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Abstract

We associate with each simple Lie algebra a system of second-order differential equations invariant under 
a non-compact real form of the corresponding Lie group. In the limit of a contraction to a Schrödinger 
algebra, these equations reduce to a system of ordinary harmonic oscillators. We provide two clarifying 
examples of such deformed oscillators: one system invariant under SO(2, 3) transformations, and another 
system featuring G2(2) symmetry. The construction of invariant actions requires adding semi-dynamical 
degrees of freedom; we illustrate the algorithm with the two examples mentioned.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is widely believed that integrability of a mechanical system is related with a high degree of 
(usually hidden) symmetry. Identifying such symmetry for a given system may be very compli-
cated, even in the simplest cases, like in harmonic oscillators. The inverse task – constructing a 
system possessing a given symmetry – seems to be more simple, since there are many ways to 
find its equations of motion. One of them is the method of nonlinear realizations [1,2], equipped 
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with the inverse Higgs phenomenon [3]. For constructing a system of equations with a given 
symmetry, all one needs is the symmetry group together with the stability subgroup, which acts 
linearly on the mechanical coordinates.

Our recent paper [4] applies nonlinear realizations to the Schrödinger and �-conformal Galilei 
algebra. These symmetries give rise to a system of ordinary harmonic oscillators and their higher-
derivative (in time) extensions known as conformal Pais–Uhlenbeck oscillators [5,6]. Next to the 
one-dimensional conformal algebra so(1, 2) ∼ su(1, 1), there are only evident shift symmetries 
of the oscillators. However, when we deform the Schrödinger algebra in two space dimensions 
to su(1, 2), the corresponding oscillator is also deformed to a nonlinear one, but remains dy-
namically equivalent to the standard oscillator [7]. This suggests the existence of F -invariant 
nonlinearly deformed oscillator systems for every noncompact real Lie group F .

Crucial in our construction [4] of the deformed oscillators is the 5-grading of su(1, 2). Now, 
any finite-dimensional simple complex Lie algebra beyond sl2 has at least one non-compact real 
form with a 5-graded decomposition [8,9]. A universal part of the 5-grading is the su(1, 1) sub-
algebra formed by the highest- and lowest-grade subspace together with the (grade-zero) grading 
operator L0, so one-dimensional conformal symmetry is always present. In the present paper, we 
extend the procedure developed in [4] from su(1, 2) to a non-compact real form of any simple 
Lie algebra. It will provide a system of (generically nonlinear) second-order differential equa-
tions with the prescribed non-compact symmetry, which reduces to ordinary harmonic oscillators 
under the contraction to a Schrödinger algebra.

The existence of a corresponding invariant action is a more delicate matter, which we also 
investigate here. It is not guaranteed, because the equations of motion usually enjoy a larger 
symmetry than the action. In the following, we shall work out two explicit examples in detail, 
featuring SO(2, 3) and G2(2) symmetry, respectively. We shall see that the formulation of an 
action requires additional, semi-dynamical degrees of freedom which, however, do not affect 
the deformed oscillator equations. This provides an algorithm for the construction of invariant 
actions.

2. General construction

It is a well known fact [8,9] that every simple Lie algebra F (except for sl2) admits 5-graded 
decompositions with respect to a suitable generator L0 ∈F :

F = f−1 ⊕ f− 1
2
⊕ f0 ⊕ f+ 1

2
⊕ f+1 with

[
fi , fj

] ⊆ fi+j for i, j ∈
{
−1,− 1

2 ,0, 1
2 ,1

}
(2.1)

(fi = 0 for |i| > 1 understood). There is an (up to automorphisms) unique 5-grading with one-
dimensional spaces f±1. Choosing this one, we may write

f−1 =CL−1, f+1 =CL1 and f0 =H⊕CL0, (2.2)

where H ⊂ F is a Lie subalgebra and L0 commutes with H. A basis for the spaces f± 1
2

(of 

some dimension d) is given by generators GA

± 1
2

with A = 1, . . . , d . They carry an irreducible 

representation of H. In the following, we will deal with real Lie algebras and groups only, so 
some real form of F and H has to be picked. (We keep the same notation however.) Compatibility 
with the 5-grading requires this real form to be non-compact. Therefore, (L−1, L1, L0) generate 
an su(1, 1) subalgebra of F . Different real forms of F and H give rise to different non-compact 
quaternionic symmetric spaces W [8,9],
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W = F

H × SU(1,1)
, (2.3)

where F , H and SU(1,1) are the (simply-connected) groups generated by F , H and su(1, 1), 
respectively.

