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Abstract

Purpose – The purpose of this paper is to present a hybrid numerical simulation approach for the
calculation of potential and electric field distribution considering charge and dielectric constant.

Design/methodology/approach – Each numerical method has its own advantages and
disadvantages. The idea is to overcome the disadvantages of the corresponding numerical method
by coupling with other numerical methods. An augmented finite element method (FEM), linear FEM
and boundary element method are used with an efficient coupling.

Findings – The simulation model of microstructured devices is not so simple. During the simulation
various types of problems will occur. It is found that by using several numerical methods these
problems can be overcome and the calculation can be performed efficiently.

Research limitations/implications – The present approach can be applied in 2D cases. But, in 3D
cases the calculation of augmented FEM in a spherical coordinate becomes quite elaborate.

Practical implications – The proposed hybrid numerical simulation approach can be applied
for the simulation of the electrostatic force microscope (EFM) which is a very high-resolution
measuring tool in nanotechnology. This approach can be applied also to other
micro-electro-mechanical systems.

Originality/value – Since the scanning process of the EFM is dynamic, it requires the updating of
the FEM mesh in each calculation time step. In the present paper, the mesh updating is achieved by an
arbitrary Lagrangian-Eulerian (ALE) method. The proposed numerical approach can be applied for
the simulation of the EFM including this remeshing algorithm ALE.

Keywords Finite element analysis, Numerical analysis, Simulation, Nanotechnology, Electrostatics,
Measuring instruments

Paper type Research paper

Introduction
A rapid advancement in nanotechnology has been observed over the last few years.
This progress has also been influenced by the development of new high-resolution
measurement instruments. Since, the present trend is the rapid miniaturization of
integrated devices into the mesoscopic regime, these instruments become very important.
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An interesting example of such high-resolution measuring instrument is the atomic
force microscope (AFM). Based on the design of the scanning tunneling microscopes,
the first AFM was developed in 1986 by G. Binning and his coworkers in collaboration
between IBM and Stanford university. After then AFM rapidly developed into a powerful
and invaluable surface analysis technique in micro- and nanoscales and even in
atomic and molecular scales. As a result a new era of topological imaging, as well as for
measuring force-separation interactions between a probe and substrate began. Its ability
to scan surfaces with nearly atomic resolution and its versatility makes it one of the
most important measurement devices in nanotechnics. If the sample under investigation
holds a charge distribution and the distance between the AFM tip and the sample is
kept large then all other interaction forces except the electrostatic force can be neglected.
This special working mode of AFM is known as electrostatic force microscope (EFM)
which can be used for scanning electric field. Since the coupled electrical and mechanical
behaviors have to be taken into account, the numerical modeling of the EFM is
divided into an electrical and mechanical part. The interaction between them can
conveniently be realized by using a staggered simulation approach. In this paper,
a numerical model of the EFM is presented considering charge distribution inside the
measuring sample and different dielectric constant inside the simulation region. In the
present model a more detailed description is given on the electrical part, i.e. the cantilever is
kept fixed.

Basic working principle of EFM
The working modes of EFM are mainly classified into three groups. These are contact
mode, non-contact mode and tapping mode. Atomic defects such as atomic vacancies
can not be observed in the contact mode AFM ( Morita, 2002; Pethica and Oliver, 1987).
In the present work, the non-contact mode of EFM is considered. For EFM the interaction
force is the electrostatic force between the biased atomically sharp tip and the sample.
In addition, the van der Waals force is always present between the tip and the sample.
The van der Waals force and the electrostatic force have two different dominant regions.
The van der Waals force is proportional to 1/r 6 and the electrostatic force is proportional
to 1/r 2 where r is the distance between the tip and the sample. Thus, when the tip is
closed to the sample the van der Waals force is dominant and when the tip is moved
away from the sample the electrostatic force is dominant. So for contact mode van der
Waals force is dominant where as for non-contact mode electrostatic force is dominant.
The scanning of the EFM is usually done in two ways. Firstly the topology of the sample
is performed by tapping scanning mode which is known as “intermittent-contact” mode.
In this case the van der Waals force is dominant. Secondly using this topological
information a constant tip sample distance is maintained while scanning where the
electrostatic force is dominant which is known as “lift-scanning” (Yan and Bernstein,
2006). In this case it is assumed that the influence of all short range forces can be
neglected and only the electrostatic force plays the vital role for imaging. To detect
the electrostatic force a voltage is applied between the cantilever tip and the sample.
The cantilever oscillates near its resonance frequency which changes in response to any
additional force gradient. Changes in any cantilever resonant frequency can be
detected using phase detection, frequency modulation, amplitude modulation, etc.
(Bhushan, 2004). A diode laser is focused on the back of the cantilever and the
reflected light is collected by a position sensitive photo detector. These usually consist
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of two closely spaced photodiodes. Due to any angular displacement of the cantilever,
one photodiode will receive more or less light than the other photodiode which results in
different output voltage. This output voltage will be used to plot the potential, electric
field distribution, etc. on the measuring sample.

