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Convergence behavior
of 3D finite elements

for Neo-Hookean material
Erwin Stein and Gautam Sagar

Institute of Mechanics and Computational Mechanics,
Leibniz University of Hannover, Hannover, Germany

Abstract

Purpose – The purpose of this paper is to examine quadratic convergence of finite element analysis
for hyperelastic material at finite strains via Abaqus-UMAT as well as classification of the rates of
convergence for iterative solutions in regular cases.

Design/methodology/approach – Different formulations for stiffness – Hessian form of the free
energy functionals – are systematically given for getting the rate-independent analytical tangent and
the numerical tangent as well as rate-dependent tangents using the objective Jaumann rate of Kirchoff
stress tensor as used in Abaqus. The convergence rates for available element types in Abaqus are
computed and compared for simple but significant nonlinear elastic problems, such as using the 8-node
linear brick (B-bar) element – also with hybrid pressure formulation and with incompatible modes –
further the 20-node quadratic brick element with corresponding modifications as well as the 6-node
linear triangular prism element and 4-node linear tetrahedral element with modifications.

Findings – By using the Jaumann rate of Kirchoff stress tensor for both, rate dependent and rate
independent problems, quadratic or nearly quadratic convergence is achieved for most of the used
elements using Abaqus-UMAT interface. But in case of using rate independent analytical tangent for
rate independent problems, even convergence at all is not assured for all elements and the considered
problems.

Originality/value – First time the convergence properties of 3D finite elements available in Abaqus
sre systematically treated for elastic material at finite strain via Abaqus-UMAT.

Keywords Finite element analysis, Alloys, Kinematics

Paper type Research paper

Introduction
Abaqus standard provides the user interface UMAT for the implementation of user
defined material equations. The user can take advantage of the complete finite element
program from Abaqus and has to focus on the material model. To implement finite strain
kinematics for hyperelastic materials in a finite element program one likes to have an
efficient tangent which provides quadratic convergence in regular cases of solids and
structural mechanics (elliptical problems). Mainly two types of tangents are available, the
analytical material tangent (stiffness matrix) in each point of a chosen continuous
configuration and the consistent (numerical) tangent, defined in each Gaussian integration
point of the finite element discretization, which has to be provided by the user.
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This paper was written in parallel to the development of finite strain theory and
analysis of martensitic phase transformation (PT) in metal alloys (Stein and Sagar, 2007),
using the UMAT-interface with C þ þ where severe problems arose. The treatment of
small deformation PT is given in Stein and Zwickert (2007).

For Abaqus UMAT interface it is necessary to use Jaumann rate of Kirchoff stress
tensor as a tangent in current configuration, for both rate dependent and rate
independent problems in case of nonlinear deformation processes.

The first two sections advocate results from finite strain continum mechanics which
are widely known. Therefore, the presentation is as short as possible to derive the
essential features in the section for tangent moduli.

Analytical tangent
Kinematics
The kinematics of solid bodies are characterized by two different motions: rigid body
displacement and rotation as well as deformation. The deformations of a body can be
described by mapping operators and geometrical quantities. In Figure 1 on the left, an
undeformed solid body Bo – which defines the initial stress free reference
configuration – is shown; it is used as reference configuration. The deformed
configuration Bt is called as actual or current configuration. The quantities related to
reference configuration are written in capital letters and quantities related to current
configuration are written in small letters.

In a material setting the displacement vector of point X of body Bo is denoted as
ut ¼ xtðX; t; t0Þ2Xðt0Þ.

Deformation in material description
The non-symmetric material deformation gradient, FðX; t; t0Þ :¼ gradwðX; t; t0Þ;
J :¼ detF – 0 defines a tangential (linear) mapping. It maps the infinitesimal material
vector dX into an infinitesimal vector, dx ¼ F dX. The material deformation gradient
can also be written symbolically as, F ¼ dx=dX ¼ 1 þ 7uðX; t; t0Þ; with HðXÞ :¼
7uðXÞ the material displacement gradient. F can be split into a stretch tensor U and a
true orthogonal rotation tensor R as F ¼ R U with RT ¼ R21; detR and U ¼ UT.