The main idea of our construction consists in enlarging the coset by slightly reducing the 
stability group from H × SU(1, 1) to H × BSU(1,1), where BSU(1,1) denotes the positive Borel 
subgroup of SU(1,1), whose algebra bsu(1,1) is generated by (L0, L1). In other words, we keep 
L−1 in the numerator and consider the coset

W = F

H ×BSU(1,1)

. (2.4)

The elements of W can be parametrized as follows,

g = et
(
L−1+ω2L1

)
e
u(t)·G− 1

2 e
v(t)·G 1

2 , (2.5)

where we employed a · notation to suppress the summation over A. The parameter ω represents 
some freedom in the parametrization of W . It yields the oscillation frequency of the deformed 
oscillators we are going to construct.

Defining the Cartan forms in the standard way (with a basis {hs} of H),

g−1dg = ω−1L−1 + ω0L0 + ω1L1 + ω− 1
2
· G− 1

2
+ ω 1

2
· G 1

2
+

∑
s

ωs
h hs, (2.6)

one can check that the constraints

ω− 1
2

= 0 (2.7)

firstly are invariant under the whole group F , realized by left multiplication in the coset W (2.4), 
and secondly express the Goldstone fields v(t) through the Goldstone fields u(t) and their time 
derivatives in a covariant fashion (inverse Higgs phenomenon [3]). After imposing the constraints 
(2.7) we have a realization of the F transformations on the time t and the d coordinates uA(t).

Finally, one can impose the additional invariant constraints

ω 1
2

= 0, (2.8)

which produces a system of second-order differential equations for the variables uA(t). These 
are the equations of motion. Hence, with every simple Lie algebra F one may associate a system 
of dynamical equations in d variables which is invariant under some non-compact real form of 
the group F .

Given the above structures, we can partially fix the commutator relations of F :

[Ln,Lm] = (n − m)Ln+m,
[
Ln,G

A
r

]
= (

n
2 − r

)
GA

n+r ,

m,n = −1,0,1, r = − 1
2 , 1

2 , A = 1, . . . , d. (2.9)

The [G, G] commutators lands in H⊕ su(1, 1). However, they can be made to vanish by a group 
contraction. To this end, one rescales the generators via GA

± 1
2

= γ −1G̃A

± 1
2

with γ ∈ R+. The limit

γ → 0 preserves the relations (2.9) but lets all generators G̃A

± 1
2

commute with one another. Thus, 

after the contraction we arrive at the algebra
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[Ln,Lm] = (n − m)Ln+m,
[
Ln, G̃

A
r

]
= (

n
2 − r

)
G̃A

n+r ,[
G̃A

± 1
2
, G̃B

± 1
2

]
= 0,

[
G̃A

± 1
2
, G̃B

∓ 1
2

]
= 0. (2.10)

This is the Schrödinger algebra in d+1 dimensions [4]. One may check that in this limit the 
equations (2.7) and (2.8) linearize to

üA(t) + ω2uA(t) = 0 for A = 1, . . . , d. (2.11)

Undoing the contraction, one may regard (2.7) and (2.8) as a deformation of (2.11). For this 
reason we refer to them as ‘deformed oscillators’. The first example, for the algebra F = su(1, 2)

and H = u(1), was considered in [4] and [7].
Finally we note that the above construction yields only the equations of motion for the vari-

ables uA(t). The question of existence of a corresponding invariant action has to be answered 
independently. We will demonstrate below that a positive answer requires extending further the 
number of Goldstone fields.

In the following two sections we will consider two instructive examples in detail: SO(2, 3)

and G2(2) invariant deformed oscillators.

3. SO(2, 3) invariant oscillator

The 10-dimensional so(2, 3) algebra admits a 5-graded structure with d = 2 and H =
su(1, 1). It can be visualized by writing the commutator relations as

[Ln,Lm] = (n − m)Ln+m, [Ma,Mb] = (a − b)Ma+b,

m,n = −1,0,1, a, b = −1,0,1,[
Ln,Gr,A

] = (
n
2 − r

)
Gn+r,A,

[
Ma,Gr,A

] = (
a
2 − A

)
Gr,a+A,

r, s = − 1
2 , 1

2 , A,B = − 1
2 , 1

2 ,[
Gr,A,Gs,B

] = 2
(
AδA+B,0 Lr+s + r δr+s,0 MA+B

)
. (3.1)

All generators may be taken to be antihermitian,

(Ln)
† = −Ln, (Ma)

† = −Ma,
(
Gr,A

)† = −Gr,A. (3.2)

