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Geometric dynamics of nonlinear
circuits and jump effects

Tina Thiessen and Wolfgang Mathis
Faculty of Electrical Engineering and Computer Science,

Institute of Theoretical Electrical Engineering, Leibniz Universität Hannover,
Hannover, Germany

Abstract

Purpose – This paper seeks to give an outline about the geometric concept of electronic circuits,
where the jump behavior of nonlinear circuits is emphasized.

Design/methodology/approach – A sketch of circuit theory in a differential geometric setting is
given.

Findings – It is shown that the structure of circuit theory can be given in a much better way than by
means of a description of circuits using concrete coordinates. Furthermore, the formulation of a
concrete jump condition is given.

Originality/value – In this paper, an outline is given about the state of the art of nonlinear circuits
from a differential geometric point of view. Moreover, differential geometric methods were applied to
two example circuits (flip flop and multivibrator) and numerical results were achieved.

Keywords Circuits, Differential geometry

Paper type Research paper

1. Introduction
It is known that the structural aspects of classical mechanics can be represented in an
elegant manner using modern differential geometry[1];, e.g. the monograph of Arnold
(1988). Although the theory of nonlinear dynamical circuit is another useful concept for
modelling dynamical systems, a complete geometrical theory is still missing. But some
aspects of circuit theory were discussed in a differential geometrical setting (Brayton and
Moser, 1964; Smale, 1972; Desoer and Wu, 1972; Matsumoto et al., 1981; Ichiraku, 1979;
Chua, 1980) and some other authors. In this paper, an outline about the geometric concept
of electronic circuits is given where we emphasize the jump behavior of nonlinear circuits.

Classical approaches for analysing electrical circuits are based on fundamental
physical laws; that is the constitutive relations of circuit elements and Kirchhoff’s laws for
describing the interconnections of circuit elements – the so-called circuit topology.
The constitutive relations can be decomposed into resistive and reactive relations where
the resistive relations are formulated by currents and voltages whereas the reactive
relations are formulated by currents and voltages as well as their derivatives. As a result
we obtain a system of differential equations that describes the dynamics of a considered
circuit. Moreover, we are able to study the exceptional behavior of such a circuit and
characterize it by certain conditions.

However, if we are interested in the description of an entire class of circuits without
knowing the details about its circuit topology, a geometric setting is more suitable. In the
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following, the derivation of the descriptive equations as well as the motivation of
the differential geometric setting are illustrated by means of a simple tunnel diode circuit
due to Brayton and Moser (1964) with a S-shaped nonlinearity gðuÞ (Figure 1).

For the analysis of the tunnel diode circuit we use following equations:

u ¼ 2RiL þ U 0 2 uL; i ¼ gðuCÞ; ð1Þ

L
diL

dt
¼ uL; C

duC

dt
¼ iC : ð2Þ

By means of Kirchhoff’s equations:

u ¼ uC ; iL ¼ i þ iC ; ð3Þ

we eliminate uL and iC and obtain the dynamical descriptive equations of this circuit:

uC ¼ 2RiL þ U 0 2 L
diL
dt

; iL ¼ gðuCÞ þ C
duC

dt
: ð4Þ

2. Differential geometric concept of circuits
In order to understand the fundamental ideas behind the geometrical theory of
nonlinear dynamical circuits, we reinterpret the description of the tunnel diode circuit
from a geometric point of view. For this purpose, we consider the static behavior by
means of an associated resistive circuit. Then, we add dynamical circuit elements
(capacitors and inductors) to the resistive circuits. These two steps can be interpreted
in a geometrical sense.

For deriving the associated resistive circuit we apply the following procedure:

(1) All capacitors have to be replaced by open-circuits.

(2) All inductors have to be replaced by short-circuits.

Figure 1.
Tunnel diode circuit

U0

uL

iL

u

R

L

uCC

i = g (uC) iC

Figure 2.
Resistive circuit composed
of P1 and P2

U0 u1

i1

u2

i2

R

g

P1 P2
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As a result, we get a nonlinear resistive circuit, Figure 2, where the operational points
have to be determined.

