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Abstract:We show that the regular Slodowy slice to the sum of two semisimple adjoint orbits of GL(n,C) is
isomorphic to the deformation of the D

2
-singularity if n = 2, the Dancer deformation of the double cover of

the Atiyah-Hitchin manifold if n = 3, and to the Atiyah-Hitchin manifold itself if n = 4. For higher n, such
slices to the sum of two orbits, each having only two distinct eigenvalues, are either empty or biholomorphic

to open subsets of the Hilbert scheme of points on one of the above surfaces. In particular, these open sub-

sets of Hilbert schemes of points carry complete hyperkähler metrics. In the case of the double cover of the

Atiyah-Hitchin manifold this metric turns out to be the natural L2-metric on a hyperkähler submanifold of

the monopole moduli space.

Let G be a compact Lie groupwith Lie algebra g and let (e, h, f ) be an sl(2,C)-triple in gC. The affine subspace

S(f ) = f +C(e) of gC, where C(e) denotes the centraliser of e, is called the Slodowy slice to the nilpotent orbit of
f [28]. It has the remarkable property of being transverse to any adjoint orbits it meets. LetM be a hyperkähler

manifold with a tri-Hamiltonian action of G and let µ : M → (gC)* ≃ gC be the complex moment map for one

of the complex structures. It has been shown in [4] (extending results of Kronheimer [23] on slices to nilpotent

orbits) that, under mild assumptions on M, µ−1(S(f )) carries a natural hyperkähler structure. Moreover, as
we show in the present paper, the hyperkähler metric on µ−1(S(f )) is complete if the original metric on M is

complete.

A remarkable number of hyperkählermanifolds arise as such Slodowy slices to simpler hyperkählerman-

ifolds:

– the moduli space of SU(2)-monopoles of charge k is the regular slice to T*GL(k,C) for the U(k) × U(k)-
action [4] ("regular slice" means that the nilpotent orbit of f is regular);

– ALE gravitational instantons are subregular slices to regular semisimple adjoint orbits [4, 6] (this has

been also rediscovered by Manolescu [24] in the case of A
2m ALE spaces and by Jackson [19] for other

ALE spaces of types A and D);

– ALF gravitational instantons of type Dk, k ≥ 3, are regular slices to regular semisimple adjoint orbits of

SL(k,C) for the action of SU(2) × SU(k − 2) ⊂ SU(k) [11];
– the D

2
ALF gravitational instanton is the regular slice to the product of two semisimple adjoint orbits of

SL(2,C) [6].
As seen from these examples, slices to adjoint orbits provide a particularly rich source of hyperkähler mani-

folds. As far as we know, however, slices to products of two or more orbits have not been investigated, apart

from the last example.
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Slices, Atiyah-Hitchin, and Hilbert schemes of points | 17

Since the complex moment map of an orbit O is the embedding O →˓ gl(n,C), such a slice is the affine

variety {︃
(A

1
, . . . , Ak) ∈

k∏︁
i=1

Oi; A1 + · · · + Ak ∈ S(f )
}︃
.

It makes therefore sense to speak about a slice to the sum of orbits.

In the present paper wemake the first step and consider regular Slodowy slices to the sum of two adjoint

semisimple orbits of GL(n,C), each orbit having only two eigenvalueswithmultiplicities ki and li (ki+ li = n),
i = 1, 2. They are nonempty only if j = |k

1
− l

1
|+|k

2
− l

2
| ≤ 2, and in this casewe obtain three series of complete

hyperkähler manifolds depending on the value of j = 0, 1, 2. These three series turn out to be related to the

first three ALF gravitational instantons of type Dk, i.e. the Atiyah-Hitchin manifold (D
0
) if j = 2, Dancer’s

deformation of its double cover (D
1
) if j = 1, and Hitchin’s [16] D

2
-manifold if j = 0. All three are affine

surfaces given by respective equations

x2 − zy2 + y = 0,

x2 − zy2 − 1 + αy = 0,

x2 − zy2 + x + αy + β = 0.

We show that these surfaces and their hyperkählermetrics are realised as slices to the sumof two orbits in

GL(4,C) for theAtiyah-Hitchinmanifold, inGL(3,C) for its double cover, and inGL(2,C) for the deformation

of the D
2
-singularity (in the last case, the complex structure, but not the metric, has been identified in [6]).

For higher n we identify the nonempty slices as open subsets of Hilbert schemes of points on these sur-

faces. These open subsets consist of those schemes Z of points forwhich theprojection π onto the z-coordinate
in the above equations induces an isomorphism between Z and its scheme-theoretic image π(Z). We call this

open subset the Hilbert scheme of points transverse to π. The construction of these goes back to Atiyah and

Hitchin [1, Ch. 6], who realised spaces of based rational maps on P1 as such transverse Hilbert schemes. As

observed by Atiyah and Hitchin, if we start with a hyperkähler 4-manifold, then we can apply the transverse

Hilbert scheme construction fibrewise to its twistor space and obtain a new twistor space, whichmay lead to a

newhyperkählermetric. This does not alwayswork: we show (§6) that if we start with flatC2

and π(x, y) = xy,
then the new twistor space has no twistor lines. It does however work in case of the D

0
, D

1
and D

2
surfaces

with π(x, y, z) = z and we show that the hyperkähler metric on the transverse Hilbert scheme of m points

obtained from the slice construction coincides with the one obtained from the fibrewise twistor construction.

In the case of the double cover of the Atiyah-Hitchin manifold, we can identify this hyperkähler metric as the

natural metric on certain hyperkähler submanifold of the moduli space of SU(2)-monopoles of charge 2m.
Incidentally, the transverse Hilbert scheme of points on the ALE surfaces of type Ak (k ≥ 1) and Dk (k ≥

4) have been identified as slices to single semisimple adjoint orbits by Seidel and Smith [27], Manolescu

[24] and Jackson [19] (the identification is only as complex manifolds but I believe that going through the

identification fibrewise on the twistor space will show that the hyperkähler metrics are those arising from

the fibrewise Hilbert scheme construction). Hence, there arises the natural question whether the fibrewise

transverse Hilbert scheme construction applied to twistor spaces of arbitrary ALF gravitational instantons

also produces complete hyperkähler metrics. We show here that this is the case for type A
0
, i.e. for the Taub-

NUT metric (§6). Since the ALF gravitational instantons of type Ak, k ≥ 1, arise as a Taub-NUT modification

of the corresponding ALE spaces, we expect that a combination of the construction for the Taub-NUT metric

and for the Ak ALE spaces will answer the question positively in this case. For ALF gravitational instantons

of type Dk there is a whole unexplored world of possibilities among non-regular slices to sums of two orbits

or regular slices to sums of three or more orbits and slices to orbits in other simple Lie groups.

The article is organised as follows. In the next section we recall the hyperkähler slice construction from

[4]. In section 2 we discuss slices to sums of two orbits, each having only two eigenvalues, identify those

pairs of orbits for which the regular slice is nonempty and define the three series of hyperkähler manifolds

described above (depending on the value of j ∈ {0, 1, 2}). In sections 3 and 4we identify the slices in the case
of orbits in GL(2,C), GL(3,C), and GL(4,C), i.e. the initial members of the three series. In sections 5 and

6 we discuss transverse Hilbert schemes of points and show that there exist complete hyperkähler metrics
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18 | Roger Bielawski

on such Hilbert schemes of points for the Taub-NUT metric. In section 7 we show that nonempty slices to

sums of two orbits (each orbit having only two eigenvalues) in GL(n,C) with n > 4 are transverse Hilbert

schemes of points on the D
0
, D

1
or D

2
surface (depending on whether the value of j defined above is 2, 1 or

0).We also show there that the complete hyperkählermetrics on these, which arise from the hyperkähler slice

construction, have twistor spaces obtained via the fibrewise transverse Hilbert scheme construction. Finally,

in the appendix, we show that a hyperkähler slice to a complete hyperkähler manifold is again complete.

1 Slodowy slices and hyperkähler metrics
Let g be a compact Lie algebra and ρ : su(2) → g a homomorphism of Lie algebras. We extend ρ to a homo-

morphism of complexified Lie algebras and denote by (e, h, f ) the resulting sl(2,C)-triple. The Slodowy slice
[28] corresponding to ρ is the affine subspace S(ρ) = f + C(e) of gC, where C(e) denotes the centraliser of e. It
has the remarkable property of being transverse to any adjoint orbits it meets.

As shown in [4], themanifold S(ρ)×GC
,whereG is a compact Lie groupwithLie algebrag, carries anatural

hyperkähler metric. It is described (see Appendix) as the natural L2-metric on the moduli space of g-valued

solutions toNahm’s equations on the interval (0, 1] (rescaling the interval corresponds to rescaling themetric)

with simple poles having residues determined by ρ at t = 0. Two solutions are identified if they differ by a

gauge transformation which is identity at both t = 0 and t = 1. This hyperkähler metric on S(ρ) ×GC
admits a

free tri-hamiltonian (in particular isometric) action ofG (given by gauge transformationswith arbitrary values

at t = 1) and an isometric SO(3)-action rotating the complex structures. In particular, each complex structure

of this hyperkähler manifold is that of S(ρ) × GC
. The completeness of the hyperkähler metric on S(ρ) × GC

was not shown in [4] - an omission which we rectify in the appendix to this paper:

Theorem 1.1. The natural hyperkähler metric on S(ρ) × GC is complete.

Let now M be a hyperkähler manifold with a tri-Hamiltonian action of G. We can then form the hyperkähler

quotient of M × S(ρ) × GC
by G which is always smooth and, in view of the above theorem, complete, if the

metric on M is complete. Moreover, as shown in [4], the complex structure of this hyperkähler quotient is,

under mild assumptions, easily identified:

Theorem 1.2. [4] Let (M, g, I
1
, I

2
, I

3
) be a hyperkähler manifold with a tri-hamiltonian action of a compact

Lie group G. Let I be one of the complex structures and µ : M → gC the corresponding I-holomorphic moment
map (i.e. µ = µ

2
+ iµ

3
if I = I

1
). Assume that the action of G extends to an I-holomorphic action of GC and

that M admits a global Kähler potential for the Kähler form g(I·, ·) which is bounded below on each GC-orbit.
Then the hyperkähler quotient of M × S(ρ) × GC by G is biholomorphic, with respect to the complex structure I,
to µ−1

(︀
S(ρ)

)︀
. 2

We shall refer to the hyperkähler quotient of M × S(ρ) × GC
as a hyperkähler slice to M. In the current paper

we shall be interested in the case G = U(n), (e, h, f ) a regular sl(2,C)-triple andM a product of flat space and

adjoint GL(n,C)-orbits with their Kronheimer-Biquard-Kovalev (KBK) hyperkähler structure [9, 21–23].