Thus, we see that

f− 1
2

=RG− 1
2 ,− 1

2
⊕RG− 1

2 ,+ 1
2
, f+ 1

2
=RG+ 1

2 ,− 1
2
⊕RG+ 1

2 ,+ 1
2
,

H =RM−1 +RM0 +RM+1. (3.3)

From the maximally non-compact four-dimensional quaternionic symmetric space W =
SO(2, 3)/SO(2, 2) we pass to the five-dimensional coset space

W = SO(2,3)

SU(1,1) ×BSU(1,1)

(3.4)

where the stability subgroup is generated by (L0, L1, Ma). The coset W is parametrized

g = et(L−1+ω2L1)e
u1G− 1

2 ,− 1
2
+u2G− 1

2 ,+ 1
2 e

v1G+ 1
2 ,− 1

2
+v2G+ 1

2 ,+ 1
2 ,

u� = u1,2, v� = v1,2, g† = g−1. (3.5)
1,2 1,2
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To find the equations of motion for the coordinates u1(t) and u2(t) we have to calculate the 
Cartan forms

g−1dg =
∑
n

ωLn Ln +
∑
a

ωMa Ma +
∑
r,A

ωr,AGr,A. (3.6)

Their explicit form reads (we will not need ωLn)

ω− 1
2 ,− 1

2
= du1 − v1

(
dt + 1

2 (u1 du2 − u2 du1)
)

,

ω− 1
2 ,+ 1

2
= du2 − v2

(
dt + 1

2 (u1 du2 − u2 du1)
)

,

ω+ 1
2 ,− 1

2
= dv1 + 1

2v1 (v2 du1 − v1 du2) + ω2 dt u1

(
1 + 1

2 (u2 v1 − u1 v2)
)

,

ω+ 1
2 ,+ 1

2
= dv2 + 1

2v2 (v2 du1 − v1 du2) + ω2 dt u2

(
1 + 1

2 (u2 v1 − u1 v2)
)

(3.7)

and

ωM−1 = + 1
4 u1 v2

1 du2 − v1

(
1 + 1

4u2v1

)
du1 + 1

2dt
(
v2

1 + ω2 u2
1

)
,

ωM+1 = − 1
4 u2 v2

2 du1 − v2

(
1 − 1

4u1v2

)
du2 + 1

2dt
(
v2

2 + ω2 u2
2

)
,

ωM0 = −v2

(
1 + 1

2u2 v1

)
du1 − v1

(
1 − 1

2u1 v2

)
du2 + dt

(
v1 v2 + ω2 u1 u2

)
. (3.8)

In accordance with the general scheme outlined in Section 2, we firstly have to express v1 and 
v2 in terms of u1 and u2 by nullifying the forms ω− 1

2 ,− 1
2

and ω− 1
2 ,+ 1

2
. Doing so, we obtain

ω− 1
2 ,± 1

2
= 0 ⇒ v1 = u̇1

1 + 1
2 (u1u̇2 − u̇1u2)

and v2 = u̇2

1 + 1
2 (u1u̇2 − u̇1u2)

. (3.9)

Finally, to find the invariant equations of motion one has to nullify the forms ω+ 1
2 ,− 1

2
and ω+ 1

2 ,+ 1
2

(with (3.9) taken into account). In this way we arrive at

ω+ 1
2 ,± 1

2
= 0 ⇒ ü1 + ω2 u1 = 0 and ü2 + ω2 u2 = 0. (3.10)

Having expected two coupled nonlinear differential equations, we are surprised to have obtained 
just ordinary (decoupled) linear oscillator equations, even before taking the linearizing contrac-
tion limit to the Schrödingier algebra. We conclude that the equations of motion of the ordinary 
two-dimensional harmonic oscillator enjoy an SO(2,3) invariance!

It is instructive to present the SO(2,3) symmetry transformations of (3.10) explicitly. The 
SO(2,3) group is realized by left multiplication on the coset element (3.5),

g0 g = g′ h with g0 ∈ SO(2,3) and h ∈ SU(1,1) ×BSU(1,1). (3.11)

Different elements g0 effect different changes g �→ g′, which induce transformations of the time t

and the coordinates (u1, u2, v1, v2). We display their infinitesimal versions (linear in the trans-
formation parameters)1:

1 The result of acting with g0 = e
ε1 G+ 1

2 ,− 1
2

+ε2 G+ 1
2 ,+ 1

2 can be obtained from the commutator of (3.12) and (3.14).
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g0 = ea L−1+b L0+c L+1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δt = 1+cos(2ωt)
2 a + sin(2ωt)

2ω
b + 1−cos(2ωt)

2ω2 c ≡ f (t)