In this simple case, the operational points can be obtained graphically. For this
purpose we decompose the circuit in the sub-circuits P1 and P2 and formulate their
constitutive relations, separately. We obtain:

2i1 ¼
1

R
U 0 2 u1ð Þ; i2 ¼ gðu2Þ; ð5Þ

where we use the assigned directions of currents and voltages. Now, by means of
Kirchhoff’s equations:

i1 þ i2 ¼ 0; u1 ¼ u2; ð6Þ

the descriptive equations of P1 and P2 can be connected in an algebraic manner.
From a geometric point of view the constitutive relations of P1 and P2 are interpreted

as subsets in a higher dimensional embedding space using their own coordinates
i1; i2; u1 and u2 where the curves of the constitutive relations are intersections with the
corresponding coordinate planes. Using Kirchhoff’s equations and introducing new
variables i :¼ i2 ¼ 2i1 and u :¼ u1 ¼ u2, these relations can be projected into a common
representation space – the i 2 u-space in our example. From a geometric point of view it
is suitable to interpret these two subsets O1 and O2 in a two-dimensional embedding
space R2 (Figure 3) and obtain the well-known load line representation.

In a more general geometric setting O1 and O2 can be interpreted as sets in
the 2n-dimensional embedding space R2n, where n is the number of branches.
The intersection O1 > O2 can be denoted as the state space S of the resistive circuit.

Although this load line representation and the corresponding definition of the state
space S is helpful in simple circuits, it is based on a mixture of resistive constitutive
relations and Kirchhoff’s laws. Therefore, a more systematic definition of S is needed.
For this purpose, we define the Kirchhoffian space K as the set of all currents and
voltages which satisfies Kirchhoff’s laws. Moreover, the Ohmian space O is defined as
the set of all currents and voltages which satisfies all resistive constitutive relations.
Then the state space S of a circuit is defined as the intersection S :¼ K>O. In contrast
to the former definition the concept with the Kirchhoffian and Ohmian space has the
advantage that K has a vector space structure in linear and nonlinear circuits since
Kirchhoff’s laws are homogeneous equations. Note, circuits with linear resistors and
independent sources have an Ohmian space with an affined structure such that also S

Figure 3.
Load line representation of

a resistive circuit

i

u

O2

O1

S
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is affine. This is the reason why it is better to denote this class of circuits “affine
circuits” instead of “linear networks” as usual.

If the state space S of a resistive circuit consists of more than one state, it cannot be
a realistic model because a physical system cannot exist in more than one state.
Obviously, these situations can be solved if the time t is introduced as an additional
variable such that we generalize our physical axiom for the state space: a physical
system cannot be in more than one state at the same time. It follows that the behavior
of a system is represented by t-parametrized curves in the state space S. The set of all
admitted curves in the state space of a circuit is denoted as circuit dynamics.

In the following, we restrict our considerations to differential systems and circuits
where the dynamics is defined by the set of all solutions of the descriptive differential
equations on a sufficient smooth state space S. Therefore, the following questions arise:

. Under which conditions S is a smooth manifold?

. How a dynamics on S can be created?

If we assume that S is a smooth manifold, the dynamics of a circuit can be generated by
differential equations. In order to formulate the descriptive differential equations of a
circuit we have to introduce dynamical elements. Based on fundamental physical laws,
the relationships between currents and voltages of inductors and capacitors are given
by means of differential relations. Therefore, from a more general point of view, these
differential equations are formulated in iL 2 uL and iC 2 uC coordinates planes of the
embedding space R2n. In a differentiable geometric setting, these differential equations
have to be formulated on the state space S such that a “lifting” process of the
differential equations on S is needed.

We already emphasize that for defining the dynamics of a circuit it is very essential
that the state space S is a smooth manifold. A set possesses the structure of a
differentiable (smooth) m-dimensional manifold if it is locally equivalent to a Rm.
A concrete representation of a manifold can be given by means of a chart (map) that
maps a part of S into Rm. A detailed discussion about differentiable manifolds can be
found in the monograph of Guillemin and Pollack (1974). The Kirchhoffian space K
possesses the structure of a vector space and, therefore, of a differentiable manifold,
but in general the Ohmian space O is not a differentiable manifold. However, even if O
wears the structure of a differentiable manifold, it is not obvious that the state space S
wears this structure. If we consider a circuit by its descriptive equations, it means that
the intersection of the solution sets of the Kirchhoffian equations and the Ohmian
equations is a smooth manifold if these equations are “local” independent. From a
geometric point of view this means that the intersection of K and O is “transversal” or
in a more technical setting: if K and O are two submanifolds of R2n we call K and O
transversal, if the following condition is satisfied:

x [ K>O : TxK%TxO ¼ TxR
n ð7Þ

Now, we are able to characterize the standard situation in nonlinear dynamical circuits.
The state space S is a smooth manifold (Figure 4) if we have:

. the Ohmian space O is a smooth manifold; and

. the state space S ¼ K>O is not empty as well as K and O are transversal.
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These properties can be satisfied if we apply a suitable remodelling technique with
resistive elements. Therefore, this situation is typical or so-called generic.