In the case of slices to adjoint orbits, we need to be careful the identification of the complex-symplectic

and hyperkähler quotients described in the above theorem, since the Kähler form of the KBKmetric does not

need to admit a global Kähler potential¹ (it may define a nonzero H1,1

-cohomology class).

The following proposition allows us to identify the complex structure of slices to arbitrary semisimple

adjoint orbits.

1 KBK-metrics on a given complex adjoint orbit are parameterised by an element τ
1
of certain abelian subalgebra of g. Only the

KBK-metric with τ
1
= 0 admits a global Kähler potential.
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Proposition 1.3. Let H and G be two commuting closed subgroups of Sp(n) with G ∩ H = {1} and let ν =

(ν
1
, ν

2
, ν

3
) : Hn → h⊗R3 be the hyperkähler moment map for H. Let M = ν−1(τ)/H be a hyperkähler quotient.

Assume that H acts freely on ZI = (ν
2
+ iν

3
)

−1

(τ
2
+ iτ

3
) and that the HC-orbits in ZI are closed. Then the

hyperkähler quotient of M×S(ρ)×GC by G is biholomorphic, with respect to the complex structure I, to µ−1
(︀
S(ρ)

)︀
,

where µ : M → gC is the corresponding I-holomorphic moment map.

Proof. The hyperkähler quotient ofM×S(ρ)×GC
by G is isomorphic to the hyperkähler quotient of V×S(ρ)×GC

by G ×H. The statement is equivalent to saying that this second hyperkähler quotient is biholomorphic, with

respect to the complex structure I, to the complex-symplectic quotient of V × S(ρ) × GC
by GC

× HC
. The

assumptions imply that all GC
× HC

orbits in the level set Z of the complex moment map are closed and that

G × H acts freely there. Moreover V has a proper Kähler potential for the complex structure I. It follows, as
in [4, §4], that Z has a global Kähler potential which is proper on each GC

× HC
-orbit. The arguments in [13,

§6.5.2] imply now that every GC
× HC

-orbit in Z is stable and hence the hyperkähler and complex-symplectic

quotients coincide.

Hyperkähler metrics on adjoint orbits of GL(n,C) can be obtained, as shown by Nakajima [25] (see also [20]),

as hyperkähler quotients of a quaternionic vector space by a product of unitary groups, and the assumption

about the closedness of HC
-orbits is fulfilled in the case of semisimple orbits. The fact that the Nakajima and

the KBK hyperkähler stuctures coincide in this case is a consequence of the main result of [5].

Thus we conclude the above result holds for any product O
1
× · · · × Ok of semisimple adjoint orbits of

GL(n,C) (it also holds for nilpotent orbits, thanks to Theorem 1.2). This means that the hyperkähler slice to

this product is biholomorphic to the affine variety{︃
(A

1
, . . . , Ak) ∈

k∏︁
i=1

Oi; A1 + · · · + Ak ∈ S(ρ)
}︃
.

As mentioned above, we shall only consider the regular slice, i.e. the case where ρ defines an irreducible

representation of su(2). In this case, the Slodowy slice is isomorphic to the set Sn of companion matrices⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 sn

1

.
.
. 0 sn−1

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

0 . . .
.
.
. 0 s

2

0 . . . . . . 1 s
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.1)

We shall denote themanifold Sn ×GL(n,C) with its natural hyperkähler metric by Nn. We shall need later

a description of the twistor space of Nn, which has already been found in [7] (see the proof of Proposition 6.1
there). It is given by gluing two copies of C × Sn × GL(n,C) with coordinates (ζ , S, g) and (˜ζ , ˜S, g̃) via

˜ζ = ζ −1, ˜S = D(ζ )SD(ζ )−1/ζ 2, g̃ = g exp(−S/ζ )D(ζ )−1, (1.2)

where D(ζ ) = diag

(︀
ζ −n+1, ζ −n+3, . . . , ζ n−1

)︀
.

2 Regular slices to sums of two orbits
We consider two semisimple adjoint orbitsO

1
,O

2
of GL(n,C) both having only two different eigenvalues (i.e.

orbits which are also complex symmetric spaces). After translating bymultiples of the identity matrix we can

assume that O
1
and O

2
have eigenvalues µ

1
, −µ

1
with multiplicities k

1
, l
1
and µ

2
, −µ

2
with multiplicities

k
2
, l
2
, respectively. Thus A2 = µ2i for A ∈ Oi and matrices A satisfying this equation fall into different orbits

according to the value of trA.
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Let us write d
1
= k

1
− l

1
and d

2
= k

2
− l

2
, so that trA = d

1
µ
1
, tr B = d

2
µ
2
. The numbers d

1
and d

2
have

the same parity as n.
The regular Slodowy slice to the sum of these two orbits is the variety(︀

O
1
+ O

2
) ∩ Sn =

{︀
(A, B) ∈ O

1
× O

2
; A + B ∈ Sn

}︀
, (2.1)

where Sn is the set of companion matrices (1.1). As described in the previous section, this variety has a nat-

ural hyperkähler structure and it arises a complex-symplectic quotient by a free action of a Lie group and is

therefore smooth. Moreover, were it nonempty, it would have dimension

(n2 − k2
1
− l2

1
) + (n2 − k2

2
− l2

2
) + n − n2 = n − (d

1
)

2

2

−

(d
2
)

2

2

. (2.2)

However:

Proposition 2.1. Suppose that |d
1
| + |d

2
| > 2. Then the variety (2.1) is empty.

Proof. We can replace Sn by f + C(e), i.e. by matrices with sij = 0 if i > j + 1, si+1,i = 1, and si,i+r depending
only on r. In particular A + B ∈ f + C(e) if an only if (A + aI) + (B + bI) ∈ f + C(e) for any a, b ∈ C. Without

loss of generality, we can assume that ki ≥ li, i = 1, 2. The matrices A − µ
1
I and B − µ

2
I have ranks ≤ l

1
, ≤ l

2
,

respectively. Since their sum has rank ≥ n − 1, the conclusion follows.

Remark 2.2. From thepoint of viewofhyperkähler geometry, the fact that (2.1) is empty in the case

(d
1
)

2

2

+

(d
2
)

2

2

≤

n and |d
1
|+|d

2
| > 2 is interesting. Itmeans thatNn×O1

×O
2
is an example of a complete hyperkählermanifold

with a tri-Hamiltonian action of SU(n), such the imageW of the hyperkählermomentmap is open, but 0 ∉ W.

I am not aware of any other examples of this kind.

The variety (2.1) can therefore be nonempty only if |d
1
| + |d

2
| ≤ 2. Since changing µi to −µi is equivalent to

replacing di with −di, we shall not lose generality in assuming that di ≥ 0, i = 1, 2. Similarly, we shall not

lose generality in assuming that d
1
≥ d

2
. Furthermore, the di have the same parity as n, and hence there are

only three possibilities:

– n = 2m and d
1
= d

2
= 0. We shall denote the corresponding variety by D

2,m(µ1, µ2).
– n = 2m + 1 and d

1
= d

2
= 1. The corresponding variety will be denoted by D

1,m(µ1, µ2).
– n = 2m + 2 and d

1
= 2, d

2
= 0. The corresponding variety will be denoted by D

0,m(µ1, µ2).
The reasons for this notation will become apparent. We shall also see that these varieties are nonempty for

each m ≥ 1, and therefore the dimension calculation (2.2) gives 2m as the dimension of each of them. Since

the orbits O
1
and O

2
involved in the definition of D

2,m(µ1, µ2) do not change if we change the sign of µ
1
or

of µ
2
, we conclude that D

2,m(µ1, µ2) depends only on µ21 and µ22. Similarly D
0,m(µ1, µ2) = D0,m(µ1, −µ2). We

shall see later that D
1,m(µ1, µ2) depends only on µ1 − µ2 and D0,m(µ1, µ2) is independent (up to an affine

isomorphism) of µ
1
and µ

2
.

2.1 Characteristic polynomial of A + B

If (A, B) belong to the variety (2.1), then S = A + B is a companion matrix (1.1). Recall that the characteristic

polynomial P(z) = det(z − S) of a companion matrix is equal to zn −
∑︀n

i=1 siz
n−i

and S is the matrix of the

multiplication by z on C[z]/(P(z)) in the basis 1, z, . . . , zn−1.
We shall need the following algebraic result.

Proposition 2.3. Let A and B be two n × n matrices satisfying A2 = µ2
1
, B2 = µ2

2
, trA = d

1
µ
1
, tr B = d

2
µ
2
,

µ
1
, µ

2
≠ 0, d

1
≥ d

2
≥ 0. If S = A + B is a regular element of gl(n,C), then the characteristic polynomial of S has

the form: (︀
z − (µ

1
+ µ

2
)

)︀p (︀z − (µ
1
− µ

2
)

)︀q r∏︁
i=1

(z2 − xi), (2.3)

where p = d
1
+d

2

2

, q = d
1
−d

2

2

, and xi ∈ C.

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 16.01.18 09:17



Slices, Atiyah-Hitchin, and Hilbert schemes of points | 21

Proof. We observe that

µ2
1
= A2 = (S − B)2 = S2 − SB − BS + µ2

2
,

which we can write as

S(1
2

S − B) + (1
2

S − B)S = µ2
1
− µ2

2
.

We abbreviate Y =

1

2

S − B and τ = µ2
1
− µ2

2
, so that the equation we are concerned with is

SY + YS = τ. (2.4)

Lemma 2.4. If λ ≠ 0 is an eigenvalue of S and the corresponding eigenvector u satisfies Yu ≠

τ
2λ u, then −λ is

also an eigenvalue of S with the same algebraic multiplicity as λ.

Proof. Suppose that Su = λu. Then SYu = −λYu + τu and it follows that if λ ≠ 0, then

S
(︁
Yu − τ

2λ u
)︁
= −λ

(︁
Yu − τ

2λ u
)︁
.