δu1 = 1
2 ḟ u1

δu2 = 1
2 ḟ u2

δv1 = − 1
2 ḟ v1 + 1

2 f̈ u1

(
1 + 1

2 (u2 v1 − u1 v2)
)

δv2 = − 1
2 ḟ v2 + 1

2 f̈ u2

(
1 + 1

2 (u2 v1 − u1 v2)
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(3.12)

g0 = eα M−1+β M0+γ M+1 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δt = 0

δu1 = 1
2 β u1 − α u2

δu2 = − 1
2 β u2 + γ u1

δv1 = 1
2 β v1 − α v2

δv2 = − 1
2 β v2 + γ v1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (3.13)

g0 = e
ε1 G− 1

2 ,− 1
2
+ε2 G− 1

2 ,+ 1
2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δt = 1
2 cos(ωt) (ε2 u1 − ε1 u2)

δu1 = cos(ωt)ε1 − 1
2ω sin(ωt)u1 (ε2u1 − ε1u2)

δu2 = cos(ωt)ε2 − 1
2ω sin(ωt)u2 (ε2u1 − ε1u2)

δv1 = 1
4ω2 cos(ωt)u1(2 + u2v1 − u1v2)(ε1u2 − ε2u1)

− ω sin(ωt)ε1(1 + u2v1 − u1v2)

δv2 = 1
4ω2 cos(ωt)u2(2 + u2v1 − u1v2)(ε1u2 − ε2u1)

− ω sin(ωt)ε2(1 + u2v1 − u1v2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(3.14)

One may check that (3.9) as well as (3.10) are invariant under these transformations.
Can we invent an invariant action which yields the equations of motion (3.10)? The simplest 

candidate which produces (3.10) and is invariant under M0 rotations (see (3.13)),

Stest =
∫

dt
(
u̇1u̇2 − ω2 u1u2

)
(3.15)

is not invariant with respect to the other transformations in (3.12), (3.13) or (3.14). For instance, 
under an M−1 transformation (see again (3.13)) it changes by

δStest = −α

∫
dt

(
u̇2u̇2 − ω2 u2 u2

)
�= 0. (3.16)

In fact, with the given set of four coordinates uA and vA provided by the coset W via (3.5) it is 
impossible to construct an SO(2,3) invariant action. However, the variation of Stest suggests that 
we introduce additional coordinates to compensate for the variation (3.16). These new variables 
must experience constant shifts under the M−1 and M1 transformations and carry the appropriate 
M0 charge. Therefore, the idea is to further extend our coset space from five to seven dimensions,

W = SO(2,3)

SU(1,1) ×BSU(1,1)

→ Wimp = SO(2,3)

U(1) ×BSU(1,1)

, (3.17)

where the U(1) factor is generated by M0. The new Goldstone fields �−1 and �+1 associated 
with the generators M−1 and M+1, respectively, come with determined transformation prop-
erties. Moreover, the Cartan form for the U(1) generator shifts by a time derivatives under any 
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SO(2,3) transformation (3.12), (3.13) or (3.14) and, therefore, may be considered for an invariant 
action.

To realize above mentioned procedure we have to perform the following steps.

• First, we must introduce the new coordinates �±1 by extending our coset element g (3.5) to

gimp = g e�−1M−1+�+1M+1, ��±1 = �±1. (3.18)

• Second, one has to recalculate the Cartan forms. Let us denote their ‘improved’ version by 
�Ma and �r,α . Then, the simplest invariant action is

S = −
∫

�M0 . (3.19)

• Third, one has to derive the ‘improved’ equations of motion for u1 and u2 from (3.19) and 
assert that they are unchanged, i.e. still coincide with (3.10).

The improved Cartan forms are defined through the coset element gimp (3.18) via

g−1
imp d gimp =

∑
n

�Ln Ln +
∑
a

�Ma Ma +
∑
r,A

�r,AGr,A (3.20)

and read2

�± 1
2 ,− 1

2
= 1√

1 + λ−1λ+1

(
ω± 1

2 ,− 1
2
+ λ−1 ω± 1

2 ,+ 1
2

)
,

�± 1
2 ,+ 1

2
= 1√

1 + λ−1λ+1

(
ω± 1

2 ,+ 1
2
− λ+1 ω± 1

2 ,− 1
2

)
,

�M−1 = 1

1 + λ−1 λ+1

(
dλ−1 + ωM−1 + λ−1ωM0 + λ2−1ωM+1

)
,

�M+1 = 1

1 + λ−1 λ+1

(
dλ+1 + ωM+1 − λ+1ωM0 + λ2+1ωM−1

)
,

�M0 = 1

1 + λ−1λ+1

(
2λ−1ωM+1 − 2λ+1ωM−1 + (1 − λ−1λ+1)ωM0

+ λ−1dλ+1 − λ+1dλ−1
)
. (3.21)