If the state space S is a smooth manifold the dynamics of a circuit can be defined.
A dynamics on S ¼ Rm is defined by a set of differential equations _j ¼ XðjÞ where X
is vector field on Rm. In order to construct a vector field X on a smooth manifold S,
a more general approach is needed. We restrict ourself to circuits withl capacitors andg
inductors. At first, we define a one-form V and a two-tensor G on the space of currents
of inductors and voltages of capacitors. Then a projection map p : S ! Rl

i %Rg
u is

chosen that maps a certain part of S to the coordinate planes of the inductors and
capacitors, respectively. Now we use the map p* to “lift” or “pull-back” V and G on the
state space S. This operation is local because there are situations where S is folded just
like in Figure 4. In this case, there is more than one part of S that can be mapped to
the same part of the coordinate planes. With respect to the local dynamics of a circuit,
the following theorem is fundamental.

If the Ohmian space O is a smooth manifold, the Kirchhoffian space K and the
Ohmian space O are transversal and a pullback map p* exists such that a one-form
v :¼ p*V and a nondegenerated two-tensor g :¼ p*G can be defined, then there exists
locally a unique vector field X : S ! TðSÞ which satisfies:

gðX ;Y Þ ¼ vðY Þ; ð8Þ

for all smooth vector fields Y. With this locally defined vector field X we are able to
define the (local) dynamics of a circuit by means of _j ¼ X+j.

3. Nongeneric circuit behavior
3.1 Singular points and jumps
There are several cases where a locally defined vector field X does not exists. If S is a
smooth manifold then it is essential that g is nondegenerated. The bilinear map

Figure 4.
Folded state space

(i,u)

iL

uC

State space S
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g :¼ p*G can be interpreted as an inner product such that the assumed non-degeneracy
of g follows from the condition gðX ;Y Þ ¼ 0 for all Y , X ¼ 0. Therefore,
a degeneracy of g results from defects of p* or G. G is degenerated if Lði Þ or CðuÞ is
zero for some i and u, respectively, where these nongeneric cases can be remodelled by
parasitic reactances. A defect p* is related to a dependency of the dynamic variables.
With respect to the Kirchhoffian space K a defect of p* corresponds to loops of
capacitors and independent voltage sources or so-called cutsets of inductors and
independent current sources. With respect to the Ohmian space O a defect of p* is
related to a zero of duR=diR or diR=duR such that above-mentioned loops and meshes
arise. Also in these cases, a remodelling process is available in order to obtain a generic
situation of the circuit dynamics. For further details the reader is left to Mathis (1987).

These considerations can be discussed in a more concrete manner if circuit topology
is included. For this purpose we have to restrict ourself to RLC circuits. Then
interconnections of a circuit can be described by oriented graphs and its boundary and
co-boundary operators or assuming a coordinate system (a chart) by its incidence
matrices. If we assume that a proper tree of a graph exists (i.e. a circuit including all
capacitor branches and no inductor branches), then no so-called “forced degeneracies”
arise. These forced degeneracies are defects of the dynamics related, e.g. to meshes of
capacitors and cut-sets of inductors, which should be excluded from our discussion.

It is shown by Ichiraku (1978) that a point ði; uÞ of the state space S is a singular point
if and only if the characteristic manifold OR and the affine subspace KR are not
transverse at ðiR; uRÞ :¼ pRðR

2nÞwherepR is the natural projection from the embedding
space R2n to the currents and voltages of the resistors. KR is the Kirchhoffian space and
OR is the Ohmian space of the resistive circuit obtained from the given one by
open-circuitting all inductor branches and short-circuiting all capacitor branches.

3.2 Chart representation of circuits and jump phenomena
In this section, we will discuss how degeneracy and jump effects of a concrete
electronic circuit can be analysed. For this purpose, a suitable chart has to be chosen in
order to represent S and the dynamics of a circuit by means of a DAE system:

BðxÞ _x ¼ gðx;yÞ; ð9Þ

0 ¼ fðx;yÞ; ð10Þ

where x is the vector corresponding to the capacitor voltages and inductor currents
and y is a vector of additional voltages and currents (Thiessen, et al., 2010; Mathis et al.,
2009a, b). BðxÞ is a matrix related to the dynamical elements and g represents a
nonlinear vector field with respect to x and y. The solution set of the algebraic equation
(10) represents the state space S of the circuit under consideration in the chosen chart,
whereas the differential equation (9) represent its dynamical behavior.