By assumption −λ is also an eigenvalue of S with eigenvector Yu − τ
2λ u.

Since S is regular, the geometric multiplicities of λ and −λ are both equal to 1.
Let m be the algebraic multiplicity of λ, i.e. there is vector v such that (S − λ)m−1v ≠ 0 and (S − λ)mv = 0.

Denote by Eλ the kernel of (S−λ)m, i.e. the subspace spannedby v, (S−λ)v, . . . , (S−λ)m−1v. The λ-eigenspace is
generatedby u = (S−λ)m−1v and the−λ-eigenspaceby Yu− τ

2λ u. Consider first the case τ = 0. Then Y(S−λ)m−1v
is an −λ-eigenvector and, since Y(S − λ)m−1v = (−S − λ)m−1Yv, this eigenvector belongs to Im(S + λ)m−1. It
follows that the algebraic multiplicity of −λ is at least as large as that of λ. By symmetry the twomultiplicities

are equal.

If τ ≠ 0, then using the fact that S2 commutes with Y, we have for any k ≤ m

(S + λ)kYv =
∑︁(︃

k
i

)︃
Siλk−iYv =

∑︁(︃
k
i

)︃
Y(−S)iλk−iv + τ

∑︁
i≡1 mod 2

(︃
k
i

)︃
λk−iv

= Y(−S + λ)kv + τ (1 + λ)
k
− (1 − λ)k
2

v.

Setting k = m, we obtain, in particular, v ∈ Im(S + λ)m. The −λ-eigenvector Y(S − λ)m−1v − τ
2λ (S − λ)

m−1v
can be then written, thanks to the above formula, as

(−S − λ)m−1Yv + (−1)mτ (1 + λ)
m−1

− (1 − λ)m−1
2

v − τ
2λ (S − λ)

m−1v,

and so it belongs Im(S + λ)m−1. Thus the algebraic multiplicities are equal also in this case.

We now consider the remaining case Yu = τ
2λ u.

Lemma 2.5. If λ ≠ 0 and u is a λ-eigenvector of S and Yu =

τ
2λ u, then u is a common eigenvector of A and B,

and consequently λ = ±µ
1
± µ

2
.

Proof. From assumption, u is a common eigenvector of S = A + B and Y = (A − B)/2, i.e. u is a common

eigenvector of A and B, with eigenvalues

1

2

(︀
λ + τ

λ
)︀
and

1

2

(︀
λ − τ

λ
)︀
, respectively. These must be ±µ

1
and ±µ

2
,

so that such a λ must be equal to one of the four values ±µ
1
± µ

2
.

Finally, for λ = 0 we have

Lemma 2.6. Suppose that 0 is an eigenvalue of S. If τ ≠ 0 then its algebraic multiplicity is even. If τ = 0, then
A and B have a common eigenvector (with eigenvalues summing up to zero).

Proof. Suppose that τ ≠ 0 and a nonzero v satisfies Smv = 0 for an odd m. Then SmYv = −YSmv + τv = τv,
and so SmYv ≠ 0 and Sm+1Yv = 0. Thus the algebraic multiplicity of λ = 0 is even. If τ = 0 and Su = 0, then

SYu = 0, and so Yu = ρu for some ρ, since the geometric multiplicity of each eigenvalue is 1.
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Taken together, these three lemmata imply that the characteristic polynomial of S has the form

(︀
z − δ

1
(µ

1
+ µ

2
)

)︀m
1

(︀
z − δ

2
(µ

1
− µ

2
)

)︀m
2

r∏︁
i=1

(z2 − xi),

where δj = ±1. The trace of S is then δ1m1
(µ

1
+ µ

2
) + δ

2
m

2
(µ

1
− µ

2
). On the other hand

tr S = d
1
µ
1
+ d

2
µ
2
=

d
1
+ d

2

2

(µ
1
+ µ

2
) +

d
1
− d

2

2

(µ
1
− µ

2
).

According to Proposition 2.1, we have only three possibilities (under the assumption d
1
≥ d

2
): d

1
= d

2
=

0, d
1
= d

2
= 1, or d

1
= 2, d

2
= 0. Comparing the two formulae for the trace proves the proposition.

2.2 The varieties Dk,m(µ1, µ2)

We return to the case when (2.1) is nonempty, i.e. to the varieties Dk,m(µ1, µ2), k = 0, 1, 2. Their elements can

be alternatively described as pairs of matrices (S, Y), where S is of the form (1.1), satisfying the equations

SY + YS = µ2
1
− µ2

2
, (Y − S/2)2 = µ2

2
, (2.5)

together with tr S = d
1
µ
1
+ d

2
µ
2
, tr Y =

1

2

(d
1
µ
1
− d

2
µ
2
), where (d

1
, d

2
) = (0, 0) if k = 2, (d

1
, d

2
) = (1, 1) if

k = 1, and (d
1
, d

2
) = (2, 0) if k = 0.

Proposition 2.3 implies that the characteristic polynomial P(z) of S is of the form

P(z) = (z − µ
1
− µ

2
)

ϵ
1

(z − µ
1
+ µ

2
)

ϵ
2Q(z),

where (ϵ
1
, ϵ

2
) is equal to (0, 0) if k = 2, to (1, 0) if k = 1, and to (1, 1) if k = 0. The polynomial Q(z) has degree

2m with coefficients of all odd powers of z equal to zero.
If (ϵ

1
, ϵ

2
) ≠ (0, 0), we can simplify the form of S and Y:

Proposition 2.7. (i) The affine variety D
1,m(µ1, µ2) is canonically isomorphic to the variety of pairs of matrices

(S, Y) satisfying equations (2.5) and having the following form:

S =
(︃
S
0

0

e µ
1
+ µ

2

)︃
, Y =

(︃
Y
0

0

v (µ
1
− µ

2
)/2

)︃
, (2.6)

where S
0
is the companion matrix (1.1) to Q(z) (in particular all s

2i+1 are equal to zero) and e = (0, . . . , 0, 1).

(ii) The affine variety D
0,m(µ1, µ2) is canonically isomorphic to the variety of pairs of matrices (S, Y) satis-

fying equations (2.5) and having the following form:

S =

⎛⎜⎝S0 0 0

e µ
1
+ µ

2
0

e 0 µ
1
− µ

2

⎞⎟⎠ , Y =

⎛⎜⎝Y0 0 0

v
1

(µ
1
− µ

2
)/2 0

v
2

0 (µ
1
+ µ

2
)/2

⎞⎟⎠ , (2.7)

where S
0
and e are as in case (i).

Proof. The affine isomorphism is given by the change of basis of C[z]/(P(z)) from 1, z, . . . , z2m to

1, . . . , z2m−1, Q(z) in case (i), and from 1, z, . . . , z2m+1 to 1, . . . , z2m−1, (2µ
2
)

−1

(z−µ
1
+µ

2
)Q(z), −(2µ

2
)

−1

(z−
µ
1
− µ

2
)Q(z) in case (ii). Since S corresponds to multiplication by z on C[z]/(P(z)), it has in both cases the

stated form in the new basis. Furthermore, Lemmata 2.5, 2.6, and equations (2.5) imply that Y also has the

stated form.

Observe now that the blocks S
0
and Y

0
in the above proposition still satisfy equations (2.5) and tr S

0
= tr Y

0
=

0. These blocks are therefore elements of the variety D
2,m(µ1, µ2). Thus (S, Y) ↦→ (S

0
, Y

0
) defines canonical
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holomorphicmaps fromD
1,m(µ1, µ2) orD0,m(µ1, µ2) toD2,m(µ1, µ2). Let uswriteϕ for this holomorphicmap

from D
1,m(µ1, µ2) to D0,m(µ1, µ2). In the case of D0,m we can associate to (S, Y) the minor matrices

S
1
=

(︃
S
0

0

e µ
1
+ µ

2

)︃
, Y

1
=

(︃
Y
0

0

v
1

(µ
1
− µ

2
)/2

)︃
, (2.8)

or

S
2
=

(︃
S
0

0

e µ
1
− µ

2

)︃
, Y

2
=

(︃
Y
0

0

v
1

(µ
1
+ µ

2
)/2

)︃
, (2.9)

and so obtain canonical holomorphic maps

ϕ
1
: D

0,m(µ1, µ2) → D
1,m(µ1, µ2), ϕ

2
: D

0,m(µ1, µ2) → D
1,m(µ1, −µ2). (2.10)

We have a commutative diagram:

D
2,m(µ1, µ2) = D2,m(µ1, −µ2)

D
1,m(µ1, µ2)

ϕ
-

D
1,m(µ1, −µ2)

�

ϕ

D
0,m(µ1, µ2) = D0,m(µ1, −µ2)

ϕ 2

-
�

ϕ
1

Remark 2.8. Observe that a pair (S, Y) of the form (2.7) satisfies equations (2.5) if and only if both pairs

(S
1
, Y

1
) and (S

2
, Y

2
) satisfy these equations. Thus D

0,m(µ1, µ2) is the fibred product D1,m(µ1, µ2) ×D
2,m(µ1 ,µ2)

D
1,m(µ1, −µ2).

3 The casem = 1 - complex structures
We are going to identify the surfaces D

2,1
, D

1,1
and D

0,1
, i.e. we consider the variety (2.1) for n = 2, 3, 4.

n=2. (cf. [6]) In this case trA = 0 and tr B = 0, so that both S and Y are also traceless.

Write

S =
(︃
0 x
1 0

)︃
, Y =

(︃
a b
c −a

)︃
.