Here, stereographically projected coordinates were employed for simplicity,

λ−1 = tan
(√

�−1�+1
)

√
�−1�+1

�−1 and λ+1 = tan
(√

�−1�+1
)

√
�−1�+1

�+1. (3.22)

The improved invariant constraints

�− 1
2 ,± 1

2
= 0 and �+ 1

2 ,± 1
2

= 0 (3.23)

imply the old constraints (3.9) and (3.10) and, therefore, indeed produce the previous equations of 
motion (3.10). For the new variables λ±1 one can get covariant equations of motion by imposing 
the extra constraints

�M−1 = �M+1 = 0, (3.24)

2 The forms �Ln = ωLn are unchanged. We do not need to know their explicit form.
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which imply

λ̇−1 = (u̇1 + λ−1 u̇2)
2

2
(

1+ 1
2 (u1u̇2 − u̇1u2)

) − ω2

2
(u1 + λ−1 u2)

2 ,

λ̇+1 = (u̇2 − λ+1 u̇1)
2

2
(

1+ 1
2 (u1u̇2 − u̇1u2)

) − ω2

2
(u2 − λ+1 u1)

2 . (3.25)

Like the oscillator equations (3.10), the above are invariant under the transformations (3.12), 
(3.13), (3.14) together with the corresponding transformations of λ−1 and λ+1 The latter take the 
generic form

δλ−1 = μ−1 + μ0λ−1 + μ+1λ
2−1 and δλ+1 = μ+1 − μ0λ+1 + μ−1λ

2+1, (3.26)

with the parameters μ given by

g0 = ea L−1+b L0+c L+1 : μ−1 = 1
4 f̈ u2

1, μ0 = 1
2 f̈ u1 u2, μ+1 = 1

4 f̈ u2
2,

g0 = eα M−1+β M0+γ M+1 : μ−1 = α, μ0 = β, μ+1 = γ,

g0 = e
ε1 G− 1

2 ,− 1
2
+ε2 G− 1

2 ,+ 1
2 :⎧⎪⎨⎪⎩

μ−1 = 1
4ω2 cos(ωt)u2

1 (ε1u2 − ε2u1) − ω sin(ωt) ε1 u1

μ0 = 1
2ω2 cos(ωt)u1 u2 (ε1u2 − ε2u1) − ω sin(ωt) (ε1u2 + ε2u1)

μ+1 = 1
4ω2 cos(ωt)u2

2 (ε1u2 − ε2u1) − ω sin(ωt) ε2 u2

⎫⎪⎬⎪⎭ . (3.27)

Finally, the invariant action (3.19) acquires the form

S =
∫

dt

⎡⎣ (1 − λ−1 λ+1) u̇1u̇2 + λ−1u̇
2
2 − λ+1u̇

2
1

(1 + λ−1 λ+1)
(

1 + 1
2 (u1u̇2 − u̇1u2)

) + λ̇−1λ+1 − λ−1λ̇+1

1 + λ−1 λ+1

−ω2 (u1 + λ−1u2) (u2 − λ+1u1)

1 + λ−1 λ+1

]
. (3.28)

It is matter of quite lengthly calculations to check the invariance of this action with respect to the 
transformations (3.12), (3.13), (3.14) and (3.27). A somewhat less tedious task is to check that 
the equations of motion following from the action (3.28) coincide with the equations (3.10) and 
(3.25).

The action (3.28) describes an interaction of the coordinates u1 and u2 with isospinor variables 
λ−1 and λ+1. Such kind of variables was firstly introduced within the supersymmetric Calogero 
model in [10]. Somewhat later, these isospin variables (a.k.a. spin variables) were re-introduced 
through an SU(2)-reduction procedure [11,12]. However, the action (3.28) has the following 
peculiarities, which distinguish it from a bosonic sector of some supersymmetric mechanics:

• We are dealing with the non-compact version of isospin variables, as they parametrize the 
coset SU(1, 1)/U(1). Moreover, this SU(1,1) is not an external automorphism group but 
belongs to the symmetry of our system.

• Despite the explicit interaction between isospin and ordinary variables in the action (3.28), 
the isospin variables decouple from u1 and u2 in the oscillator equations of motion (3.10). 
They serve only to provide the SO(2,3) invariance of the action.
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For an expected relationship of the action (3.28) with those one constructed in [13,14], one has 
to turn to the Hamiltonian formalism. This will be done elsewhere.