Numerical model
For modelling and simulation of EFM multi-physics aspects must be taken into
consideration. From the numerical point of view additional problems arise since we are
frequently confronted with multi-scale problems. Therefore, the application of advanced
numerical methods is necessary. For developing a numerical model of the EFM different
effects have to be considered. For example, long distance interaction, charge distribution and
non-linearity of the material properties, singularity, etc. In order to take into consideration
these effects the simulation region is divided into three regions as shown in Figure 1.

As high values of the electric field occurs at the peak of the tip, a special numerical
method is needed to calculate this electric field more effectively. For this reason an
augmented finite element method (FEM) method will be applied to region 1. Since charge
distribution and nonlinearities of the dielectric properties may need to be considered, a
versatile numerical method such as FEM should be applied to region 2. As boundary
element method (BEM) works well when the boundary is infinite or semi-infinite, the large
distance interaction between the tip and the cantilever can be conveniently treated using
BEM in the region 3. Later all these three numerical methods will be coupled with each other.

In this paper, a coupled simulation will be presented considering charge distribution
and dielectric constant (permittivity) of the measuring object. If the simulation model of
Figure 1 is applied to a model which includes a silicon made measuring object and contains
locally charged domains then the corresponding schematic diagram results in Figure 2.

Figure 1.
2D model of EFM

cantilever

measuring object

tip

Ω3

Ω2

Ω1

Figure 2.
Schematic diagram

Ω3

Ω2

Ω1

negative charges

positive charges

Numerical
modelling of
microscopes

111

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
In

fo
rm

at
io

ns
bi

bl
io

th
ek

 (
T

IB
) 

A
t 0

5:
53

 0
1 

Fe
br

ua
ry

 2
01

8 
(P

T
)



Here, the positive charges exist inside the left and right side whereas the negative charges
exist in the middle of the measuring object. This model is same as like the p-type and
n-type materials where there exists excess of positive and negative charges, respectively.
In the case of measuring such object, the applied voltage and the distance between the tip
and the sample are such that there occurs no corona effect.

Numerical formulation
The energy related functional in the electrostatic calculation domain V can be written
as (Greiff et al., 2006):

W ¼

Z
V

ð7uÞ2dV2

I
G

u
›u

›n
dG for u [ H 1

DðVÞ : u [ H 1 ujGD
¼ u0

��� �
ð1Þ

where uða1; a2; . . . ; am; x; yÞ is an approximation of the potential u (x, y). In the present
case the boundary integral of equation (1) is zero. It is well known that the solution of:

›W

›ai
¼ 2

Z
V

7u
›7u

›ai
dV ¼ 0 ð2Þ

yields an approximative solution for the Laplace equation in region V. The
approximation solution in the circular region V1 of radius R can be described by:

uðr;fÞ ¼
Xm
i¼1

ci
r

R

� �ip=b
sin

ipf

b

� �
; ðr;fÞ [ V1 ð3Þ

where b is the outer opening angle of the tip (Strang and Fix, 1973) and r is the
distance of any point on V1 as shown in Figure 3.