The equation SY + YS = τ reduces to b + cx = τ, and the equation µ2
2
= B2 = (Y − S/2)2 becomes then

a2 −
(︀
x
(︀
c + 1

2

)︀
− τ
)︀(︀
c − 1

2

) = µ2
2
,

or

a2 − xc2 + 1

4

x + (µ2
1
− µ2

2
)c − 1

2

(µ2
1
+ µ2

2
) = 0, (3.1)

which is a deformation of the D
2
-singularity.

n=3.We can assume that A ∼ (µ
1
, µ

1
, −µ

1
) and B ∼ (µ

2
, µ

2
, −µ

2
). Proposition 2.7 implies that our variety

is isomorphic to the variety of pairs (S, Y) satisfying (2.5) and of the form

S =

⎛⎜⎝0 x 0

1 0 0

0 1 µ
1
+ µ

2

⎞⎟⎠ , Y =

⎛⎜⎝a b 0

c −a 0

y z (µ
1
− µ

2
)/2

⎞⎟⎠ . (3.2)
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The equation SY + YS = τ gives again b + cx = τ and two more equations:

c + (µ
1
+ µ

2
)y + z = 0, (3.3)

−a + (µ
1
+ µ

2
)z + yx + (µ

1
− µ

2
)/2 = 0. (3.4)

These allow us to express a, b and c as functions of y and z and substituting into µ2
2
= B2 = (Y − S/2)2

gives the coordinate ring of the variety (2.1), which is easily seen to be determined by a single equation

y2x − z2 + 1

4

+ (µ
1
− µ

2
)y = 0. (3.5)

This is the Dancer deformation of the D
1
-manifold [12].

n=4. This time A ∼ (µ
1
, µ

1
, µ

1
, −µ

1
) and B ∼ (µ

2
, µ

2
, −µ

2
, −µ

2
). Proposition 2.7 implies that our variety

is isomorphic to the variety of pairs (S, Y) satisfying (2.5) and of the form

S =

⎛⎜⎜⎜⎝
0 x 0 0

1 0 0 0

0 1 µ
1
+ µ

2
0

0 1 0 µ
1
− µ

2

⎞⎟⎟⎟⎠ ,

Y =

⎛⎜⎜⎜⎝
a b 0 0

c −a 0 0

y z (µ
1
− µ

2
)/2 0

u v 0 (µ
1
+ µ

2
)/2

⎞⎟⎟⎟⎠ .

By Remark 2.8 (S, Y) satisfies (2.5) if and only if the 3 × 3 minor matrices obtained by removing the 3rd

(resp. the 4th) row and the 3rd (resp. the 4th) column satisfy these equations, i.e. belong to D
1,1

(µ
1
, −µ

2
)

(resp. D
1,1

(µ
1
, +µ

2
)). The equation SY + YS = τ gives equations (3.3)-(3.4) and the following two equations:

c + (µ
1
− µ

2
)u + v = 0, (3.6)

−a + (µ
1
− µ

2
)v + ux + (µ

1
+ µ

2
)/2 = 0. (3.7)

The equation (Y − 1

2

S)2 = µ2
2
for the two minor matrices is equivalent to equation (3.5), i.e.:

0 = y2x − z2 + 1

4

+ (µ
1
− µ

2
)y =

(︁
x − (µ

1
− µ

2
)

2

)︁
y2 +

(︂
(µ

1
− µ

2
)y + 1

2

)︂
2

− z2, (3.8)

0 = u2x − v2 + 1

4

+ (µ
1
+ µ

2
)u =

(︁
x − (µ

1
+ µ

2
)

2

)︁
u2 +

(︂
(µ

1
+ µ

2
)u + 1

2

)︂
2

− v2. (3.9)

We can combine (3.6)-(3.7) with (3.3)-(3.4) to obtain two equations for u, v, y, z, which we row reduce to

z − v + (µ
1
+ µ

2
)y − (µ

1
− µ

2
)u = 0, (3.10)

2µ
2
v + (x − (µ

1
+ µ

2
)

2

)y + (−x + µ2
1
− µ2

2
)u = µ

2
. (3.11)

Thus both z and v are functions of y and u, and the solutions are:

z = 1

2µ
2

(︁
(µ

1
− µ

2
)

2

− x
)︁
(y − u) + (µ

1
− µ

2
)y + 1

2

,

v = 1

2µ
2

(︁
(µ

1
+ µ

2
)

2

− x
)︁
(y − u) + (µ

1
+ µ

2
)u + 1

2

,

Write α
±
= µ

1
± µ

2
and introduce a new variable w = (y − u)/2µ

2
. The last two equations become then

z = (α2
−
− x)w + α

−
y + 1

2

and v = (α2
+
− x)w + α

+
u + 1

2

.
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Substituting into (3.8)-(3.9) we obtain(︀
x − α2

−

)︀(︀
(y + α

−
w)2 + w − xw2

)

)︀
= 0,(︀

x − α2
+

)︀(︀
(u + α

+
w)2 + w − xw2

)

)︀
= 0.

Since µ
1
, µ

2
≠ 0, it follows that α

−
≠ α

+
and, consequently, we can eliminate

(︀
x− α2

−

)︀
and

(︀
x− α2

+

)︀
from these

equations.

We easily check that

y + α
−
w = u + α

+
w =

(µ
1
+ µ

2
)y − (µ

1
− µ

2
)u

2µ
2

(3.12)

and, therefore, the defining ideal of D
0,1

(µ
1
, µ

2
) is generated by the single polynomial (y + α

−
w)2 + w − xw2

.

Making the final substitution t = y+α
−
w = u+α

+
wwe obtain the equation of the Atiyah-Hitchinmanifold

(also known as the D
0
-manifold):

t2 − xw2

+ w = 0. (3.13)

Remark 3.1. If n = 2 or n = 3, then we can extend the above identifications of complex structures to the case

when one or both of µ
1
, µ

2
is equal to zero. Indeed, this means replacing a semisimple orbit with a minimal

nilpotent orbit. Since the elements of the minimal nilpotent orbit still satisfy the quadratic equation A2 = 0,

all the considerations from this and from the previous section remain valid. Observe that for n = 3 we get a

smooth manifold for any value of µ
1
, µ

2
, since, if A + B is a regular element of gl(n,C), then neither A nor B

can be the singular point 0 of the nilpotent variety.

If n = 4, the above identification also extends to the case µ
1
= 0 or µ

2
= 0, i.e. when one or both orbits

become nilpotent. In this case, however, the canonical form (2.7) is no longer valid: the lower-right 2 × 2-

blocks of S and Y become nilpotent matrices. One needs to repeat the above computation separately for S, Y
of this form.

4 The casem = 1 - the metrics
As discussed in section 1 the manifolds Dk,m(µ1, µ2) carry a natural hyperkähler structure arising from their

construction as a moduli space of solutions to Nahm’s equations. In the case of k = 1 there exist of course

well-knownhyperkählermetrics on the complex surfaces found in the previous section: theALF gravitational

instantons [1, 16]. Since our description of these spaces is very different from previously known ones, we are

going to show that the metrics on Dk,1, k = 2, 1, 0, are the standard ones.

The hyperkähler metric on Dk,m(µ1, µ2) is obtained as a hyperkähler quotient of the manifold Nn (n =

2m + 2 − k), described in §1, and a pair of semisimple adjoint orbits with their Kronheimer-Biquard-Kovalev

metrics. Both adjoint orbits admit a family of hyperkähler structures parameterised by real numbers: for any

r
1
∈ R there is a hyperkähler structures on O

1
such that the generic complex structure Iζ (ζ ∈ P1) is that the

adjoint orbit with eigenvalues ±(µ
1
+ 2r

1
ζ − µ

1

ζ 2) with multiplicities k
1
and l

1
, and analogously for O

2
.

The corresponding hyperkähler metric on Dk,m(µ1, µ2) can be found by identifying real sections of the

twistor space which is obtained as the fibrewise complex-symplectic quotient of the product of fibred product

of the twistor space of Nn and the twistor spaces of the orbitsO1
,O

2
. The twistor space of Nn was described at

the end of section 1. The sections of the twistor space of the orbits are simply n × nmatrices withO(2)-entries

(belonging to the orbit of (µi + 2riζ − µiζ
2

)Iki ⊕ −(µ1 + 2riζ − µiζ
2

)Ili for each ζ , i = 1, 2).

If X
1
∈ O

1
, X

2
∈ O

2
and (S, g) ∈ Nn, then the complex moment map equation is X

1
+ X

2
= gSg−1. In

terms of our original equation A + B = S, A + B = g−1(X
1
+ X

2
)g, i.e. Y =

1

2

g−1(X
1
− X

2
)g. It follows that

˜S = D(ζ )(S/ζ 2)D(ζ )−1, ˜Y = D(ζ ) exp(S/ζ )(Y/ζ 2) exp(−S/ζ )D(ζ )−1. (4.1)

We shall now identify the twistor lines for our surfaces Dk,1(µ1, µ2), k = 2, 1, 0. We begin with the special

case D
2,1

(µ/2, µ/2) = D
2,1

(µ/2, −µ/2).
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D2,1(µ/2, µ/2).
As long as x ≠ 0, we can diagonalise S to diag(λ, −λ). The corresponding Y (which anticommutes with S)

is of the form

(︃
0 u
v 0

)︃
. The relationship between u, v and a, c in §3 is

a = u + v
2

, c = u − v
2λ .

To compute the transition functions in (1.2) for diagonal S,we compare the thenew S, g to S
old
, g

old
in (1.2): S =

hS
old
h−1, g = g

old
h−1 and similarly

˜S = hD(ζ )−1˜S
old
D(ζ )h−1/ζ 2, g̃ = g̃

old
D(ζ )h−1, where h is the diagonalising

matrix. It follows that
˜S = S/ζ 2, g̃ = g exp(−S/ζ ) and, consequently, the transition functions in (4.1) are

˜S = S/ζ 2, ˜Y = exp(S/ζ )(Y/ζ 2) exp(−S/ζ ). Therefore the transition functions for λ, u, v are ˜λ = λ
ζ 2 , ũ = e

2λ/ζ u
ζ 2 ,

ṽ = e−2λ/ζ vζ 2 , and it follows that in terms of ã, c̃ we have:

ã = ũ + ṽ
2

=

1

ζ 2

(︂
a cosh 2λ

ζ + cλ sinh 2λ
ζ

)︂
,

c̃ = ũ − ṽ
2
˜λ

=

a
λ sinh

2λ
ζ + c cosh 2λ

ζ .

