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A contact detection algorithm
for superellipsoids based

on the common-normal concept
Christian Wellmann, Claudia Lillie and Peter Wriggers

Institute of Mechanics and Computational Mechanics,
Leibniz-University of Hannover, Hannover, Germany

Abstract

Purpose – The paper aims to introduce an efficient contact detection algorithm for smooth convex
particles.

Design/methodology/approach – The contact points of adjacent particles are defined according to
the common-normal concept. The problem of contact detection is formulated as 2D unconstrained
optimization problem that is solved by a combination of Newton’s method and a Levenberg-Marquardt
method.

Findings – The contact detection algorithm is efficient in terms of the number of iterations required
to reach a high accuracy. In the case of non-penetrating particles, a penetration can be ruled out in the
course of the iterative solution before convergence is reached.

Research limitations/implications – The algorithm is only applicable to smooth convex particles,
where a bijective relation between the surface points and the surface normals exists.

Originality/value – By a new kind of formulation, the problem of contact detection between 3D
particles can be reduced to a 2D unconstrained optimization problem. This formulation enables fast
contact exclusions in the case of non-penetrating particles.

Keywords Computational geometry, Motion

Paper type Research paper

Introduction
Contact detection of moving rigid bodies is an important problem in various fields like
discrete element methods (DEMs), computer vision, robotics, etc. When dealing with
numerous bodies, the process of contact detection is split into two phases. The goal of
the first phase is to reduce the number of inter-particle contact checks from an all-to-all
contact check to a considerable smaller number. Typically, spherical or cuboid
bounding boxes are defined for each particle and a spatial sorting algorithm is applied
to determine the neighbors of each particle. Especially, efficient algorithms for this
purpose, which scale linear with the number of particles, can be found in Munjiza et al.
(2006), Munjiza and Andrews (1998) and Perkins and Williams (2001). In the second
phase, a detailed contact check is performed for each pair of adjacent particles. If a
contact is detected, the geometric quantities used for the generation of a contact force
have to be determined. A broad overview of methods for both parts of the contact
detection process is given by Lin and Gottschalk (1998) and Vemuri et al. (1998).
Obviously, the particle type is crucial for the kind of algorithm that might be applied
for the detailed contact check. Particle types can be divided into discrete types
consisting of a number of vertices with a corresponding connectivity and continuous
types which can be described with the help of implicit or explicit continuous functions.
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These particle types are further subdivided into convex and non-convex types.
Regarding DEMs continuous particles have the advantage of an uniquely defined
normal at every surface point, which is favorable for the calculation of contact forces.
The simplest kind of continuous particles are spheres for which contact detection is
trivial. More sophisticated particle types which were successfully used in DEMs are,
e.g. ellipsoids (Ting et al., 1995; Lin and Ng, 1995; Ouadfel and Rothenburg, 1999), the
four-arc ellipsoid approximation (Potapov and Campbell, 1998; Wang et al., 1999;
Kuhn, 2003; Johnson et al., 2004), and superellipsoids (Barr, 1981; Williams and
Pentland, 1992; Cleary et al., 1997). In contrast to the four-arc ellipsoid approximation,
ellipsoids and superellipsoids have a continuous curvature, which facilitates the use of
a more sophisticated, Hertzian-type contact law.

This paper introduces an efficient algorithm for the second phase of contact
detection, that is applicable to any kind of continuous convex particles, that offer an
explicit relationship between the surface points and surface normals. The algorithm is
described and tested using superellipsoid particles, which offer the greatest variety of
shapes among the continuous particles quoted above. It is build as an iterative search
for the contact direction, which is the direction parallel to the surface normals at the
contact points. In this process, the algorithm exploits the convex shape of the particles
by searching for a separating plane, such that each particle lies in a different half-space
of the plane. Hence, in the case of non-penetrating particles, it is possible to rule out a
penetration before final convergence is reached which reduces the computational effort
significantly.

The paper is organized as follows: first, a short introduction of superellipsoids and
their important properties regarding the contact detection algorithm is given. Next, the
problem of contact detection is formulated as a 2D unconstrained optimization problem
in terms of the contact direction. The application of a combined Newton and
Levenberg-Marquardt method then leads to the contact detection algorithm. This is
followed by an extensive validation of the algorithm and the conclusion.

