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It was pointed out by Shifman and Yung that the critical superstring on X10 = R
4 × Y 6, where Y 6

is the resolved conifold, appears as an effective theory for a U(2) Yang–Mills–Higgs system with four 
fundamental Higgs scalars defined on �2 × R

2, where �2 is a two-dimensional Lorentzian manifold. 
Their Yang–Mills model supports semilocal vortices on R2 ⊂ �2 × R

2 with a moduli space X10. When 
the moduli of slowly moving thin vortices depend on the coordinates of �2, the vortex strings can 
be identified with critical fundamental strings. We show that similar results can be obtained for the 
low-energy limit of pure Yang–Mills theory on �2 × T 2

p , where T 2
p is a two-dimensional torus with a 

puncture p. The solitonic vortices of Shifman and Yung then get replaced by flat connections. Various 
ten-dimensional superstring target spaces can be obtained as moduli spaces of flat connections on T 2

p , 
depending on the choice of the gauge group. The full Green–Schwarz sigma model requires extending 
the gauge group to a supergroup and augmenting the action with a topological term.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recently, Koroteev, Shifman and Yung [1–3] have shown that 
U(2) solitonic vortex strings in certain N = 2 super-Yang–Mills 
theories have an effective infrared dynamics of a critical funda-
mental string on a ten-dimensional target space X10 = R

4 × Y 6, 
where Y 6 is the resolved conifold.1 More precisely, N = 2 super-
symmetric U(2) Yang–Mills–Higgs theory on �2 × R

2, where �2
is a two-dimensional Lorentzian manifold, with a Fayet–Illiopoulos 
term and four flavor hypermultiplets in the fundamental of U(2) 
admits non-Abelian semilocal vortices on R

2 whose (translational, 
orientational and size) moduli are parametrized by X10. Allowing 
the vortex moduli to depend on the coordinates of �2 yields a 
string sigma model with worldsheet �2 and target X10, which de-
scribes the effective vortex dynamics.

In [1–3] the N = 2 super-Yang–Mills model with fundamen-
tal matter was chosen because it admits vortex solutions with a 
Ricci-flat ten-dimensional moduli space. Also the metric on �2 was 
taken as an independent variable. These two assumptions differ 
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1 For fine survey articles on non-Abelian vortices, their moduli spaces and reduc-

tions to effective d = 2 sigma models see e.g. [4–7] and references therein.
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from earlier treatments [8,9], where N = 4 super-Yang–Mills the-
ory on �2 × �̃2 in the infrared limit (�̃2 shrinking to a point) was 
reduced to certain sigma models on �2 whose target space is the 
moduli space M of flat connections2 on a Riemann surface �̃2.

In pure Yang–Mills theory and its standard supersymmetric ex-
tensions one gets flat connections instead of vortices. This is just 
as well, as we will demonstrate for �̃2 = T 2

p , a two-dimensional 
torus T 2 with a puncture p. This case is simpler than that of a cir-
cle S1 or a disk H2 considered earlier [11–13], and it deserves a 
separate study. Therefore, in this paper we investigate the infrared 
limit of pure Yang–Mills theory on �2 × T 2

p , and we describe fur-
ther examples of string backgrounds which can be obtained in this 
framework.

The organization of this paper is as follows. In Section 2 we de-
scribe a four-manifold M4 = �2 × T 2

p with an ε-deformed metric 
and introduce the ε-dependent Yang–Mills action on M4 with a 
gauge group G , where ε ∈ [0, ∞). In Section 3 we perform the 
low-energy limit ε → 0 under which the Yang–Mills theory re-
duces to a stringy sigma model. We explain in some detail how 
gauge-field moduli become coordinates on the sigma-model target 
space (cf. [14,9,15]). Its effective action and Virasoro-type con-
straints will be derived. In Section 4 we provide a number of 

2 From twisted super-Yang–Mills theories one can also get the cotangent bundle 
T ∗M as target space, see e.g. [9,10].
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examples of the above-mentioned target spaces, including super-
cosets such as PSU(2, 2|4)/SO(4, 1) ×SO(5) related with AdS5 × S5. 
The Conclusions summarize our findings and point out possible 
generalizations and applications.

2. Yang–Mills theory

Lie (super)groups In our approach the Green–Schwarz superstring 
action can be obtained from Yang–Mills theory in four dimensions 
with a supergroups as structure group (cf. [11–13]). However, here 
we mainly restrict ourselves to deriving the bosonic part of su-
perstring actions, similarly as in [1–3]. This will make the discus-
sion simpler and clearer. Green–Schwarz actions for various target 
spaces and the corresponding Lie supergroups will be briefly dis-
cussed in Section 4.

For the Yang–Mills structure group we consider a Lie group G
with a closed subgroup H . Then, for the Lie algebras g = Lie G and 
h = Lie H we have3

g = h⊕m , (2.1)

where m is the orthogonal complement of h in g with respect to 
a metric 〈 , 〉 on g. For matrix (super)algebras, 〈X, Y 〉 = (S)tr(XY )

is the ordinary trace or supertrace. For additive groups like Rk , it 
denotes the ordinary metric on vector spaces.