In particular observe that a − λc is a section of L2(2), where L2 is a line bundle over |O(2)| ≃ TP1 with

transition function exp(−2λ/ζ ) from ζ ≠ ∞ to ζ ≠ 0. The equation (3.1) can be written as (a + λc)(a − λc) =
1

4

(µ2 − x), so that twistor sections are given by a section x(ζ ) of O(4) and a section s(ζ , λ) of L2(2) over the
elliptic curve λ2 = x(ζ ) satisfying s(ζ , λ)s(ζ , −λ) = 1

4

(µ2(ζ ) − x(ζ )) (satisfying the natural reality conditions).
With a bit of extra care (cf. [8, p.308-309]) one can show that 2 zeros of s(ζ , λ) occur at the intersection of the
elliptic curve with λ = µ(ζ ) and the two other zeros at the intersection of the the elliptic curve with λ = −µ(ζ ).

D2,1(µ1, µ2), µ1 ≠ ±µ2.
Following Hitchin [16], let us first rewrite (3.1). After multiplying it by x (this will not affect the determi-

nation of twistor lines), we can rewrite it as

xa2 − (xc − τ/2)2 + 1

4

(︀
x − (µ

1
− µ

2
)

2

)︀(︀
x − (µ

1
+ µ

2
)

2

)︀
= 0,

where τ = µ2
1
− µ2

2
.

After introducing a new variable w = xc − τ/2 we obtain the equation w2

− xa2 = 1

4

(︀
x − (µ

1
− µ

2
)

2

)︀(︀
x −

(µ
1
+ µ

2
)

2

)︀
.

We now proceed as in the case µ
1
= ±µ

2
.

This time a point (S, Y) of our variety satisfies SY +YS = τwith τ ≠ 0. If x ≠ 0, we canwrite Y =

1

2τ S
−1

+Y ′

with Y ′
anticommuting with S as before. Thus after diagonalising S, Y becomes(︃

1

2λτ u
v −1

2λτ

)︃
,

and, consequently,

a = u + v
2

, c = u − v
2λ +

1

2λ2τ ,

so that

a = u + v
2

, w = λ u − v
2

.

The same computation as above shows that the transition functions for a and w are

ã = ũ + ṽ
2

=

1

ζ 2

(︂
a cosh 2λ

ζ + wλ sinh 2λ
ζ

)︂
,

w̃ =
˜λ ũ − ṽ

2

= aλ sinh 2λ
ζ + wλ2 cosh 2λ

ζ .
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Thus w − λa is a section s(ζ , λ) of L2(4) over the elliptic curve λ2 = x(ζ ) satisfying s(ζ , λ)s(ζ , −λ) =

1

4

(︀
x(ζ ) − (µ

1
(ζ ) − µ

2
(ζ ))2

)︀(︀
x(ζ ) − (µ

1
(ζ ) + µ

2
(ζ ))2

)︀
(again satisfying the natural reality conditions). Again, the

precise location of the zeros of s(ζ , λ) can be determined.

This is Hitchin’s description of the hyperkähler metric on the deformation of the D
2
-singularity [16].

D1,1(µ/2, µ/2). We proceed similarly. In the basis in which S = diag(λ, −λ, µ), Y is of the form⎛⎜⎝0 u 0

v 0 0

0 0 0

⎞⎟⎠ .

The transition matrices between this basis and the one in which S and Y have the form (3.2) are easily com-

puted using corresponding bases of C[z]/((z2 − λ2)(z − µ)). They are:

V =

⎛⎜⎝1 λ 0

1 −λ 0

1 µ µ2 − λ2

⎞⎟⎠ , V−1 =

⎛⎜⎜⎝
1

2

1

2

0

1

2λ −

1

2λ 0

1

2λ(λ−µ)
1

2λ(λ+µ)
1

µ2−λ2

⎞⎟⎟⎠ .

We have: ⎛⎜⎝a b 0

c −a 0

y z 0

⎞⎟⎠ = V−1

⎛⎜⎝0 u 0

v 0 0

0 0 0

⎞⎟⎠V ,
and consequently:

y = v
2λ(λ + µ) +

u
2λ(λ − µ) , z = v

2(λ + µ) −
u

2(λ − µ) . (4.2)

The transition functions for λ, u, v are the same as in the D
2
-case and from an analogous calculation we

obtain:

ỹ = ζ 2
(︂
y cosh 2λ

ζ −
z
λ sinh

2λ
ζ

)︂
, z̃ = z cosh 2λ

ζ − yλ sinh
2λ
ζ .

In particular, observe that z + λy is a section of L2. The equation of our D
1
-manifold can be written as

(z + λy)(z − λy) = 1

4

, so that twistor sections are given by a section x(ζ ) of O(4) and a nonvanishing section
s(ζ , λ) of L2 over the elliptic curve λ2 = x(ζ ) satisfying s(ζ , λ)s(ζ , −λ) = 1

4

. This is the twistor description

of the Atiyah-Hitchin metric on the D
1
-manifold (it is easy to see that the reality conditions are the same;

one can also check that the symplectic forms coincide, but already the above information determines the

hypercomplex structure, hence the Levi-Civita connection, hence the metric up to a constant factor).

D1,1(µ1, µ2), µ1 ≠ µ2. As in the D2
-case we multiply (3.5) by x and rewrite it as(︀

yx + (µ
1
− µ

2
)/2

)︀
2

− xz2 = 1

4

(µ
1
− µ

2
)

2

. (4.3)

With a new variable q = yx + (µ
1
− µ

2
)/2 this becomes q2 − xz2 = 1

4

(µ
1
− µ

2
)

2

. Proceeding as in the D
2
-case

we recover Chalmers’ description [10] of twistor lines for Dancer’s deformation of the Atiyah-Hitchin metric.

D0,1(µ1, µ2). We first discuss the twistor description of the Atiyah-Hitchin metric. The Atiyah-Hitchin

manifold arises as the quotient of the D
1
-manifold z2 − y2x = 1/4 by the involution (z, y) ↦→ (−z, −y). Setting

s = z2, t = 4yz, w = −4y2, and substituting s = (1−wx)/4 into t2 = −4ws, we obtain t2−xw2

+w = 0. Multiply

this last equation by w and rewrite it as (xw − 1/2)2 − xt2 = 1/4, or (xw − 1/2 + t
√
x)(xw − 1/2 − t

√
x) = 1/4.

Now observe that

xw − 1/2 ± t
√
x = −2(z ± y

√
x)2.

The description of the twistor space of D
1,1

(µ, µ) implies that z ± y
√
x is a nonvanishing section section

of L±2, so that xw − 1/2 ± t
√
x becomes a nonvanishing section of L±4. We shall therefore show that the

hyperkähler metric on D
0,1

(µ
1
, µ

2
) is the Atiyah-Hitchin metric, if we can show that t and w arising via the

calculation in §3 do make xw − 1/2 ± t
√
x a holomorphic section of L±4 (or any L±c, c > 0, which corresponds

to rescaling the metric).
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According to §3, restricting the 4 × 4 matrices S, Y to appropriate 3 × 3 minor matrices produces two

D
1
-manifolds with equations

y2x − z2 + 1

4

+ (µ
1
− µ

2
)y = 0, u2x − v2 + 1

4

+ (µ
1
+ µ

2
)u = 0.

We can rewrite these as in (4.3), i.e.:

q2 − xz2 = 1

4

(µ
1
− µ

2
)

2

, p2 − xv2 = 1

4

(µ
1
+ µ

2
)

2

where q = yx + (µ
1
− µ

2
)/2 and p = ux + (µ

1
+ µ

2
)/2. It follows from the twistor description of D

1,1
(µ

1
, µ

2
)

that q ± z
√
x and p ± v

√
x are sections of L±2(2). Using the definition of t given in (3.12) and w = (y − u)/2µ

2
,

together with (3.10), we obtain

q + z
√
x − p − v

√
x

2µ
2

=

(q − p) + (z − v)
√
x

2µ
2

= xw − 1/2 − t
√
x

and

q − z
√
x − p + v

√
x

2µ
2

=

(q − p) − (z − v)
√
x

2µ
2

= xw − 1/2 + t
√
x.

Thus both xw −1/2+ t
√
x and xw −1/2− t

√
x are meromorphic sections of L2 and L−2, respectively, with

poles possible only at zeros of µ
2
(ζ ). Equation (3.13) and the calculation at the beginning of this subsection

imply, however, that their product is constant (equal to 1/4). Therefore xw − 1/2 ± t
√
x are holomorphic

sections of L±2 and the metric on D
0,1

(µ
1
, µ

2
) is the Atiyah-Hitchin metric.

Remark 4.1. Due to general facts about isometries between real-analytic Riemannian manifolds, the natural

maps ϕ : D
1,m(µ1, µ2) → D

2,m(µ1, µ2) and ϕ1
: D

0,m(µ1, µ2) → D
1,m(µ1, µ2), described in §2.2, cannot be

(even local) isometries. On the other hand, it appears that the first of these maps is well-defined on each fibre

of the twistor space and maps real sections to real sections. To see that this is not so, observe that computing

v from (4.2) yields v = (λ+µ)(z+λy) (and similarly u = (µ−λ)(z−λy)), so that themap ϕ sends a real section of

the twistor space of D
1,1

(µ/2, µ/2) to a pair of sections s
±
of L±2(2) over the elliptic curve λ2 = x(ζ ) such that

all zeros of s
+
(resp. s

−
) occur at the intersection points with λ = −µ(ζ ) (resp. λ = µ(ζ )). This real section does

not arise from the hyperkähler structure of D
2,1

(µ/2, mu/2) (see the remark at the end of the calculation of

the metric for D
2,1

(µ/2, µ/2))).
The second of thesemaps, ϕ

1
: D

0,m(µ1, µ2) → D
1,m(µ1, µ2), is well-defined only if µ2 ≠ 0, whichmeans

that is not well-defined on all fibres of the twistor space.

5 Hilbert schemes of points transverse to a projection
Let X be a complex manifold, C a 1-dimensional complex manifold, and π : X → C a surjective holomorphic

map. Following Atiyah and Hitchin [1] we define an open subset X[n]π of the Hilbert scheme X[n] of n points in
X as consisting of these 0-dimensional subschemes Z of length n for which π

*
OZ is a cyclic OC sheaf.

Equivalently, π : Z → π(Z) is an isomorphism onto its scheme-theoretic image.

Let Z ∈ X[n]π and suppose that π : Z → π(Z) is an isomorphism, i.e. π
*
OZ = Oπ(Z).