Superellipsoid
Superellipsoid particles like introduced by Barr (1981) are used, whose definition
differs slightly from those used by Williams and Pentland (1992) and Cleary et al.
(1997). According to Barr (1981), a superellipsoid is described by the so-called
inside-outside function:

FðxÞ ¼
x1

r1

����
����
2=e1

þ
x2

r2

����
����
2=e1

 !e1=e2

þ
x3

r3

����
����
2=e2

: ð1Þ

Every point x with F(x) # 1 belongs to the superellipsoid and every point x with
F(x) ¼ 1 lies on its surface. The radius parameters ri specify the dimensions of the
superellipsoid. The exponents e1 and e2 control the squareness of the superellipsoid in
the x1, x2 plane and x3 direction, respectively. Here, e i [ (0,2) is assumed which leads to
a convex body. Note that e i ! 0 yields a cuboid and e i ! 2 yields an octahedron,
compare Figure 1.

Furthermore, it is possible to describe the surface of the superellipsoid in terms of
surface parameters fi through:
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xðf1;f2Þ ¼

sgnðcosf1Þr1jcosf1j
e1 jcosf2j

e2

sgnðsinf1Þr2jsinf1j
e1 jcosf2j

e2

sgnðsinf2Þr3jsinf2j
e2

2
664

3
775;

2p # f1 , p

2 p
2 # f2 #

p
2

: ð2Þ

Regarding the contact detection algorithm, a favorable property of superellipsoids is
that the surface normals are easily described in terms of the surface parameters by
another superellipsoid equation:

nðf1;f2Þ ¼

sgnðcosf1Þð1=r1Þjcosf1j
22e1 jcosf2j

22e2

sgnðsinf1Þð1=r2Þjsinf1j
22e1 jcosf2j

22e2

sgnðsinf2Þð1=r3Þjsinf2j
22e2

2
6664

3
7775: ð3Þ

Hence, there exists a smooth invertible mapping between the 2D space of surface
parameters and the 3D space of normalized normal vectors. The surface parameters
can be expressed in terms of the normal components n i through:

f1 ¼ tan21 s1jr1n1j
d1 ; s2jr2n2j

d1

� �

f2 ¼

tan21 jr1n1j
d2 ; s3

��� r3n3jcosf1j
22e1

� ����d2

� �
if jr1n1j . jr2n2j

tan21 jr2n2j
d2 ; s3

��� r3n3jsinf1j
22e1

� ����d2

� �
else

8>>>>><
>>>>>:

with di ¼
1

2 2 e i
; si ¼ sgnðniÞ:

ð4Þ

Figure 1.
Superellipsoids with r1 ¼
r2 ¼ r3=2 and (a) e i ¼ 0.3;
(b) e i ¼ 1 and (c) e i ¼ 1.7

(b)
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Herein tan21(x, y) is the arc tangent of y/x, taking into account which quadrant the
point (x,y) is in.

Problem formulation
In DEM simulations, the trajectories of a huge number of particles are determined by
application of an explicit time integration scheme to the particles equation of motion. If
two particles come into contact, a repulsive contact force has to be applied to prevent
them from moving through each over. Typically, the particles are regarded as rigid
bodies for the time integration and are considered to be in contact if they
inter-penetrate. Repulsive contact forces are then derived from the size of the
inter-penetration and chosen in a way to keep the inter-penetration small compared to
the size of the particles. A contact detection algorithm therefore has to check if two
adjacent particles P1 and P2 inter-penetrate and calculate the set of quantities used for
contact force generation.

For most of the contact formulations used in DEMs contact points p 1 and p 2, a
penetration distance d ¼ kdk ¼ kp 2 2 p 1k and a contact direction c belong to this set,
compare Figure 2. Regarding the contact force generation, a definition of the contact
points based on the common-normal concept is favorable ( Johnson, 1985). Accordingly,
the contact points are defined as those points that have minimum distance and fulfill:

n1 ¼ m 2c n2 ¼ 2n 2c d £ c ¼ 0: ð5Þ

Herein n1 and n2 are the outward surface normals at p 1 and p 2 and m and n are
arbitrary real numbers. Conditions (5)1 and (5)2 assure that the normal vectors
are anti-parallel and (5)3 assures that the vector connecting p 1 and p 2 is parallel to the
contact direction c.