Figure 1.
Initial configuration Bo

and actual configuration
Bt of a solid body

connected by a bijective
non-linear mapping f and

the tangent mapping F

x
X

x1
B0

Bt

∂B0

∂Bt

Bt = j (B0, t, t0)

X = j (X, t, t0)
j = ∃ j –1

x3

x2

X1

X2

X3

X

dX dx

u

F

ϕ
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Deformation in spatial description
The spatial velocity gradient l follows from d _X ¼ l · d _x and reads:

l ¼ _F ·F21 ð1Þ

with l :¼ gradvðxÞ ¼ gradð _xÞ ¼ dþw; ð2Þ

where d ¼ gradsym:vðxÞ and w ¼ gradskewvðxÞ: ð3Þ

Stiffness derived from an energy function
The second Piola-Kirchhoff (PK) stress tensor is derived from the free energy function
c in the case of hyperelastic material as, see, e.g. Wriggers (2001):

S ¼ 2
›cðCÞ

›C
; ð4Þ

with C ¼ FTF the right Cauchy-Green deformation tensor, C ¼ CT, detC . 0 andp
C ¼ U.
The strain energy function can be specialized and is represented here by an

isotropic tensor function:

cðCÞ ¼ cðIC; IIC; IIICÞ; ð5Þ

where IC, IIC and IIIC are 1st, 2nd, and 3rd invariants of C. The second PK stress
follows from equation (4) can be transformed directly into the current (spatial)
configuration by the standard push forward operation yielding the Kirchhoff stress
tensor t ¼ F S FT with t ¼ Js where s is the Cauchy stress tensor.

Kirchhoff stress tensor in terms of spatial quantities for isotropic materials (Miehe,
1996) reads:

t ¼ 2b ·
›cðbÞ

›b
: ð6Þ

The incremental elasticity tensor CðEÞ in the reference configuration is defined
for a hyperelastic material via the Green strain tensor dS ¼ CðEÞ : dE with
E :¼ 1=2ðFT ·F2 1Þ and is the Hessian of the free energy function
CðEÞ ¼ ›2cðCÞ=›E›E: This can be transformed directly into cðbÞ in spatial
coordinate by the standard push forward operation. The tangential spatial elasticity
tensor for the Kirchhoff stress (Miehe, 1996) then reads:

ctðbÞ ¼ 4b ·
›2cðbÞ

›b›b
·b: ð7Þ

Numerical tangent
In the Abaqus 6.4 documentation (Abaqus, n.d.) the variation of the symmetric spatial
rate of deformation tensor is defined as:

dD ; dd ¼ _1dt; where dt is the linearized time increment; ð8Þ

with the symmetric spatial rate of deformation tensor:

dd ¼ symdl ¼ symdð _F ·F21Þ ð9Þ

¼ symðgrad _xÞ · dt ð10Þ

and the linear strain rate measure used in Abaqus _1 :¼ symðgrad _xÞ:
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The Jaumann rate of the left Cauchy-Green tensor, b ¼ F FT, follows as:

7

b ¼ d ·bþ b ·d: ð11Þ

The linear increment of b is:

db ¼
7

b · dt ¼ ðd ·bþ b ·dÞ · dt ð12Þ

¼ ðd1 ·bþ b · d1Þ; ð13Þ

or in index notation, see also (Besdo et al., 2005):

dbab ¼ d1acb cb þ bacd1 cb with a; b ¼ 1; 2; 3: ð14Þ

Separate representation of virtual left Cauchy-Green deformation and superposition for
the virtual strain rate component d111 ; d1 yields:

dbðd111Þ

1sp
¼

d1 0 0

0 0 0

0 0 0

2
664

3
775

b 11 b 12 b 13

b 12 b 22 b 23

b 13 b 23 b 33

2
664

3
775þ

b 11 b 12 b 13

b 12 b 22 b 23

b 13 b 23 b 33

2
664

3
775

d1 0 0

0 0 0

0 0 0

2
664

3
775 ð15Þ

¼ d1

b 11 b 12 b 13

0 0 0

0 0 0

2
664

3
775þ

b 11 0 0

b 12 0 0

b 13 0 0

2
664

3
775d1 ð16Þ

¼ d1

2b 11 b 12 b 13

b 12 0 0

b 13 0 0

2
664

3
775 ¼ d1b1sp ð17Þ

and b 12 ¼ b 21 for shear deformation.
In total, six separate representations for d111; d122; d1 33; d1 12 ¼ d1 21;

d1 23 ¼ d1 32; d113 ¼ d131; ½d1� ¼ 1; have to be regarded, together:

db ¼ d1
X6

isp¼1

bisp : ð18Þ

Defining positive and negative changes of b and s through their variations:

bþ :¼ bþ db; b2 ¼ b2 db and ð19Þ

sþ :¼ f ðbþ; J þÞ; s2 :¼ f ðb2; J 2Þ; ð20Þ

the variation of b can be expressed as:

db ¼ 2bþ bþ ¼ b2 b2 ð21Þ

2db ¼ 2bþ bþ þ b2 b2 ¼ bþ 2 b2 ð22Þ
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db ¼
bþ 2 b2

2
; ðmid point ruleÞ: ð23Þ

Equation (18) in inserted into equation (23) yields the variation:

db ¼ d1
X6

isp¼1

bþ
isp 2 b2

isp

2
: ð24Þ

Similar to equation (24) the incremental Cauchy stress follows as:

ds ¼ d1
X6

isp¼1

sþ
isp

2 s2
isp

2
: ð25Þ

The stiffness related to Cauchy stress then reads:

c ¼

ds
1sp

d1

·

·
ds

isp

d1

·
ds

6sp

d1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð26Þ

Jaumann rate formulation for tangent moduli
The objective Lie derivative, see, e.g. Simo and Hughes (1998) and de Bore and
Schröder (2007), of the Kirchhoff stress tensor is got as the push forward operation of
the time derivative of S:

LVt :¼ F
›

›t
F21 · t ·F2T
� �� �

·FT ¼ F ·
›

›t
S
� �� �

·FT; ð27Þ

with the 2-PK stress tensor S :¼ F21P; P the 1 2 PK stress and the time
derivative of F21:

›

›t
ðF21Þ ¼ 2F21 ·

›F

›t
·F21: ð28Þ

The Lie derivative by using equation (2) reads:

LVt ¼ _t2 l · t2 t · lT: ð29Þ

The Abaqus user interface UMAT requires a tangent (stiffness) which is associated
with the Jaumann rate of the Cauchy stress. The Jaumann rate of the Kirchhoff stress

7
t

is the corotated objective time derivative with respect to the spatial configuration with
instantaneous velocity v(x), given by the skew symmetric (spin) tensor w (i.e. the
vorticity).
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7
t :¼ _t2w · t2 t ·wT: ð30Þ

By using equations (29) and (30), we get a relation between the Jaumann stress rate and
the Lie derivative of the Kirchoff stress in spatial coordinates:

7
t :¼ LVtþ d · tþ t ·dT: ð31Þ

With the spatial tangent matrix c, the Lie derivative of the Kirchoff stress can be
written as:

LVt ¼ c : d or ðLVtÞ
ab ¼ cabcd : dcd: ð32Þ

From equations (31) and (32) we get the Jaumann rate of the Kirchoff stress associated
with

7
c as the Jaumann rate of c in the form:

7
t ¼

7
c : d or ð

7
tÞab ¼ ð

7
cÞabcd : dcd: ð33Þ

In index notation this takes the form, see, e.g. Simo and Hughes (1998):