If t
0
is a point in π(Z) and t is a local coordinate on C, then a neighbourhood of t

0
is of the formC[t]/

(︀
tm
)︀

for somem ≤ n. Since π : Z → π(Z) is an isomorphism, there exists a morphism ϕ : C[t]/
(︀
tm
)︀
→ X, the image

of which is the corresponding open subset of Z. Such a morphism ϕ is an equivalence class of local smooth

sections of π truncated up to orderm. Globally, Z is an equivalence class of local smooth sections of π, defined
in a neighbourhood of π(Z), where the equivalence relation is as above. In other words, if s is a local section
on U ⊂ C, then the defining ideal of Z is Is + π*Iπ(Z), where Is is the defining ideal of s(U). We can formulate

this as follows:

Proposition 5.1. (cf. [1, Ch.6]) X[n]π parameterises 0-dimensional subschemes Z of X of length n such that IZ =
Is + π*IT , where T ∈ C[n] ≃ SnC, s is a local section of π defined in a neigbourhood U of T, and Is is the defining
ideal of s(U).
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Remark 5.2. It follows from the construction that π induces a surjective holomorphic map π[n] : X[n]π → C[n] ≃
Sn(C).

We shall call X[n]π Hilbert scheme of n points transverse to π or simply transverse Hilbert scheme.
Suppose now that X ⊂ Ck is an affine variety and π : X → C is a restriction of a polynomial P : Ck → C

to X. Without loss of generality we may assume that P(w
1
, . . . , wk) = wk. Indeed, if this is not the case, then

we can view X as an affine variety in Ck+1 by adding the equation wk+1 = P(w1
, . . . , wk), so that π becomes

the projection onto the last coordinate.

Let us therefore assume that π(w
1
, . . . , wk) = wk and write z = wk.

The ideal of a T ∈ C[n] ≃ SnC is generated by a monic polynomial q(z) ∈ C[z] of degree n.
If Z ∈ X[n]π and π(Z) = T, then q(z) ∈ IZ . If q(z) =

∏︀s
i=1(z − zi)

mi
, then a local section of π in a

neighbourhood of zi modulo q(z) is of the form (wi
1
(z), . . . , wik−1(z), z), where w

i
j(z) is polynomial of de-

gree ≤ mi − 1. These local polynomials can be combined, using Lagrange interpolation, to give polynomials

w
1
(z), . . . , wk−1(z) of degree at most n − 1 satisfying wj(z) = wij(z) mod (z − zi)mi

.

It follows that the defining ideal of a point Z in X[n]π is given by(︀
q(z), f (w

1
(z), . . . , wk−1(z), z)

)︀
f∈I ,

where q(z) is a monic polynomial of degree n, I is the defining ideal of X, and w
1
(z), . . . , wk−1(z) are poly-

nomials of degree at most n − 1. Thus X[n]π is an affine variety in Ckn, with coordinates pij , qj, 1 ≤ i ≤ k − 1,
0 ≤ j ≤ n − 1 defined by equations

f

⎛⎝n−1∑︁
j=0

p
1jzj , . . . ,

n−1∑︁
j=0

pn−1,jzj , z

⎞⎠
= 0 mod

⎛⎝zn − n−1∑︁
j=0

qjzj
⎞⎠

(5.1)

for every f ∈ I.

Example 5.3. Let X = C* × C and π the projection onto the second coordinate. We can view X as the affine

variety {(x, y, z) ∈ C3

; xy = 1} with π(x, y, z) = z.
According to the above description X[n]π is the variety of triples of polynomials x(z), y(z), q(z) of degrees

n −1, n −1 and n and qmonic such that x(z)y(z) = 1 mod q(z). In other words x(z) (or y(z)) does not vanish
at any of the roots of q(z) and, consequently, X[n]π is isomorphic to the space of based rational maps of degree

n (cf. [1]).

Example 5.4. Let X be the double cover of the Atiyah-Hitchin manifold, i.e. an affine surface in C3

defined

by the equation x2 − zy2 = 1, π(x, y, z) = z. Again, X[n]π is the variety of triples of polynomials x(z), y(z), q(z)
of degrees n − 1, n − 1 and n and q monic, such that x(z), y(z), z satisfy the defining equation modulo q(z).
Alternatively, consider the quadratic extension z = u2, so that the defining equation becomes (x+uy)(x−uy) =
1. If x(z) and y(z) are polynomials of degree n − 1, then x(z) ± uy(z) = x(u2) ± uy(u2) and q(z) = q(u2). In
other words, q(u2) is a polynomial of degree 2n with all coefficients of odd powers equal to 0 and p(u) =
x(u2) + uy(u2) is a polynomial of degree 2n −1 satisfying p(u)p(−u) = 1 mod q(u2). Thus X[n]π is the space of

degree 2n based rational maps of the form p(u)/q(u2) with p satisfying the above condition.

5.1 Hyperkähler metrics

As observed by Atiyah and Hitchin [1], the definition of X[n]π is well-suited to twistorial constructions of new

hyperkähler metrics (or hypercomplex structures) from old ones. Namely, let Z be the twistor space of a

hypercomplex or hyperkähler manifold. In particular, Z comes equipped with a holomorphic submersion

p : Z → P1 and an antiholomorphic involution (real structure) σ covering the antipodal map. Suppose that Z
also admits a holomorphic map π to the total space of the line bundle O(2r) which preserves the fibres over
P1 and is compatible with the real structures, where the canonical real structure of O(2r) is(︂

ζ , η
(︁ ∂
∂ζ

)︁⊗r)︂
↦→
(︂
−1/

¯ζ , (−1)r η̄
¯ζ 2r
(︁ ∂
∂ζ

)︁⊗r)︂
.
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Assuming that π is surjective, we can apply the transverse Hilbert scheme construction fibrewise and obtain

a new twistor space Z[n]π , which also fibres over P1 and has an induced real structure. Moreover, if dim Z = 2

and Z had a fibrewise O(2)-twisted symplectic form, then so does Z[n]π [2].

From the description of X[n]π , given above, it is clear that a section s of p : Z[n]π → P1 corresponds to a

degree n curve C in Z such that π|C : C → π(C) is an isomorphism, or, equivalently, a curve of degree n in
the total space of the line bundle O(2r) together with a lift to Z. Moreover, the results of [6] imply that the

normal bundle of s(P1) is the sum ofO(1)-s if and only if the normal bundle N of C in Z satisfies the condition
H0

(C, N(−2)) = H1

(C, N(−2)) = 0.

Example 5.5. Applying this construction to the twistor space of X = C* ×C (cf. Example 5.3) produces the nat-

ural complete hyperkähler metric on the moduli spaceMn of framed euclidean SU(2)-monopoles of charge

n [1]. On the other hand applying the construction to the double cover of the Atiyah-Hitchin manifold as in

Example 5.4 produces a totally geodesic submanifold ofM
2n, consisting of monopoles which are symmetric

about the origin (in particular centred) and have total phase equal to 1. This follows easily by considering the

effect of the involution x → −x in R3

on the twistor space of monopoles (cf. [17]).

6 Example: hyperkähler metrics on
(︀
C2)︀[n]

π

We consider X = C2

and π(x, y) = xy. As described in the previous section, we view X as the variety

{(x, y, z) ∈ C3

; xy = z},

and π(x, y, z) = z. The variety
(︀
C2

)︀
[n]
π is then a 2n-dimensional affine variety in C3n

defined by equations⎛⎝n−1∑︁
j=0

xjzj
⎞⎠⎛⎝n−1∑︁

j=0
yjzj
⎞⎠

= z mod

⎛⎝zn − n−1∑︁
j=0

qjzj
⎞⎠
. (6.1)

For example, the defining equations of

(︀
C2

)︀
[2]

π are

x
0
y
0
+ x

1
y
1
q
0
= 0,

x
1
y
0
+ x

0
y
1
+ x

1
y
1
q
1
= 1.

We recall Nakajima’s description of the Hilbert scheme of n points inC2

[26]:

(︀
C2

)︀
[n]

is isomorphic to the

the quotient by GL(n,C) of triples (B
1
, B

2
, i) consisting of commuting n × n matrices B

1
, B

2
and an i ∈ Cn

which satisfy the following stability condition: there is no proper subspace V ofCn containing i and invariant
under B

1
and B

2
. The defining ideal of the corresponding subscheme Z given by

IZ = {f ∈ C[x, y]; f (B
1
, B

2
) = 0}.

The defining ideal of π(Z) consists of functions g ∈ C[z] such that π*g = 0, i.e. g(B
1
B
2
) = 0. We have an

embedding Oπ(Z) →˓ π
*
OZ, g ↦→ g(xy), which is an isomorphism exactly then, when dimOπ(Z) = n, which

means that B
1
B
2
is a regular element of gl(n,C).

We conclude therefore that

(︀
C2

)︀
[n]
π consists of GL(n,C)-orbits of triples (B

1
, B

2
, i) as above and such that

B
1
B
2
is a regular element of gl(n,C). Using again the isomorphism between Z and π(Z) we also conclude that

i is a cyclic vector for B
1
B
2
. Every conjugacy class of regular matrices contains a unique companion matrix

S, i.e. a matrix of the form (1.1).

If B
1
B
2
= S, then we can conjugate B

1
and B

2
by an element of the centraliser of S in order to make the

vector i equal to e
1
= (1, 0, . . . , 0)T . The pair (S, e

1
) has trivial stabiliser and we have thus shown:

Proposition 6.1. The variety
(︀
C2

)︀
[n]
π is isomorphic to the variety of triples (B

1
, B

2
, S) of n × n matrices, such

that S is of the form (1.1), B
1
,B

2
commute, and B

1
B
2
= S. 2
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To recover the description of

(︀
C2

)︀
[n]
π given in (6.1), we observe that both B

1
and B

2
commute with the regular

element of gl(n,C) S, i.e. we can uniquely write:

B
1
=

n−1∑︁
i=0

xiSi , B
2
=

n−1∑︁
i=0

yiSi ,

and since Sk =
∑︀n−1

i=0 qiS
i
, the equation B

1
B
2
= S is equivalent to (6.1).

C2

carries at least two complete hyperkähler metrics: the flat one and the Taub-NUT. We can therefore

apply the fibrewise construction described in section 5.1 to both of them and try to obtain new hyperkähler

metrics in higher dimensions.