A number of different approaches have been proposed to calculate the contact
quantities listed above. One possibility is to transform equation (5) into a set of
non-linear equations in terms of the surface points coordinates by expressing the
normal vectors in terms of these coordinates and by elimination of c. Hereat attention
has to be paid to multiple solutions, because the minimum distance condition is
neglected. This approach was used successfully in combination with ellipsoids (Lin and
Ng, 1995) and superellipsoids (Cleary et al., 1997). An approach that only
approximately fulfills equation (5) is based on the so-called geometric potential
function, which for superellipsoids is the inside-outside function (1) (Ting et al., 1993;

Figure 2.
Two adjacent particles P1

and P2 with contact points
p 1 and p 2, normal vectors
n1 and n2, distance vector
d and contact direction c

d

s2

s1

c

n1p2

p1

n2
P1

P2
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Lin and Ng, 1995; Tijskens et al., 2004). Lin and Ng (1995), e.g. define the contact points
as those points which minimize the geometric potential function of the contact partner.
For small penetrations, these methods yield contact points close to that defined by
equation (5). Another approximating approach is the discrete function representation
approach (Williams and O’Connor, 1995; Hogue, 1998). Here, each particle surface is
discretized by a number of points. Contact detection is then done by checking these
points for inclusion in the contact partner. This approach allows for a wider range of
particle geometries including even some concave geometries. It is performance
regarding accuracy and speed depends on the number of points used for the surface
discretization.

In the approach presented here, the problem of contact detection is formulated in
terms of the contact direction c. For this purpose, the contact direction is parameterized
by two angles a1 and a2 through:

cða1;a2Þ ¼ cosa1 cosa2 e1 þ sina1 cosa2 e2 þ sina2 e3

with e1 ¼
ðs2 2 s1Þ

ks2 2 s1k
and e i · ej ¼ dij:

ð6Þ

Herein, the s i is the particle center and ðe1; e2; e3) are the unit base vectors of a
right-handed Cartesian coordinate system with (e1) pointing in the direction from the
first particle center to the second particle center. As mentioned above for
superellipsoids, there exists a smooth invertible mapping between the normal
directions and the surface parameters. Hence, the surface points p 1 and p 2 can be
determined from a1 and a2 so that (5)1 and (5)2 are fulfilled, i.e. the normal vectors n1

and n2 at p 1 and p 2 are pointing in opposite directions. For this purpose, the contact
direction c has to be transformed into the local coordinate systems of both particles. For
each particle, the transformation between the components of local ð ~†Þ and global
position and direction vectors is given with the particle center vector s and it is rotation
tensor T by:

xi ¼ Tij ~xj þ si di ¼ Tij
~dj: ð7Þ

The surface parameters of p 1 and p 2 can then be determined using equation (4) which
finally yields the surface points using equations (2) and (7). Consequently, the distance
vector can be expressed in terms of the contact direction angles:

dða1;a2Þ ¼ p 2ða1;a2Þ2 p 1ða1;a2Þ: ð8Þ

Hence, the problem of contact detection can be formulated as optimization problem in
terms of the contact direction angles through:

a1;a2
min f ða1;a2Þ ¼ kdða1;a2Þk

2
: ð9Þ

Obviously, conditions (5)1 and (5)2 are fulfilled for every direction (a1, a2). Furthermore,
it can be shown that condition (5)3 is fulfilled at the global minimum of equation (9) if
the penetration distance is small compared to the particle sizes and compared to the
minimum radius of curvature of the particle surfaces. Hence, the global minimum of
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equation (9) yields the contact direction of equation (5) from which the other quantities
used for contact force generation can be deducted.

Contact detection algorithm
For an implementation of a contact detection algorithm, any unconstrained
optimization algorithm can be applied to problem (9). Here, a combination of
Newton’s method and a Levenberg-Marquardt method is used. Therefore, the first and
second derivatives of f with respect to the contact direction angles have to be
determined:

f i ¼ 2ðd ·diÞ; f ij ¼ 2ðdi ·dj þ d ·dijÞ with †i ¼
›†

›ai

: ð10Þ

According to equation (8), the derivatives of the distance vector are obtained from the
surface points derivatives:

pbi ¼
›pb

›fg

›fg

›ck

›ck
›ai

pbij ¼
›2pb

›fg ›fd

›fg

›ck

›fd

›cl

›ck
›ai

›cl
›aj

þ
›pb

›fg

›2fg

›ck ›cl

›ck
›ai

›cl
›aj

þ
›fg

›ck

›2ck
›ai ›aj

� �
:

ð11Þ

Herein, repeated Greek indices denote a summation from 1 to 2 and repeated Latin
indices denote a summation from 1 to 3. The single partial derivatives in equation (11)
are derived from equations (2), (4), (6) and (7). Care has to be taken because some of the
second derivatives ›2pb=ð›fg›fdÞ become indeterminate at points where sinfg ¼ 0 or
cosfg ¼ 0. Furthermore, some of the derivatives ›fg=›ck become indeterminate at
points where one or more of the local transforms of the ck’s become zero. In these cases,
the points are slightly shifted to compute the gradient and Hessian matrix of f. An
iteration step starts with the computation of a search direction (da1, da2) by solving:

f 11 f 12

f 21 f 22

" #
da1

da2

" #
¼ 2

f 1

f 2

" #
ð12Þ

if the Hessian matrix is positive definite. Otherwise, the matrix is modified according to
the Levenberg-Marquardt method to guarantee that f decreases in the direction (da1,
da2). Next, a step size s is determined using the Armijo rule and the contact direction
angles are updated:

ðiþ1Þða1;a2Þ ¼
ði Þða1;a2Þ þ s ðda1; da2Þ: ð13Þ

The iteration stops when a certain accuracy of kgrad f k , TOL is reached. An
advantage of this approach is that in the case of non-penetrating particles a penetration
can be ruled out before the iterative process converges to this accuracy (Figure 3).

In part (a), two adjacent particles are depicted whose bounding boxes intersect.
Hence, in a DEM simulation this particle pair will have to be checked for a penetration.
Part (b) shows the contact points, normals and the distance vector after i iterations.
At this point of the iterative process, a penetration can be ruled out, because it is:
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ði Þn1 · ði Þ d . 0 ,ði Þ c · ði Þd . 0: ð14Þ

Because of (5)1, (5)2 and equation (14) (i )p 2 is the closest point of P2 to the tangent plane
(i )E 1 with a distance unequal zero. Therefore, (i )E 1 separates P1 and P2 and a
penetration can be ruled out. If the criterion (14) is fulfilled for a contact direction (i )c
the iterative process can be stopped resulting in a significant reduction of the
computational effort for contact detection in the case of non-penetrating particles. In
the case of a penetration of P1 and P2, the algorithm converges to a minimum of f. To
ensure that this minimum is the global minimum two conditions have to be checked.
First, (5)3 has to be fulfilled. Under the assumption of a small penetration distance, (5)3
can only be fulfilled by a local minimum if the corresponding contact points p1 and p2

lie outside P2 and P1 (Figure 4).
Hence, the second condition that has to be checked is that p 1 [ P2 and p 2 [ P1,

which can be done using the inside-outside functions of the particles. If convergence to
a local minimum is detected a combination of a random-search method and the
Nelder-Mead simplex algorithm (Lagarias et al., 1998) is applied to generate a new start
point (0)(a1, a2). This process is repeated until the global minimum of f is found. In a
DEM simulation start values for the direction angles might be drawn from the last time
step if a contact pair lasts over multiple time steps. When a contact pair is considered
for the first time, the direction of the vector connecting the particle centers is a good
initial guess for the contact direction leading to (0)(a1, a2) ¼ (0, 0), compare equation (6).

Figure 3.
(a) Two adjacent particles
P1 and P2 with
intersecting spherical and
cuboid bounding boxes;
(b) contact points, normals
and distance vector after
i iterations

(i)E1

(a) (b)

P2

P1

(i)p2

(i)p1

(i)d

(i)n1

(i)n2

Note:   E1 is the tangent plane to    1 at (i)  1(i)

Figure 4.
Two adjacent particles
P1 and P2 with contact
points, normals and
distance vector
corresponding to a
local minimum of f

d
p1

p2

n2

n1
p1

p2

Note: The dotted circle indicates that d has
locally minimum length
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Validation
For validation, the contact detection algorithm was applied to a huge number of
randomly generated particle pairs. Instead of performing a DEM simulation of an
assemblage of particles, each contact pair was generated and checked separately. This
has the advantage that due to the generation process the exact solution in terms of the
contact direction and the contact points is known so that the solution resulting from the
contact detection algorithm can be checked up on its accuracy. Each particle pair was
generated according to the following scheme: the first particle center is set to the origin
s1 ¼ 0 and it is rotation tensor is set to the identity tensor T1 ¼ E. Next, a random
contact direction c is generated from which the surface parameters f1

i of the contact
point p 1 can be determined using equation (4). A random rotation tensor T2 is
generated and the distance d of the particles is chosen randomly. The second contact
point is given as p 2 ¼ p 1 þ dc whereat a positive d corresponds to a non-penetrating
particle pair. The surface parameters f2

i of p 2 have to be determined from c and T2

with the help of equations (4) and (7). Finally, s2 can be calculated from p 2,f2
i and T2

using equations (2) and (7). The radius parameters ri of each superellipsoid were chosen
randomly and equally distributed from the interval (0.5 and 3.0) yielding a maximum
particle aspect ratio of six while the squareness parameters e i were chosen randomly
and equally distributed from one of the intervals listed in Table I.