4. G2(2) invariant oscillator

The 14-dimensional g2(2) algebra possesses a 5-grading with d=4 and again H = su(1, 1). 
This is made manifest by its commutation relations,

[Ln,Lm] = (n − m)Ln+m, [Ma,Mb] = (a − b)Ma+b,

m,n = −1,0,1, a, b = −1,0,1,[
Ln,Gr,A

] = (
n
2 − r

)
Gn+r,A,

[
Ma,Gr,A

] =
(

3a
2 − A

)
Gr,a+A,

r, s = − 1
2 , 1

2 , A,B = − 3
2 ,− 1

2 , 1
2 , 3

2 ,[
Gr,A,Gs,B

] = 3A
(

4A2 − 5
)

δA+B,0 Lr+s + r
(

6A2 − 8AB+6B2 − 9
)

δr+s,0 MA+B.

(4.1)

As in the previous example (3.2), these generators are chosen to be anti-hermitian,

(Ln)
† = −Ln, (Ma)

† = −Ma,
(
Gr,A

)† = −Gr,A. (4.2)

Thus we have as basis elements

G− 1
2 ,A

∈ f− 1
2
, G+ 1

2 ,A
∈ f+ 1

2
and Ma ∈H = su(1,1). (4.3)

We start from the eight-dimensional quaternionic symmetric space W = G2(2)/SO(2, 2) and 
enlarge it to the nine-dimensional coset

W = G2(2)

SU(1,1) ×BSU(1,1)

(4.4)

with the stability subgroup generated by (L0, L1, Ma) as before. It may be parameterized as

g = et(L−1+ω2L1)e
u1G− 1

2 ,− 3
2
+u2G− 1

2 ,− 1
2
+u3G− 1

2 ,+ 1
2
+u4G− 1

2 ,+ 3
2

× e
v1G+ 1

2 ,− 3
2
+v2G+ 1

2 ,− 1
2
+v3G+ 1

2 ,+ 1
2
+v4G+ 1

2 ,+ 3
2 , g† = g−1. (4.5)

The corresponding Cartan forms are rather complicated. To write them in a concise form we re-
label the generators G and variables u and v in the spin- 3

2 H-representation with a symmetrized 
triple of spinor indices α, β, γ = 1, 2:

G± 1
2 ,− 3

2
= 3G± 1

2 ,111, G± 1
2 ,− 1

2
= 3G± 1

2 ,112, G± 1
2 ,+ 1

2
= 3G± 1

2 ,122,

G± 1
2 ,+ 3

2
= 3G± 1

2 ,222,

u1 = 1
3U111, u2 = U112, u3 = U122, u4 = 1

3U222,

v1 = 1
3V 111, v2 = V 112, v3 = V 122, v4 = 1

3V 222, (4.6)

such that (with spinor index triples completely symmetric)

u1G− 1
2 ,− 3

2
+ u2G− 1

2 ,− 1
2
+ u3G− 1

2 ,+ 1
2
+ u4G− 1

2 ,+ 3
2

=
∑
αβγ

Uαβγ G− 1
2 ,αβγ

,

v1 G+ 1
2 ,− 3

2
+ v2 G+ 1

2 ,− 1
2
+ v3 G+ 1

2 ,+ 1
2
+ v4 G+ 1

2 ,+ 3
2

=
∑

V αβγ G+ 1
2 ,αβγ

. (4.7)

αβγ



42 S. Krivonos et al. / Nuclear Physics B 924 (2017) 33–46
Clearly, G± 1
2 ,αβγ

, Uαβγ , and V αβγ are real tensors totally symmetric in α, β, γ . Some of their 

multiple products will be abbreviated as follows,3

(AB)αβ = 1
2

∑(
Aαγ1γ2Bγ1γ2

β +Aβγ1γ2Bγ1γ2
α
)
,

(AB) =
∑

AαβγBαβγ ,

(ABC)αβγ = 1
3

∑(
Aαρ1ρ2Bρ1ρ2ρ3Cρ3βγ +Aβρ1ρ2Bρ1ρ2ρ3Cρ3γα +Aγρ1ρ2Bρ1ρ2ρ3Cρ3βα

)
,

(ABCD) =
∑

Aαβ1β2Bβ1β2γ1Cγ1ρ1ρ2Dρ1ρ2α. (4.8)

Defining the Cartan forms

g−1dg =
∑
n

ωLn Ln +
∑
a

ωMa Ma +
∑
αβγ

ω
αβγ
u G− 1

2 ,αβγ
+

∑
αβγ

ωαβγ
v G+ 1

2 ,αβγ
, (4.9)

we arrive at

ω
αβγ
u = dUαβγ + ω2dt

(
U3

)αβγ − V αβγ
[
dt

(
1 − ω2

2

(
U4

))
+ (UdU)