ð
7
cÞabcd ¼ cabcd þ dactbd þ tacd bd: ð34Þ

ðdactbd þ tacd bdÞ is lacking minor symmetry and by making it symmetric reads:

ð
7
cÞabcd ¼ cabcd þ

1

2
ðdactbd þ tacd bd þ dadtbc þ tadd bcÞ: ð35Þ

For the user subroutine UMAT the Cauchy stress is required which is derived from t
as s ¼ t/J and the tangent, ~c, related to Jaumann rate of Kirchoff stress tensor
(for Abaqus) reads:

~cabcd :¼
7
cabcd=J ¼ ½cabcd þ ð1=2ðd actbd þ tacd bd þ d adtbc þ tadd bcÞÞ�=J ð36Þ

where cabcd is the spatial tangent which is equivalent to ctðbÞ, equation (7).
To implement a nonlinear material model (related to finite strain kinematics) in

Abaqus via user subroutine UMAT the required tangent (stiffness) is expressed by
equation (36).

Implementation of a Neo-Hookean material model in Abaqus 6.4 via UMAT
The algorithms for the nonlinear material law are converted into the Cþþ programming
language and coupled by Abqus via UMAT. Figure 2 shows the flow chart for interaction
of subroutine. At the beginning of each (process) time step UMAT is called for every
integration point of the finite elements in Abaqus. DFGRD1 (deformation gradient at the
end of increment) delivered from Abaqus gives the information for deformation gradient
and is used for material subroutine. The new stress (STRESS), equation (6), and the
material tangent (DDSDDE) following from equation (36) are calculated. At the end of
UMAT the new values are allocated to the variables STRESS and DDSDDE.

Before the declaration of the Cþþ subroutine the expression “extern ‘C’ “ has to
appear. For using a “character string” which is passed from FORTRAN to the Cþþ
routine one has to implement a function that converts a FORTRAN CHARACTER
string into a Cþþ string which are not compatible. In order to reach compatibility
functions callable for FORTRAN must be declared as:

Convergence
behavior of 3D
finite elements

225

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
In

fo
rm

at
io

ns
bi

bl
io

th
ek

 (
T

IB
) 

A
t 0

0:
40

 0
2 

Fe
br

ua
ry

 2
01

8 
(P

T
)



. . .FOR_NAME(subnam,SUBNAM) (...).
The FOR_NAME macro allows system-dependent handling of function names.
Depending on the Abaqus version (we used version 6.4) and the installed compilers

the UMAT subroutine has to be compiled by a command contained in the data file
abaqus_X.env (with version number X) located in the Abaqus installation directory
under. . .\Version\site.

For the version 6.4 and the compilers Visual Cþþ6.0 and Visual Fortran 6 the
UMAT has to be compiled with:

“cl/c/nologo/W0/MD/TP/DNDEBUG/DWIN32/DTP_IP/D_CONSOLE/DNTI/DFLT_LIC/
DOL_DOC/D__LIB__/DHKS_NT/DFAR ¼ /D_WINDOWS/O1/Iper centI”.

First material model
The total strain energy c of two parameter model, see, e.g. Wriggers (2001), results as:

cðI c; J Þ ¼ gðJ Þ þ
1

2
mðI c 2 3Þ; ð37Þ

with gðJ Þ ¼ cð J 2 2 1Þ2 dlnJ 2 mlnJ ; ð38Þ

I c ¼ traceðCÞ; c ¼ L=4; d ¼ L=2 ð39Þ

C :¼ FT ·F; the right Cauchy 2 Green tensor; ð40Þ

with c.0, d.0. L and m are Lamé parameters where m is the shear modulus.
The Cauchy stress is obtained as:

s ¼ 2J21F
dc

dC
FT ¼

L

2
ðJ2 2 1ÞIþ

m

J
ðb2 IÞ: ð41Þ

The tangent in the current configuration results in, see, e.g. Wriggers (2001):

cabcd ¼ LJ 2d abd cd þ 2m2 LðJ 2 2 1Þ
� �

Iabcd; ð42Þ

Figure 2.
Flow chart for the
interaction of Abaqus and
UMAT

Check global
equilibrium at

tn+1

True Go to next
increment tn+2

False

Varaible used
DFGRD1

UMAT
Global
Newton-
Raphson (NR)