The twistor space Z of the flat metric onR4

is the total space ofO(1)⊕O(1) over P1. The map π(x, y) = xy
induces a projection to O(2) given by fibrewise multiplication. As discussed above, a section of p : Z[k]π → P1

would correspond to a degree n curve in |O(2)|which can be lifted to |O(1)⊕O(1)| ≃ P3∖P1. A degree n curve
in |O(2)|has genus (n−1)2 and its lift would be adegree n curve inP3 having such a genus. There are, however,
no such curves owing to a classification result of Hartshorne [14]. Thus we conclude that p : Z[n]π → P1 has no
sections and we do not obtain new hyperkähler metrics.

6.1 Taub-NUT

The twistor space of the Taub-NUT metric is described for example in [3, pp. 393–395]. There is actually a

family of such metrics depending on a positive real parameter c with the twistor space defined as

Zc = {(x, y) ∈ Lc(1)⊕ L−c(1); xy = z},

where Lc is a line bundle over |O(2)| ≃ TP1 with transition function exp(−cη/ζ ) from ζ ≠ ∞ to ζ ≠ 0, and z is
the tautological section of ρ*O(2) over |O(2)|, where ρ : |O(2)| → P1 is the projection.

It follows that a section of p : (Zc)[n]π → P1 corresponds to a degree n curve C in |O(2)|which can be lifted
to Zc, i.e. to a pair of sections s1 of Lc(1)|C and s2 of L−c(1)|C such that (s1) + (s2) = (z). It is a priori unclear
that such sections exist for any n and, even if they do, that there is a σ-invariant family of them defining

a complete hyperkähler metric. We shall now show that this is so by giving a construction of a complete

hyperkähler metric on

(︀
C2

)︀
[n]
π as a hyperkähler quotient.

We observe namely that Proposition 6.1 is actually a description of

(︀
C2

)︀
[n]
π as a complex-symplectic quo-

tient and it suggests what the hyperkähler quotient should be.We beginwith the space V of n×n quaternionic
matrices and two copies of Nn (defined in §1), but with metric rescaled by c (equivalently: we consider solu-
tions to Nahm’s equations on (0, c] rather than on (0, 1]). V has two tri-hamiltonian U(n) actions and Nn
also has a tri-Hamiltonian action of U(n). The hyperkähler quotient Mn of V × Nn × Nn by U(n) × U(n) is the
hyperkähler slice to V as described in section 1. It is therefore a smooth and complete hyperkähler manifold.

It remains to identify its complex structures. The complex structure of V is that of pairs B
1
, B

2
of complex

matrices with the two gl(k,C)-valued moment maps given by B
1
B
2
and B

2
B
1
. The complex structure of Nn is

that of pairs (S, g), S having the form (1.1) and g ∈ GL(n,C), with the moment map gSg−1. It follows from the

results of [4] (recalled in §1) thatMn is biholomorphic to the variety of quadruples (B
1
, B

2
, S

1
, S

2
), with S

1
, S

2

of the form (1.1) and satisfying B
1
B
2
= S

1
, B

2
B
1
= S

2
. Since the characteristic polynomials of B

1
B
2
and B

2
B
1

are the same, it follows that S
1
= S

2
and B

1
, B

2
commute. Thus Mn as a complex manifold is isomorphic to(︀

C2

)︀
[n]
π .

We observe that in case n = 1, V = H and N
1
= S1 × R3

so that the hyperkähler quotient M
1
is the Taub-

NUT metric on C2

. It is straightforward to check, given the description of the twistor space of Nn in §1, that

the twistor space of Mn is isomorphic to (Zc)[n]π .

Remark 6.2. Just as the Taub-NUT metric itself, the transverse Hilbert scheme of n points on it also admits a

tri-Hamiltonian circle action. In the case n = 2 we can then perform the hyperkähler quotient by this circle

and obtain again a hyperkähler 4-manifold. It is easy to compute from equations (7.4) that this is again a

deformation of the D
2
-singularity.
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7 Hyperkähler metrics on (Dk)[m]π .
Recall the varieties Dk,m(µ1, µ2) defined in section 2.2. These are regular slices to sums of two orbits and

carry, therefore, natural complete hyperkähler metrics. In the case m = 1 we have identified them as the D
0
,

D
1
and D

2
ALF gravitational instantons. We are now going to prove that Dk,m(µ1, µ2) is the Hilbert scheme(︀

Dk,1(µ1, µ2)
)︀
[m]
π ofm points on Dk,1(µ1, µ2) transverse to the projection onto the x-coordinate (in equations

(3.1), (3.5) and (3.13)).

D2,m(µ1, µ2).
Let (S, Y) be an element of D

2,m(µ1, µ2). The characteristic polynomial P(z) of S is, thanks to Proposition
2.3, of the form

∏︀m
i=1(z

2

− xi). If the xi are distinct, we can conjugate S to a block-diagonal form, with 2 × 2

blocks

Si =
(︃
0 xi
1 0

)︃
. (7.1)

Viewing S as multiplication by z on C[z]/(P(z)), this corresponds to a change of basis from 1, . . . , z2m−1 to

f
1
(z), zf

1
(z), f

2
(z), zf

2
(z), . . . , fm(z), zfm(z), fi(z) =

∏︀
j≠i(z

2

− xj)∏︀
j≠i(xi − xj)

. (7.2)

In this basis Y becomes also block-diagonalwith 2×2 blocks Yi. Indeed, the equation SY+YS = τ, implies

that any 2×2minormatrix Y ij of Y of the form
(︃
y
2i−1,2j−1 y

2i−1,2j
y
2i,2j−1 y

2i,2j

)︃
satisfies the equation SiY ij+Y ijSj = δijτ.

Since xi ≠ xj for i ≠ j, Y ij = 0 for i ≠ j. The diagonal blocks (Si , Yi) belong to D2
(µ

1
, µ

2
) and, consequently,

the open dense subset D
2,m(µ1, µ2)o of D2,m(µ1, µ2), where the xi are distinct is isomorphic to{︀
(p

1
, . . . , pm) ∈ D2

(µ
1
, µ

2
); pi = (ai , ci , xi), ∀i≠jxi ≠ xj

}︀
/Σm . (7.3)

Each Yk, k = 1, . . . ,m, is of the form

Yk =
(︃
ak τ − xkck
ck −ak

)︃
,

for some complexnumbers ak and ck. Let a(x) and c(x) be polynomials of degrees ≤ m−1 such that a(xk) = ak,
c(xk) = ck, k = 1, . . . ,m. Recalling the equation of D

2,1
(µ

1
, µ

2
) from the previous section, we conclude that

the polynomials a(x) and c(x) satisfy the equation

a(x)2 − xc(x)2 + 1

4

x + (µ2
1
− µ2

2
)c(x) − 1

2

(µ2
1
+ µ2

2
) = 0 mod q(x) (7.4)

where q(x) =

∏︀
(x − xk) whenever the xk are distinct. Let T be the variety defined by this equation and

let To be its open subset where the xi are distinct. Thus we have a biholomorphism T0 → D
2,m(µ1, µ2)o.

To describe what happens if some xi coalesce, we observe first that the change of basis matrix from

f
1
, . . . , fm , zf1, . . . , zfm to 1, . . . , z2m−1 is(︃

V(x
1
, . . . , xm) 0

0 V(x
1
, . . . , xm)

)︃

where V = V(x
1
, . . . , xm) is the Vandermonde matrix, i.e. Vij = xj−1i . The inverse of the Vandermonde matrix

has entries (︀
V−1

)︀
ij = (−1)

m−i em−i(x1, . . . , ̂︀xj , . . . , xm)∏︀
k≠j(xj − xk)

,

where el denotes the l-th elementary symmetric polynomial (with e
0
= 1). It follows that the Y corresponding

to the (Yi)i=1,...,m has entries given by

m∑︁
k=1

(V−1)ikYkVkj . (7.5)
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We can compute these entries by observing that, if u
1
, . . . , um ∈ C, then the j-th column of

V−1 diag(u
1
, . . . , um)V is given by the coefficients of the polynomial pj(x) of degree ≤ m − 1 satisfying

pj(xk) = ukx
j−1
k . Thus the map T0 → D

2,m(µ1, µ2)o extends to a biholomorphism T → D
2,m(µ1, µ2) and

conclude that:

Theorem 7.1. The variety D
2,m(µ1, µ2) is given by a monic polynomial q(x) of degree m, and two polynomials

a(x), c(x) of degrees at most m − 1, such that (7.4) is satisfied.

Comparing with (5.1) we conclude:

Corollary 7.2. The variety D
2,m(µ1, µ2) is isomorphic to the transverse Hilbert scheme

(︀
D
2,1

(µ
1
, µ

2
)

)︀
[m]
π of m

points on the deformation of the D
2
-singularity defined by the equation

a2 − xc2 + 1

4

x + (µ2
1
− µ2

2
)c − 1

2

(µ2
1
+ µ2

2
) = 0,

with π(a, c, x) = x.

We can also conclude from the above proof that the hyperkähler metric on D
2,m(µ1, µ2) is the one given

by the fibrewise transverse Hilbert scheme construction, described in §5.1, applied to the twistor space of

D
2,1

(µ
1
, µ

2
). Indeed, in the case µ

1
= µ

2
, applying the above calculations fibrewise, shows that q(x) defines

a curve C of degree m in the total space of O(4) over P1 and a(x) + c(x)
√
x defines a section s(ζ , x) of L2(2)

over C such that (s(ζ , x)) + (s(ζ , −x)) = (µ2(ζ ) − x. Comparing with the description of the twistor space of

D
2,1

(µ, µ), given in §4, proves the claim. Similarly, in the case µ
1
≠ µ

2
, xc(x) − τ(x)/2 − a(x)

√
x defines an

appropriate section of L2(4), and again, the cmparison with §4 shows that both constructions produce the

same hyperkähler metric.