Figure 3.
Representation of
augmented FEM near the
EFM tip

β
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In the region V2 linear FEM:

uðx; yÞ ¼
Xm
j¼1

ujcjðx; yÞ; ðx; yÞ [ V2 ð4Þ

is applied. Since, the approximation of equation (3) will be kept only near the tip and
the approximation of equation (4) will be applied to the total region, the global
approximation function for both ansatz functions becomes:

uðx; yÞ ¼
Xn
j¼1

ujcjðx; yÞ þ AðrÞ
Xm
k¼1

ckf kðr;fÞ ð5Þ

where A(r) is applied to reduce the influence of equation (3) away from the tip which is
shown in Figure 4 and defined by:

AðrÞ

0 r . R

1 r # R=2

1
2 1 þ cos 2

R r2 1
� 	

p
� 	

R
2 , r , R

8>><
>>:

Now applying equation (5) into equation (2) leads to a set of linear differential
equations which can be represented in matrix form as:

M BT

B F

 !
u1

u2

 !
¼

b1

b2

 !
ð6Þ

where M is the matrix resulting from the augmented FEM and F is the stiffness matrix
expressed by:

Fij ¼ 2

Z
V2

7ci7cjdV: ð7Þ

On the FEM-BEM transmission interface (Bala et al., 2007) GT ¼ G3 > G2, u2 ¼ u3 and:

Figure 4.
Cut-off function

1
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›u3

›n
þ

›u2

›n
¼ 0:

Using the Gauss theorem on the augmented finite element and finite element domain
one obtains (Reddy, 1993):Z

G2

›u12

›n
vdG ¼

Z
V12

div ð7u12 · vÞdV ¼

Z
V12

Du12 · vdVþ

Z
V12

7u12 ·7vdV ð8Þ

i.e. for all:

v [ H 1
D;0ðV12Þ :¼ {v [ H 1ðV12Þ : vjGD>G2

¼ 0}

aðu12;vÞ :¼

Z
V12

7u12 ·7vdV¼

Z
V12

f ·vdVþ

Z
G2

›u12

›n
vdG¼: ð f ;vÞV12

þ
›u12

›n
;v


 �
G2

ð9Þ

where u12 includes u1 and u2. The representation formula of the Laplace equation for
the solution of u3 inside V3:

u3ðxÞ ¼

Z
G3

›

›nð yÞ
Gðx; yÞu3ð yÞ2 Gðx; yÞ

›u3

›nð yÞ

� 
dG; x [ V3 ð10Þ

with the fundamental solution of the Laplacian in 2D is given by:

Gðx; yÞ ¼ 2
1

2p
logjx2 yj: ð11Þ

For the Poisson problem the two well known boundary integral equations are
(Reddy, 1993):

V
›u3

›n
¼ ðI þ KÞu3 2 N 0 f ð12Þ

Wu3 ¼ ðI 2 K 0Þ
›u3

›n
2 N 1 f ð13Þ

where the single layer potential V and the hypersingular operator W are symmetric
and the double layer potential K has the dual K0 (Stephan, 2004). The integral operators
N0 and N1 are defined by:

N 0 f ðxÞ :¼

Z
V3

Gðx; yÞf ð yÞdy ð14Þ

N 1 f ðxÞ :¼
›

›nx
N 0 f ð15Þ

If the two mediums air and silicon exist in the FEM region, i.e. two different dielectric
constant 11 and 12 (for the present formulation these are denoted by 112) and if only air
exists in the BEM region which is represented by 13 then the saddle point formulation
of the problem for all:

ðw; v;cÞ [ ~H 1=2 £ H 1
D;0ðV12Þ £ ~H21=2ðG3Þ
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2a112ðu12; vÞ þ 13 Wu3; uh iGT
þ13 ðI þ K 0Þw; v