As mentioned in the last section, a generic dynamics of a circuit do not exist at
points where the projection map p* has singularities. This means with respect to the
DAE representation that points exists where the local solvability to y is not
guaranteed. These points are specified by the following condition:

det
›fðx;yÞ

›y

� �
¼ 0: ð11Þ
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Therefore, we assume that equation (11) is a necessary jump condition (Nielsen and
Willson, 1980; Tchizawa, 1984; Ichiraku, 1979) which can be formulated in a geometric
setting if it is projected to the state space S. We will give a sufficient condition for a jump
point only in a heuristic sense: jump points are those points specified by equation (11)
and that are an inner point of a set including Lyapunov stable and unstable points. The
set of all points which fulfils these two conditions is called “jump set”.

The corresponding “hit set” is the intersection of the “bundle” of all jump spaces at
points of the jump set and the state space S. Under the natural physical constraints, the
energy of capacitors and the charge of inductors is preserved such that the voltage
across a capacitance or the current through an inductance have inertia through the
jump process and do not change. Another restriction is a fixed state, e.g. by an input
voltage. Thus, the jump space is predefined and the trajectories “hit” by a continuation
a stable point on the manifold S. Obviously, for this construction an embedding space
is needed.

4. Examples
4.1 Example: flip flop
In this section, the flip flop circuit shown in Figure 5 is analysed from a geometric point
of view. We use the Ebers-Moll model in forward mode (Ebers and Moll, 1954) to
reasonably model the nonlinear bipolar transistors.

The design parameters are Rc1 ¼ Rc2 ¼ 2 kV, Rb1 ¼ Rb2 ¼ 100 kV, RV ¼ 50 kV,
IS ¼ 6:73 fA, V T ¼ 26 mV, aF ¼ 0:99 and U 0 ¼ 9 V. The emitter current is declined
by iFx ¼ IS · ðe ðUDx=V T Þ 2 1Þ. We neglected the reverse mode, the collector-emitter and
the parasitic base-emitter capacitances. By Kirchhoff’s law we can derive the algebraic
constraints of the circuit:

0 ¼ U 0 þ ðRc2 þ Rb1Þ ·
Uin 2 uD1

RV
2 Rc2 · aF · IS · e ðuD2=VT Þ 2 1

� ���

þðRc2 þ Rb1Þ · ð1 2 aFÞ · IS · e ðuD1=V T Þ 2 1
� �

þ uD1

� �
·

1

Rc2 þ Rb1
;

ð12Þ

Figure 5.
Flip-flop circuit

Rc1

RV

Rb1Rb2

Rc2

U0

Uin

Uout 2Uout 1

IF1

D1 D2
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0 ¼ U 0 2 Rc1 · aF · IS · e ðuD1=VT Þ 2 1
� ��h

þðRc1 þ Rb2Þ · ð1 2 aF Þ · IS · e ðuD2=V T Þ 2 1
� �

þ uD2

� i
·

1

Rc1 þ Rb2
:

ð13Þ

In equations (12) and (13), uD1 and uD2 represent the voltages across the diodes D1 and
D2, respectively, and Uin is the input voltage. For a geometrical interpretation one can
numerically determine the state space of the system given by the intersection of the
solution sets of equations (12) and (13). For this purpose, one has to assume a certain
range for one of the coordinates, e.g. uD1 and determine the other two afterwards with
numerical methods (e.g. Newton-Raphson method).

From a geometric point of view, one has to look for a specific coordinate system
where a fold can be identified. Because of the fixed input voltage one knows, that the
input voltage cannot jump. So, it is obvious that one can identify a fold in the transfer
characteristic of the system, i.e. the coordinate system Uout 2 Uin, which represents
the projected state space of the circuit. In Figure 6, one can see the S-shaped transfer
characteristic of the output signal Uout2. The flip flop circuit switches its outputs, when
getting an appropriate input signal. One can also identify the unstable operating points
by the negative slope in Uout2 in Figure 6.