]
, (4.10)

ωαβγ
v = dV αβγ + (V 3)αβγ

[
dt

(
1 − ω2

2

(
U4

))
+ (UdU)

]
− 2(V dUV )αβγ − (V V dU)αβγ

+ ω2dt
[
Uαβγ + 3(UUV )αβγ + 2(V U3V )αβγ − (U3V V )αβγ

]
. (4.11)

In what follows we also need the forms ωMa

ωM−1 = 1
2ω11, ωM+1 = 1

2ω22, ωM0 = ω12, (4.12)

where

ωαβ = −4(V dU)αβ + 2(V V )αβ
[
dt

(
1 − ω2

2 (U4)
)

+ (UdU)
]

+ 2ω2dt
[
(UU)αβ + (U3V )αβ

]
. (4.13)

Now, imposing the conditions ωαβγ
u = 0 we can express the coordinates V αβγ in terms of Uαβγ ,

ω
αβγ
u = 0 ⇒ V αβγ = U̇αβγ + ω2

(
U3

)αβγ

1 − ω2

2

(
U4

) + (UU̇)
. (4.14)

With these relations the forms ωMa given by (4.12) and (4.13) simplify to

ωM−1 = 1
2 ω̃11, ωM+1 = 1

2 ω̃22, ωM0 = ω̃12, (4.15)

with

ω̃αβ = −2dt
(U̇ U̇ )αβ − ω2

[(
1 + (UU̇)

)
(UU)αβ − (U3U̇ )αβ

]
1 − ω2

2

(
U4

) + (UU̇)
. (4.16)

Finally, using the conditions ωαβγ
v = 0 in (4.11) and the relations (4.14) we come to the covariant 

equations of motion (with V = V (U) according to (4.14)):

3 su(1, 1) indices are raised and lowered via Aα = εαβAβ, Aα = εαβAβ with εαβεβγ = δ
γ
α and ε12 = ε21 = 1.
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V̇ αβγ + (V 3)αβγ
[(

1 − ω2

2

(
U4

))
+ (UU̇)

]
− 2(V U̇V )αβγ − (V V U̇)αβγ

+ ω2
[
Uαβγ + 3(UUV )αβγ + 2(V U3V )αβγ − (U3V V )αβγ

]
= 0. (4.17)

In the limit ω = 0 these equations simplify to

Üαβγ = 2
(U̇ U̇ U̇ )αβγ − U̇αβγ (U̇ U̇ U̇ · U)

1 + (UU̇)

with (U̇ U̇ U̇ · U) ≡
∑

(U̇ U̇ U̇)α1α2α3Uα1α2α3 , (4.18)

and in the contraction limit γ → 0 after the rescaling GA

± 1
2

= γ −1G̃A

± 1
2

(see (2.10)) they linearize 

to

Üαβγ + ω2 Uαβγ = 0. (4.19)

In full analogy with the SO(2,3) invariant oscillator considered in the previous section, in 
order to construct the invariant action one has to extend the coset to an eleven-dimensional one,

W = G2(2)

SU(1,1) ×BSU(1,1)

→ Wimp = G2(2)

U(1) ×BSU(1,1)

, (4.20)

with elements

gimp = g e�−1M−1+�+1M+1 (4.21)

‘improving’ g of (4.5). Defining the improved Cartan forms

g−1
impdgimp =

+1∑
n=−1

�Ln Ln +
+1∑

a=−1

�Ma Ma +
∑
αβγ

�
αβγ
u G− 1

2 ,αβγ
+

∑
αβγ

�αβγ
v G+ 1

2 ,αβγ

(4.22)

with �Ln = ωLn , one can see that �αβγ
u and �αβγ

v are linear combinations of the forms ωαβγ
u

and ωαβγ
v , because

�
αβγ
u G− 1

2 ,αβγ
= e−�−1M−1−�+1M+1 ω

αβγ
u G− 1

2 ,αβγ
e�−1M−1+�+1M+1,

�αβγ
v G+ 1

2 ,αβγ
= e−�−1M−1−�+1M+1 ωαβγ

v G+ 1
2 ,αβγ

e�−1M−1+�+1M+1 . (4.23)

Therefore, the analogous constraints on �αβγ
u and �αβγ

v still imply the equations (4.14) and 
(4.17),

�
αβγ
u = �αβγ

v = 0 ⇒ ω
αβγ
u = ωαβγ

v = 0. (4.24)

The equations of motion for the additional variables λ±1 related to �±1 as in (3.22) follow from 
the invariant constraints