� �
GT

¼ 2ð f ; vÞV12
þ 2 t0; vh iGN>G2

2 N 1f ; vh iGT

ð16Þ

13 Wu3;wh iG3>GN
þ13 ðI þ K 0Þw;w

� �
G3>GN

¼ 2ðt0;wÞG3>GN
2 N 1f ;wh iG3>GN

ð17Þ

13 ðI þ KÞu3;Ch iG3
213 Vw;Ch iG3

¼ N 0f ;Ch iG3
ð18Þ

where H is the Sobolev spaces (Adams and Fournier, 2006). If the bases are introduced
as span {v1; . . . ; vF} ¼ XF ; span {w1; . . . ;wF} ¼ XB and span {c1; . . . ;cF} ¼ YB;
the basis function of XF and XB are supposed to be ordered such that:

span{v1; . . . ; vF} ¼ XF > H 1
D;0ðV2Þ

span{w1; . . . ;wF} ¼ XB > H 1=2ðG3Þ:

If the coefficients of u12 and u3 are denoted by u and the coefficients of f are denoted by
f again then this system is equivalent to the original differential equation that can be
used for discretisation. This system corresponds to a matrix system which can be
written as AX ¼ b where A is the following matrix:

A ¼

M BT 0 0 0

B FNN FNC 0 0

0 FCN FCC þWCC WCN ðK T þ I ÞC

0 0 WNC WNN ðK T þ I ÞN

0 0 ðK þ I ÞC ðK þ I ÞN 2V

0
BBBBBBBB@

1
CCCCCCCCA
;

X ¼

u1

u2

uT

u3

w

0
BBBBBBBB@

1
CCCCCCCCA

and b ¼

b1

b2

bT

b3

bw

0
BBBBBBBB@

1
CCCCCCCCA
: ð19Þ

The subscript C means contribution from the coupling nodes and N means contribution
from the non-coupling nodes. Finally, the blocks W, V, K þ I and K T þ I provide the
coupling between two ansatz spaces XF and XB. Here, u1 is the potential near the tip,
u2 and u3 are the nodal potentials inside the FE domain and on the boundary of the BE
domain, respectively, uT are the nodal potentials on the FE-BE coupling interface and f
are the normal components of the electric field distribution on the boundary of the BE
domain. The vector b includes the corresponding boundary conditions and the charge
distribution. As the matrix in equation (19) is not positive definite, a specific algorithm
such as the MINRES algorithm is required for the solution.

A typical potential and electric field distribution considering moving object are
shown in Figures 5 and 6, respectively. In the present model some charges are injected
inside the silicon chip. The medium outside the measuring object is air, i.e. there exists
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different charges and different dielectric constants in the simulation region. As these
charges will cause potential inside the surface, they will produce remarkable effects on
the simulation result. Usually, the highest value of electric field occurs at the peak of
the tip which plays the dominant role for the cantilever deflection. But, it may be the
case due to the different values of surface charge density; the highest values of the
electric field may not appear at the peak of the tip but may be at the corner of
the material surfaces. Since the sample is moving, there must be a deviation of electric
field at the peak of the tip. By utilizing these deviations of the electric field the EFM will
plot the charge distribution on the moving sample.

Since the scanning process of the EFM is dynamic, one has to deal with a moving
sample and moving boundaries. As a result the finite element mesh needs to be
updated at each time step. To solve this problem one can recall the mesh generator at
each time step. But it will be time consuming and not so convenient. The approach
presented here for mesh updating is based on an arbitrary Lagrangian-Eulerian (ALE)
algorithm (Stoker, 1999; Donea et al., 2004). In this algorithm the mesh is assumed to be
a massless elastic. As the present ALE does not include any time derivative so there is
no need to any modification of the governing equations and the ALE simply reduces to
a mesh updating program.

Figure 5.
Potential distribution
considering moving object
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Conclusion
A hybrid numerical approach for the simulation of EFM is presented considering
charge inside the sample and different dielectric constants. Since the different problems
occur at the different places of the simulation regions, different numerical methods are
applied to overcome these problems and later all the methods are coupled with each
other. Here, the simulation is performed using FEM-BEM coupling. As the high values
of electric field occur at the peak of the tip, it is necessary to calculate these high
values of electric field more efficiently. Since the sample moves at each time step, the
mesh of the FEM region needs to be updated at each time step. In the present case the
mesh is updated using an elegant mesh updating algorithm ALE.
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