To identify the switching points one can determine the necessary jump condition
given in Section 3 by equation (11):

ðRc2 þ Rb1Þ · ð1 2 aF Þ ·
IS

V T
· e ðuD1=V T Þ þ 1 þ

Rc2 þ Rb1

RV

� �

· ðRc1 þ Rb2Þ · ð1 2 aF Þ ·
IS

V T

· e ðuD2=V T Þ þ 1

� �
¼

Rc1 · Rc2 · I 2
S · a2

F

V 2
T

· e ðuD1þuD2Þ=V T :

ð14Þ

Figure 6.
Output 2 (S-shaped) with
necessary jump condition
(V-shaped)

–4 –3 –2 –1 0 1 2 3 4 5 6

–15
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0

5
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The intersection of the transfer characteristic and the solution set of the necessary
jump condition consist of unstable points of the state space (Figure 6). The sufficient
condition is also fulfilled and the output voltage leaves the state space to jump to the
hit set.

There are also parameter settings where the flip flop does not have a switching
behavior. These parameter settings lead to a transfer curve shown in Figure 7, which is
not any more S-shaped and has no Lyapunov unstable parts. The solution set of the
necessary jump condition has no intersection with the transfer characteristic. The path
intersecting with the transfer characteristic belongs to a pole in the evaluation of the
jump condition. So the output voltage of the flip flop is just the amplified input signal
and has no jump behavior.

4.2 Example: multivibrator
To analyse the multivibrator circuit shown in Figure 8, we also use the Ebers-Moll
model in forward mode. The design parameters are R1 ¼ R4 ¼ 10V,
R2 ¼ R3 ¼ 47 kV,C1 ¼ C2 ¼ 10mF, I S ¼ 6:73 fA, V T ¼ 26 mV, aF ¼ 0:99 and
U 0 ¼ 9 V. By Kirchhoff’s law, we can derive the algebraic constraints of the circuit to:

0 ¼
U 0 2 uD1

R3
þ

U 0 2 uD1 2 uC1

R4
2 aF · I S · e ðuD2=VT Þ 2 1

� �

2 ð1 2 aF Þ · IS · e ðuD1=VT Þ 2 1
� � ð15Þ

0 ¼
U 0 2 uD2

R2
þ

U 0 2 uD2 2 uC2

R1
2 aF · I S · e ðuD1=VT Þ 2 1

� �

2 ð1 2 aF Þ · IS · e ðuD2=VT Þ 2 1
� � ð16Þ

Figure 7.
Output 2 with necessary

jump condition

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3

–5

0

5

10
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and the dynamical equations to:

C1 · _uC1 ¼ U 0 2 uC1 2 uD1 2 R4 · aF · IS · e ðuD2=V T Þ 2 1
� �� �

·
1

R4
ð17Þ

C2 · _uC2 ¼ U 0 2 uC2 2 uD2 2 R1 · aF · IS · e ðuD1=VT Þ 2 1
� �� �

·
1

R1
: ð18Þ

Here, uD1 and uD2 represent the voltages across the diodes D1 and D2, respectively, and
uC1 and uC2 represent the voltages across the capacitances.

To identify the switching points one can determine the necessary jump condition:

0 ¼2
R1 · R4 · I 2

S

V 2
T

· e ðuD1þuD2Þ=V T

þ
R1 · IS · ð12 aF Þ

VT
· e ðuD1=V T Þ þ

R1

R2
þ 1

� �
·

R4 · I S · ð12 aFÞ

V T
· e ðuD2=V T Þ þ

R4

R3
þ 1

� �
:

ð19Þ

Here, it is also important to choose the right coordinate system to identify the fold in
the state space. As mentioned in Section 3, the voltages across a capacitance cannot
jump because of the physical constraints. Consequently, it is reasonable to choose a
coordinate system in which just one coordinate can jump. In Figure 9, we choose the
projection of the state space in the coordinate system uD1 2 uC1 2 uC2. One can also
see the associated jump set represented by the circles. To verify our results we have
regularized the multivibrator circuit by parasitic capacitances parallel to the diodes
and calculated the resulting limit cycle. As one can see, parts of the limit cycle lies on
the state space manifold and leaves the state space in some specific point of the
jump set.

Figure 8.
Multivibrator circuit
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5. Concluding remarks
In this paper, an outline is given about the state of the art of nonlinear circuits from a
differential geometric point of view, where a rather simple nonlinear RLC circuit and its
elementary geometric description is used for introducing an abstract geometric setting.
After a discussion of the generic dynamics behavior of circuits based on this
geometrical framework, necessary conditions of so-called jump effects are formulated.
Finally, jump behavior is illustrated by means of two typical circuits.

Note

1. In this paper, we omit the technical details of the theory of differentiable manifolds.
The interested reader is left to Guillemin and Pollack (1974).
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