Compute stress,
eq. (6)

Compute tangent,
eq. (35)

Update STRESS
and DDSDDE
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with the components of the fourth order unity tensor:

Iabcd ¼
1

2
ðdacd bd þ d add bcÞ: ð43Þ

cabcd in equation (42) is equal to cabcd in equation (36). By using equations (36), (42) and
(43) we get the tangent for Abaqus UMAT interface (Figure 3).

Examples
The analytical tangent, equation (42) with the modification ð J 21cabcdÞ, numerical
tangent, equation (26) and objective Jaumann rate of Kirchhoff stress for rate
dependent deformation, equation (36), are implemented in Abaqus via UMAT
interface. The computed results from different tangents (siffnesses) are computed for
different:

. mesh sizes;

. element types;

. displacement controls; and

. maximum number of displacement increments.

The finite element computations were performed for 13 cases with comparative
studies. The goal of this is the classification of the rates of convergence for iterative
solutions in regular cases, especially the intended quadratic convergence of
appropriate iterative solvers for nonlinear algebraic equations. The default value of
convergence tolerance is taken from Abaqus. This tolerance parameter for residual
force of investigated problems is 5.000E-03.

A cube with edges of unit length l is chosen for the following examples, Figure 2.
The left face, ABCD of the cube is constrained in X direction (as direction 1), the bottom
face, ADHE of the cube is constrained in the Y direction (as direction 2) and the back
face, ABFE is constrained in Z direction (as direction 3). Displacements are applied at
the corner G (X ¼ Y ¼ Z ¼ l ). The material parameters are obtained from the chosen
Young’s modulus, E ¼ 7 MPa, and Poisson’s ratio, n ¼ 0.4999, for the computations.

It is found that the numerical tangent, equation (26), and the analytical tangent
obtained from J21cabcd, equation (7), are not at all efficient. Either the convergence

Figure 3.
Unit cube in reference

configuration with
boundary conditions and

applied loads

u1 = u2 = u3 = u

u1

u2

u3

2

3

1

ABAQUSABAQUS

B

A

C

Y
X

Z

E

D

H

G
F
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rates are not quadratic or the related equation systems even do not converge. The
stiffness is obtained by Jaumann rate of Kirchhoff stress tensor, equation (36), for
UMAT interface and results are presented (Table I).

Element C3D8
An 8-node linear brick (hexahedral) B-bar element is used.

No. of elements: 5 £ 5 £ 5, displacements, ux ¼ uy ¼ uz ¼ 0.5, increment type:
fixed, and maximum number of increments: 25 (Table II).

Results and discussion.
. Number of iterations. Two iterations are needed for each increment.
. Convergence rate. The convergence rate is quadratic.

Element C3D4
It is a 4-node linear tetrahedral element. No. of seeds (nodes): 5 £ 5 £ 5 (five seeds in
each direction), displacements, ux ¼ uy ¼ uz ¼ 0.5, increment type: fixed, and
maximum number of increments: 25.

Results and discussion. Number of iterations and increments.

Increment No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No: of iterations 3 3 3 3 3 2 2 2 2 2 2 2 2 2

Increment No: 15 16 17 18 19 20 21 22 23 24 25 26 27 28

No: of iterations 2 2 2 2 2 2 2 2 2 2 2 3 3 3

Remark: Quadratic convergence is achieved.

