewhat larger than
what the experimental data suggest �EC�0.025 with Ed
=5.5 K� and the most likely reason for this discrepancy is the
disorder of the sample which is too strong to be described by
a single parameter Ed.

The absence of skyrmionic excitations for sample 2 is not
surprising given its lower mobility. The lower quality means
a larger disorder-induced gap reduction �Ed�6 K� implying
a higher FQHE threshold in B �B�7 T� �cf. Figs. 10 and 9�.
These are too high fields for �anti-�skyrmions to be observed
�Fig. 4�. Less obvious is the absence of a transition to a
spinless excitation �QE+QH� like the one observed for
sample 1. We find, however, that such an excitation would be
observable below 20 T only if Ed for QE+QH were above
5 K. By comparison with typical gap reductions in sample 1
this seems unlikely.

The present measurements suggest that, paradoxically,
single spin-flip excitations may be observed up to rather
high magnetic fields �20 T� even in samples with mobility
below 100 m2/V s. However, in order to observe larger

�anti-�skyrmions in FQH systems the Zeeman energy should
be suppressed.26,48 By applying the hydrostatic pressure and
reducing the Landé g factor, the maximum of three spin flips
per excitation was reached19 compared to two spin flips of
our experiment. In an ideal case, one should be able to ob-
serve more transitions in ��B�, not just one as in Fig. 9,
corresponding to successive reduction of skyrmion and anti-
skyrmion sizes with increasing magnetic field �or Zeeman
energy� at fixed filling factor.

V. CONCLUSION

Spin excitations in the �= 1
3 FQH system were studied

using measurements of the activation gap � as a function of
magnetic field. Supported by energies obtained by exact di-
agonalization we identified the activation-relevant excitation
to be a spin wave in the sample 2 and an anti-skyrmion with
one spin flip plus a quasielectron with reversed spin for the
sample 1. The abrupt change in ��B� observed at B�9 T in
the sample 1 was attributed to the transition to a charge den-
sity wave in the lowest excitation. Since the gap was in this
case smaller than what we would expect for a charge density
wave with infinite wave vector, we proposed that the activa-
tion is a two-step process with magnetoroton minimum gov-
erning the activation energy as a bottleneck. With this inter-
pretation, we found the effect of disorder to be a constant
reduction Ed of the gap, independent of magnetic field, in
agreement with previous works.21,22 Consistent with its
lower mobility, the gap reduction is larger for sample 2 and it
is different for different types of excitations.

In order to obtain a quantitative agreement between the
energies from the exact diagonalization and the experiment,
the finite thickness as well as the Landau level mixing up to
the first order have to be included. We wish to stress that the
number of spin flips involved in the particular excitations can
be determined with very high certainty even with little
knowledge of the Coulomb energy. This is on one hand ow-
ing to the precision of the experimental data showing linear
��B� and on the other hand because the number of spin flips
should be an integer. Our only fitting parameter was the con-
stant disorder-induced reduction of the activation gap.
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FIG. 10. �Color online� Gap energies of the sample 2 �Fig. 2�
interpreted as a spin wave �a QH-QEr pair�. The gap reduction
5.5 K is larger than for the sample 1. For other options �two spin
flips=ASky�1�+QEr and zero spin flips=QE+QH�, the parameters
were taken as in Fig. 9; only the constant offset Ed was adjusted.
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