D1,m(µ1, µ2) and D0,m(µ1, µ2). We proceed similarly. Let (S, Y) be an element of either of these varieties

in the canonical form described in Proposition 2.7. The characteristic polynomial Q(z) of S
0
still has the form∏︀m

i=1(z
2

− xi) and, if we assume that the xi are distinct, we can pass from the basis ofC[z]/(P(z)) described in
the proof of that Proposition to the basis consisting of polynomials

f
1
(z), zf

1
(z), f

2
(z), zf

2
(z), . . . , fm(z), zfm(z), fi(z) =

∏︁
j≠i
(z2 − xj), (7.6)

plus f
2m+1 = Q(z) in the D1,m-case (resp. f2m+1 = (2µ

2
)

−1

(z−µ
1
+µ

2
)Q(z), f

2m+2 = −(2µ2)−1(z−µ1−µ2)Q(z) in
the D

0,m-case). In this new basis S and Y are still of the form (2.6) or (2.7) with S
0
block-diagonal with blocks

(7.1) and the covector e is equal to (0, 1, 0, 1, . . . , 0, 1). The matrix Y
0
is then, owing to the argument given

above for D
2,m(µ1, µ2), also block-diagonal. It follows that the minor matrices consisting of a single block of

S
0
, the corresponding entries of the last row (or the last two rows in the D

0,m-case) and the corresponding

entries of the last column (or, again, last two columns in the D
0,m-case), and the analogous minor matrix for

Y are elements of D
1,1

(µ
1
, µ

2
) or D

0,1
(µ

1
, µ

2
). Now, analogously to the D

2,m-case, we change the basis back

to the one given in the proof of Proposition 2.7 and conclude that D
1,m(µ1, µ2) or D0,m(µ1, µ2) are described

by the same affine equations which define D
1,1

(µ
1
, µ

2
) or D

0,1
(µ

1
, µ

2
) but this time in C[x]/(q(x), where

q(x) =
∏︀m
i=1(x − xi). Comparing with (5.1) and with example 5.4 yields:

Theorem 7.3. The variety Dj,m(µ1, µ2), j = 0, 1, is isomorphic to the transverse Hilbert scheme(︀
Dj,1(µ1, µ2)

)︀
[m]
π of m points on the Dj-surface defined by equation (3.5) or (3.13) with π being the projection

onto the x-coordinate. In particular, D
1,m(µ, µ) is biholomorphic to the space of rational maps of degree 2m of

the form p(u)/q(u2), deg p = 2m − 1, deg q = m, and satisfying p(u)p(−u) = 1 mod q(u2).

Once again, we can go through above calculations fibrewise on the twistor space of the D
1
- or D

0
-surface,

and conclude that the hyperkähler metric obtained from the slice construction of [4] coincides with the one

obtained from the fibrewise transverse Hilbert scheme construction described in §5.1. In particular, example

5.5 shows:
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Corollary 7.4. The hyperkählermanifold D
1,m(µ, µ) is isometric to a totally geodesic submanifold of themoduli

space of monopoles of charge 2m, consisting of monopoles invariant under the involution x ↦→ −x in R3 and
with total phase equal to 1.

A Completeness of hyperkähler slices
Let G be a compact Lie group, g its Lie algebra, and ⟨ , ⟩ an invariant scalar product on g. Let ρ : su(2) → g be

a homomorphism of Lie algebras, and write αi, i = 1, 2, 3 for the images of the standard generators of su(2).

We consider quadruples of g-valued smooth functions Ti(t) on (0, 1] which satisfy the Nahm equations,

i.e.
˙T
1
+ [T

0
, T

1
] = [T

2
, T

3
] and two further equations given by cyclic permutations of indices 1, 2, 3. The

group of gauge transformations smooth on (0, 1] acts on the set of solutions. The boundary conditions we

impose at t = 0 are as follows:

(i) T
0
is smooth at t = 0,

(ii) there exists a smooth gauge transformation with g(0) = 1, such that the resulting T
1
, T

2
, T

3
have simple

poles with residues αi and Ti(t) − αi/t are analytic in powers of t1/2 (powers of t if ad ρ has only even
weights).

The group G of smooth gauge transformations g : [0, 1] → G, g(0) = g(1) = 1, acts on the set Z(ρ) of solutions
having the above boundary conditions and the quotient is a finite-dimensional smooth manifold, which we

denote by N(ρ), andwhich is diffeomorphic to S(ρ)×GC
(see §1 and [4]). The natural L2-metric (with respect to

⟨, ⟩) on the infinite-dimensionalmanifoldZ(ρ) is preservedby the groupG and it induces aRiemannianmetric

on N(ρ). This metric is hyperkähler and it is the one used in the hyperkähler slice construction of Theorem

1.2. There are two tri-hamiltonian group actions on N(ρ): the group G acts by allowing gauge transformations

with arbitrary values at t = 1; the group H ⊂ G, the Lie algebra of which is the centraliser of ρ(su(2)), acts by
allowing gauge transformations g(t) with g(0) ∈ H.

We are going to prove:

Theorem A.1. The natural L2-metric on N(ρ) is complete.

Proof. Our first goal is a suitable description of N(ρ) as an infinite-dimensional hyperkähler quotient. We

start with an affine spaceM(ρ) of quadruples (X
0
, S

1
+ X

1
, S

2
+ X

2
, S

3
+ X

3
) of g-valued functions on (0, 1],

where Si(t) = αi
t and Xj ∈ L2

(︀
(0, 1), g

)︀
, j = 0, 1, 2, 3. It is a flat hyperkähler Hilbert manifold (modelled on

L2
(︀
(0, 1), g

)︀
⊗ R4

) consisting of g-valued quadruples (T
0
, T

1
, T

2
, T

3
) with prescribed boundary behaviour.

The relevant group G′
of gauge transformation has the Lie algebra consisting of maps ϕ : [0, 1] → g of class

W1,2

satisfying ϕ(0) = ϕ(1) = 0. The corresponding fundamental vector field
˜ϕ is(︁

−
˙ϕ + [ϕ, T

0
], [ϕ, T

1
], [ϕ, T

2
], [ϕ, T

3
]

)︁
.

Since ϕ(t) belongs toW1,2

(0, 1), it has the form

∫︀ t
0

κ(τ)dτ for an L2-function κ. The Hardy inequality implies

then that

ϕ
t is square-integrable, so that the vector field

˜ϕ is indeed in L2
(︀
(0, 1), g

)︀
⊗ R4

. The action of G′

is free, proper, and isometric. These conditions suffice to conclude that the hyperkähler quotient ofM(ρ) by
the Hilbert Lie group G′

is a hyperkähler manifold. The zero-level set Z(ρ)′ of the hyperkähler moment map

consists of weak solutions to Nahm’s equations.

We first need to show that the moduli space of weak solutions to Nahm’s equations in M(ρ) modulo

the group the Hilbert Lie group G′
is isometric to N(ρ). For this, it suffices to show that every G′

-orbit con-

tains a smooth solution (X
0
, . . . , X

3
), and since the X

0
-component can be made equal to zero, using aW1,2

-

transformation with g(0) = 1, it is enough to show that for any weak solution (0, S
1
+ X

1
, S

2
+ X

2
, S

3
+ X

3
) to

Nahm’s equations inMρ the functions Xi(t) have the prescribed regularity on [0, 1].
We can rewrite the Nahm’s equations as an equation on X = (X

1
, X

2
, X

3
) of the form

dX
dt =

1

t A(X) + Q(X, X), (A.1)
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where

A(X) =

⎛⎜⎝ 0 −ad α
3

ad α
2

ad α
3

0 −ad α
1

−ad α
2

ad α
1

0

⎞⎟⎠
⎛⎜⎝X1X2
X
3

⎞⎟⎠
andQ is a bilinear operatorwith constant coefficients.Multiplying both sides by t andwriting this equation as
an equation for

d(tX)
dt , we conclude that the L1-norm of

d(tX)
dt is bounded. It follows that the C0-norm of tX(t) is

bounded and equation (A.1) implies, by iteration, that X(t) is smooth on (0, 1]. In order to prove the required

regularity at t = 0, we observe that the smoothness on (0, 1] suffices to conclude that the solution to Nahm’s

equations corresponds to a linear flow of 1-dimensional sheaves on TP1 with fixed scheme-theoretic support

(“spectral curve"). This in turn implies as in [18, p. 624–625] that the entries of X are of the form tλw(t), where
λ is an eigenvalue of the operator A and w is analytic in t. Since the eigenvalues of A are multiples of 1/2, it

follows that if λ < 0 and w(0) ≠ 0, then X is not in L2 and we conclude that the Xi must have the regularity

required in N(ρ).
In order to prove completeness of N(ρ), we need the following lemma.

Lemma A.2. Any smooth curve 𝛾 : [0, a) → N(ρ) can be lifted to a horizontal curve in Z(ρ)′.

Proof. Since N(ρ) can be alternatively described as the space of weak solutions to Nahm’s equations mod-

ulo W1,2

gauge transformations or the space of solutions satisfying the N(ρ)-regularity conditions mod-

ulo smooth gauge transformations, we can find a lift T : [0, a) → Z(ρ) of 𝛾. We seek a smooth map

g : [0, a) → G such that (g(s).T(s))′ is horizontal for each s. This means that T′(s) + (g−1(s)g′(s))̃ is hori-
zontal for each s, where ˜ϕ denotes the fundamental vector field corresponding to a ϕ ∈ LieG. If we write

T(s) = (T
0
(t, s), T

1
(t, s), T

2
(t, s), T

3
(t, s)) and T′(s) = (t

0
(t, s), t

1
(t, s), t

2
(t, s), t

3
(t, s)), then a ϕ such that

T′(s) + ˜ϕ is horizontal is a solution of the following linear differential equation

¨ϕ − 2[ ˙ϕ, T
0
] − [ϕ, T

0
] +

3∑︁
i=1

[Ti , [Ti , ϕ]] = ˙t
0
+

3∑︁
i=0

[Ti , ti],

with ϕ(0) = ϕ(1) = 0 and the dot denoting derivation with respect to t. The solution is a smooth map

ϕ : [0, 1] × [0, a) → g. We can solve for each t the linear equation g−1g′ = ϕ in the Lie group G and this

produces the desired curve g : [0, a) → G.

To finish the proof of completeness, letm : [0, 1) → N(ρ) be a smooth curve of finite length and let m̃(t) be its
horizontal lift to Z(ρ)′.

This lift also has finite length and therefore there is a sequence of m̃(ti), ti → 1, converging to a limit T∞ in

M(ρ). This limit is weak solution to Nahm’s equations and hence T∞ ∈ Z(ρ)′. Since Riemannian submersions

between Hilbert manifolds shorten distances, mk converges in N(ρ) to the equivalence class of T∞.
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