Tests
Abaqus finite
elements

No. of
elements

Applied loads
ux ¼ uy ¼ uz(mm)

Increment
type

No. of disp.
Increments

Convergence
rate

1 C3D8 1 0.05 Fixed 1 Quadratic
2 C3D8 1 1 Fixed 25 Over linear
3 C3D8 125 0.5 Fixed 25 Quadratic
4 C3D8H 1 1 Fixed 2 Quadratic
5 C3D8H 125 0.5 Fixed 25 Over linear
6 C3D8IH 1 1 Fixed 25 Quadratic
7 C3D20 1 0.05 Fixed 1 Quadratic
8 C3D20H 125 0.05 Fixed 10 Over linear
9 C3D20RH 1 0.05 Fixed 1 Linear

10 C3D6 125 0.5 Fixed 25 Over linear
11 C3D6H 125 0.05 Fixed 25 Over linear
12 C3D4 125 0.5 Fixed 25 Quadratic
13 C3D4H 125 0.05 Fixed 25 Over linear

Table I.
Convergence tests of
finite elements in Abaqus
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Second material model
Elastic energy from hyperelastic material model
Consistent with the assumption of elastic and thermal isotropy the stored split elastic
energy c reads, see, e.g. Simo and Hughes (1998):

cðb; J Þ ¼ W ð J Þ þ �Wð �bÞ; ð44Þ

with the deviatoric part of elastic left Cauchy-Green tensor, �b :¼ J 22=3FFT ; J 22=3b;
where W : Rþ ! Rþ: W{0} is a convex function of J :¼ detF. W( J ) and �Wð �bÞ are the
volumetric and deviatoric parts of c, respectively. The following explicit forms are
considered:

W ð J Þ :¼
1

2
k

1

2
ð J 2 2 1Þ2 ln J

� �
; �Wð �bÞ :¼

1

2
mðtr½ �b�2 3Þ ð45Þ

where m and k are the shear modulus and bulk modulus for linearized strains,
respectively.

For the uncoupled elastic energy function equation (44), Kirchhoff stress tensor
t ¼ Js, is obtained by (Simo and Hughes, 1998):

t ¼ Jp · lþ S; p ¼
dW

dJ
ð46Þ

with p ¼ (k/2)(1/J)(J 2 2 1) and S ¼ dev½t� ¼ mdev½ �b� ¼ mð �b2 ð1=3Þtr½ �b� · 1Þ,

t ¼
1

2
kð J 2 2 1ÞIþ m �b2

1

3
tr½ �b�I

� �� �
: ð47Þ

The Cauchy stress tensor reads:

sðb; J Þ ¼
1

J

1

2
kð J 2 2 1ÞIþ m �b2

1

3
tr½ �b�I

� �� �
: ð48Þ

Spatial elasticity tensor
Using Kirchhoff stress tensor equation (47), the spatial elastic tensor c (Simo, 1998)
derived as:

C3D8 8-node linear brick (hexahedral) B-bar element
C3D8H 8-node hybrid linear brick element with constant pressure
C3D8IH 8-node linear brick, incompatible modes element
C3D20 20-node quadratic brick element
C3D20H 20-node quadratic hybrid brick element with linear pressure
C3D20RH 20-node hybrid quadratic brick element with reduced integration and linear pressure
C3D6 6-node linear triangular prism element
C3D6H 6-node hybrid linear triangular prism element with constant pressure
C3D4 4-node linear tetrahedral element
C3D4H 4-node hybrid linear tetrahedral element with constant pressure

Table II.
Abaqus finite elements

Convergence
behavior of 3D
finite elements
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ct ¼ J 2 ›2W