Two test series were performed where in the first one all particle pairs had a real
distance while in the second one they were always in contact. Hence, in the first series
the capability of the algorithm for a fast contact exclusion was tested while in the
second series the accuracy and efficiency of the algorithm in determining the contact
points and direction was tested. For both test series, 106 particle pairs were generated
for each of the squareness parameter intervals from Table I. The distance of the
particles for the first series was chosen randomly and equally distributed from the
interval (0, 0.25) and the penetration distance for the second series from the interval
(0, 1.75 £ 1023). The direction of the vector connecting the particle centers was always
used as initial guess for the contact direction.

In the first test series, the number of iterations needed to rule out a penetration was
recorded. The probability of a penetration exclusion after i iterations, which is the
number of trials where a penetration was ruled out after i iterations divided by the
overall number of trials, is plotted against i in Figure 5. The probability of a
penetration exclusion after 0 iterations is 78.2 percent for the squareness parameter
Interval 3, 85.2 percent for Interval 2 and 88.1 percent for Interval 1. In this case, the
initial guess for the contact direction is good enough to rule out a penetration, so no
gradient or Hessian matrix has to be computed. The probability that five or more
iterations are needed is 3.7 percent for Interval 3, 1.1 percent for Interval 2 and
1.1 percent for Interval 1. The number of trials where a penetration could not be
excluded within 50 iterations is 456 for Interval 3, 24 for Interval 2 and 28 for Interval 1.

Interval No. 1 2 3

emin 1 0.7 0.3
emax 1 1.3 1.7

Table I.
Squareness parameter

intervals
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In these cases, at most three new start points had to be generated until a penetration
could be excluded.

In the second test series, the number of iterations to reach an accuracy of
kgrad fk , 1026 was recorded. The results are shown in Figure 6.

For each squareness parameter interval, convergence is most likely reached after
about 2-10 iterations. The probability that 20 or more iterations are needed is
4.5 percent for Interval 3, 0.4 percent for Interval 2 and 0.4 percent for Interval 1. The
number of trials where the algorithm converged to a local minimum or did not
converge within 50 iterations is 9,219 for Interval 3, 198 for Interval 2 and 193 for
Interval 1. Here, at most 15 new start points had to be generated for Intervals 3 and 2
for Intervals 2 and 1.

Finally, the accuracy of the algorithm was analyzed in terms of the relative error of
the computed penetration distance ~d, the distance of the computed and the exact
contact points ~p i and p i and the angle between the computed and exact contact
direction ~c and c. The average values for each squareness parameter interval are listed
in Table II.

Figure 5.
First test series:
probability of a
penetration exclusion vs
the number of iterations

1e-04

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10pr
ob

ab
ili

ty
 o

f 
pe

ne
tr

at
io

n 
ex

cl
us

io
n

number of iterations

εi = 1
0.7 < εi < 1.3
0.3 < εi < 1.7

Figure 6.
Second test series:
probability to reach
convergence vs the
number of iterations
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Interval No. j ~d2 dj=d k~p i 2 p ik Acrossð~c · cÞð · Þ

1 2.34 £ 1026 4.34 £ 1028 4.21 £ 1023

2 2.40 £ 1026 4.40 £ 1028 5.05 £ 1023

3 3.21 £ 1025 3.72 £ 1027 1.82 £ 1022

Table II.
Average errors of
contact detection
algorithm results
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Conclusion
A contact detection algorithm is introduced that is applicable to convex continuous
particles, which offer an explicit relationship between contact normals and surface
points. The main characteristic of the algorithm is that it searches for the contact
direction instead of the contact points. This, in combination with the convex particle
shape, offers the possibility of a penetration exclusion before final convergence is
reached. Numerical tests showed that a fast penetration exclusion is very probable
yielding a high efficiency of the algorithm when applied to non-penetrating particle
pairs. In the case of a penetration, the algorithm most likely converges in less than ten
iterations yielding a high accuracy in terms of the penetration distance, contact points
and contact direction. Therefore, the algorithm is expected to show good performance
when applied to DEM simulations of convex continuous particles.
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