�M−1 = 1

1 + λ−1λ+1

(
dλ−1 + ωM−1 + λ−1ωM0 + λ2−1ωM+1

)
= 0,

�M+1 = 1

1 + λ−1λ+1

(
dλ+1 + ωM+1 − λ+1ωM0 + λ2+1ωM−1

)
= 0, (4.25)

where the forms ωM , ωM and ωM were defined in (4.15) and (4.16).
−1 0 +1
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Finally, the invariant action can be constructed from �M0 ,

S = −
∫

�M0

= −
∫

1

1 + λ−1λ+1

[
λ−1ω̃

22 − λ+1ω̃
11 + (1 − λ−1λ+1) ω̃12 + λ−1dλ+1 − λ+1dλ−1

]
,

(4.26)

where the ω̃αβ were given in (4.16).
A good way to verify that the equations of motion extremize the action (4.26) employs its 

first-order form

S = −
∫

�M0

= −
∫

1

1 + λ−1λ+1

[
λ−1ω

22 − λ+1ω
11 + (1 − λ−1λ+1)ω12 + λ−1dλ+1 − λ+1dλ−1

]
,

(4.27)

where the forms ωαβ are given by the expressions (4.13). Then, varying this action over V αβγ

will yield (4.14), while the variations over Uαβγ , λ−1 and λ+1 will reproduce ωαβγ
v = 0 and 

(4.25), respectively.
The transformation properties of the time t and the coordinates Uαβγ and λ±1 under G2(2)

are found from computing the G2(2) action on the improved coset elements (4.21) by left multi-
plication,

g0 gimp = g′
imp h with g0 ∈ G2(2) and h ∈ U(1) ×BSU(1,1). (4.28)

Due to the commutator relations (4.1) it suffices to know the transformations generated by

g0 = e

∑
αβγ εαβγ G− 1

2 ,αβγ and g0 = e

∑
αβγ εαβγ G+ 1

2 ,αβγ . (4.29)

The corresponding transformations can be written in the following concise way,

δt = (U3ϑ) + (U θ)

1 + ω2

2 (U4)
, δUαβγ = θαβγ + 2(UϑU)αβγ + (ϑUU)αβγ − ω2(U3)αβγ δt,

δλ−1 = �11 + 2�12λ−1 + �22λ2−1, δλ+1 = �22 − 2�12λ+1 + �11λ2+1 (4.30)

with

�αβ = (Uϑ)αβ − ω2(UU)αβδt, (4.31)

and the parameters θαβ and ϑαβ are related to those in (4.29) as

θαβγ =
{

cos(mt) εαβγ

1
m

sin(mt) εαβγ
and ϑαβγ =

{−m sin(mt) εαβγ

cos(mt) εαβγ
(4.32)

in the first and second instance of (4.29), respectively. A quite lengthy and tedious calculation 
confirms that the action (4.26) is indeed invariant under these transformations.
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5. Conclusions

We proposed a procedure which associates with any simple Lie algebra a system of the 
second-order nonlinear differential equations which are invariant with respect to a non-compact 
real form of this symmetry. Two explicit examples considered in detail gave rise to a system of 
deformed oscillators invariant under SO(2,3) respective G2(2) transformations. For these cases, 
we also constructed invariant actions. These actions include additional, semi-dynamical variables 
which do not affect the equations of motion for the physical variables.

The five-graded decomposition of the Lie algebra, a key feature in our construction, coercively 
includes a one-dimensional conformal algebra su(1, 1). Therefore, all systems constructed in this 
fashion will possess conformal invariance. Due to our special choice of the stability subalgebra a 
dilaton is absent, and the conformal invariance is achieved without it. In a contraction limit, when 
the Lie algebra reduces to a Schrödinger algebra, the equations reduce to a system of ordinary 
harmonic oscillators.

The following further developments come to mind.

• Our choice of the coset parametrization (the ordering g−1 ·g− 1
2
·g 1

2
) is rather special. Clearly, 

this is far from unique, and a reordering will give the equations a different appearance.
• The chosen coset parametrization is calculationally useful but provides an unusual form of 

the metric. It is desirable to bring the metric and connection to a more standard form through 
some reparametrization.

• Some Lie algebras possess other forms of grading (for example, there is a 7-graded basis 
for G2). It will be interesting to learn how our equations change when the grading is altered.

• Our construction procedure for invariant actions works properly only in the presence of an 
su(1, 1) factor in the stability subalgebra. It should be clarified how to construct invariant 
actions when this is not so.

• A supersymmetric extension of the present approach may be of interest.
• Finally, a Hamiltonian description may illuminate the structure of conserved currents and 

help to relate our systems to others in the literature.
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