›J›J

� �
1^1 þ J

›W

›J
ð1^1 2 2IÞ þ ~c ð49Þ

where ~c ¼ 2 �m I2
1

3
1^1

� �
2

2

3
m½dev½ �b�^1 þ 1^dev½ �b��; ð50Þ

�m ¼ m
1

3
tr½ �b�; and

›2W

›J›J
¼

k

2
1 þ

1

J e2i

 !
: ð51Þ

Inserting ›2W=›J›J and ›W=›J in equation (49) yields:

ct ¼ J 2 k

2
1 þ

1

J 2

� �
1^1 þ J

k

2

1

J
ð J 2 2 1Þ 1^1 2 2Ið Þ þ ~c ð52Þ

¼ kJ 21^1 2 kð J 2 2 1ÞIþ ~c: ð53Þ

In index notation it reads as:

cabcdt ¼ kJ 2dabd cd 2 kðJ 2 2 1ÞIabcd þ ~cabcd with Iabcd ¼
1

2
ðd acd bd þ dadd bcÞ; ð54Þ

cabcdt ¼ kJ2dabd cd 2 kðJ2 2 1ÞIabcd þ 2 �m Iabcd 2
1

3
dabd cd

� �

2
2

3
m dev½b

2ab
�d cd þ d abdev½b

2cd
�

h i ð55Þ

By inserting �m, equation (51), the elastic stiffness yields:

cabcdt ¼ kJ 2dabd cd 2 kðJ 2 2 1ÞIabcd þ
2

3
mtr½ �b� Iabcd 2

1

3
dabd cd

� �

2
2

3
m �babd cd þ dabb

2cd
2

2

3
tr½ �b�2abd cd

� �
:

ð56Þ

The elastic stiffness associated with Cauchy stress tensor in index notation reads,

cabcd ¼ cabcdt =J : ð57Þ

By using equations (36), (47) and (57) we get the tangent for Abaqus UMAT interface.
Implementation of material model is tested by computation of uniaxial tensile test

specimen made up of CuAlNi (Xiangyang et al., 2000). The material data, Poisson’s
ratio ¼ 0.35 and Young’s modulus ¼ 17,200 MPa for the linearized strain is obtained
from (Xiangyang et al., 2000). For comutation only the effective part (gauge length
25 mm) of tension specimen is analyzed. The shape of the specimen (flat rectangular
cross-section) for numerical validation with the 3D finite element mesh using B-bar
linear hexahedral elements (C3D8) and boundary conditions are shown in Figure 4.
This model is 25 mm long, 4 mm wide and 1 mm thick. For computation of the uniaxial
tension test right face EFHG is fixed in Y direction (as direction 2), points B, D, F and G
are fixed in X direction (as direction 1) and points A, C, H and E are fixed in Z direction
(as direction 3). A multi-point constrain (MPC) equation is made between face ABCD
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and point RP-1 in such a way that surface ABCD will follow the point RP-1.
The displacement loads are applied at RP-1 in Y direction (as direction 2). For easy
computation of engineering stress-strain date the MPC are made to get the overall
reaction force at point RP-1. The spatial FE-discretization was carried out with 176
linear 8-node B-bar hexahedral elements of the type C3D8 in Abaqus.

For this test also quadratic convergence is achieved. Figure 5 shows stress-strain
functions obtained from the the implemented material model.

Conclusions
The convergence problem of first and second order B-bar finite elements for finite
elasticity – here with Neo-Hookean material – are investigated using Abaqus-UMAT.
This interface requires Jaumanm rate of Kirchoff stress tensor for both, rate dependent
and rate independent problems. The requested – consistent – tangent is presented in

Figure 4.
Geometry and 3D finite

element discretization of a
PT-tension specimen in
reference configuration

with boundary
condition and

displacement-controlled
load
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ready-to-use form which is beyond the representation in the Abaqus manuals
(Abaqus, n.d.). Furthermore, the Jaumann rate of left Cauchy-Green deformation tensor
is used for getting numerical tangent.

In comparing the convergence behaviour for Jaumann rate of Kirchoff stress with
analytical and numerical tangent for 14 basic examples using hexahedral, tetrahedral
and triangular prism yields the result that only the tangent with Jaumann rate of
Kirchoff stress gurantee the quadratic or nearly quadratic convergence.
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