Gauge fields We consider Yang–Mills theory on a direct product 
manifold

M4 = �2 × T 2
p with coordinates (xμ) = (xa, xi)

for a = 1,2 and i = 3,4 , (2.2)

where �2 is a two-dimensional Lorentzian manifold with a metric 
tensor g�2

= (gab), and T 2
p = T 2 \ {p} is a two-dimensional torus 

with a point p removed (the puncture) and a metric g
T 2 = (gij). 

We will just write T 2 (omitting the puncture) since we do not 
consider other tori in this paper. Then the metric tensor on M4

reads (gμν) = (gab, gij) with μ, ν = 1, . . . , 4. Fixing momentarily 
the size of T 2, det(gij) = 1, the metric g

T 2 still depends on the 
complex shape parameter τ . For simplicity we choose the square 
torus τ = i, i.e. we identify xi ∼ xi + 1 for both homology circles.

We consider a topologically trivial bundle over M4 (the princi-
pal G-bundle P and an associated vector bundle E → M4) with a 
gauge potential A = Aμdxμ (a connection) taking values in g. The 
g-valued gauge field (the curvature) reads

F = 1
2Fμνdxμ ∧ dxν with Fμν = ∂μAν − ∂νAμ + [Aμ,Aν ] .

(2.3)

On M4 = �2 × T 2 we have the obvious splitting

ds2 = gμνdxμdxν = gabdxadxb + gijdxidx j , (2.4)

A = Aμdxμ = A�2
+AT 2 = Aadxa +Aidxi , (2.5)

F = 1
2Fabdxa ∧ dxb +Faidxa ∧ dxi + 1

2Fi jdxi ∧ dx j . (2.6)

We note that there are mixed components Fai in (2.6).
Let us now deform the metric (2.4) and introduce

ds2
ε = gε

μν dxμdxν = gabdxadxb + ε2 gijdxidx j

hence gε
ab = gab and gε

i j = ε2 gij , (2.7)

3 This splitting will be used later in defining a boundary condition for gauge con-
nections.
where ε ∈ [0, ∞) is a dimensionless real parameter. Then det(gε
μν)

= ε4 det(gab) and

Fab
ε = gac

ε gbd
ε Fcd = Fab , Fai

ε = gac
ε gij

ε Fcj = ε−2Fai ,

F i j
ε = gik

ε g jl
ε Fkl = ε−4F i j , (2.8)

where the indices in Fμν are raised by the nondeformed metric 
tensor gμν . One can introduce on T 2 adapted coordinates yi = εxi

for which yi ∼ yi +ε. In other words, the deformation reintroduces 
the size modulus of T 2: for ε2 → 0 the torus shrinks to a point.4

This limit is equivalent to the low-energy limit of gauge theory on 
�2 × T 2 [8].

Yang–Mills action For the deformed metric (2.7) the Yang–Mills 
action functional is

Sε =
∫

M4

d4x
√

|det g�2
|
{
ε2〈Fab,Fab〉 + 2〈Fai,Fai〉

+ε−2〈Fi j,F i j〉
}

. (2.9)

For ε2 = 1 one has the standard Yang–Mills Lagrangian on M4 =
�2 × T 2 with the nondeformed metric (2.4), and for ε2 → 0 it 
reduces to a stringy sigma-model action on �2 as we will see in a 
moment.

We play with the metric on T 2, but the metric on �2 can 
be dynamical, i.e. the Yang–Mills model is coupled to (two-
dimensional) gravity. Therefore, one can add to the Lagrangian in 
(2.9) the term

√
|det g

M4
ε
| R

M4
ε
= ε2

√
|det g�2

| R�2
, (2.10)

where R
M4

ε
and R�2

are the scalar curvatures of M4 and of �2, 
respectively, with the metric (2.7). The term (2.10) does not con-
tribute to the equations of motion since integration of (2.10) over 
M4 gives a topological invariant of �2. This is not so if we couple 
(2.10) with the dilaton field �, but anyway the term (2.10) van-
ishes in the limit ε2 → 0 which we consider. For this reason we 
do not add (2.10) to the Yang–Mills Lagrangian in (2.9).

The Yang–Mills equations following from (2.9) are

ε2 DaFab + DiF ib = 0 , (2.11)

DaFaj + ε−2 DiF i j = 0 , (2.12)

where Da, Di are Yang–Mills covariant derivatives on the curved 
background M4 = �2 × T 2. The Euler–Lagrange equations for g�2
yield the constraint equations

T ε
ab ≡ ε2(gcd〈Fac,Fbd〉 − 1

4 gab〈Fcd,F cd〉) + gij〈Fai,Fbj〉
− 1

2 gab〈Fci,F ci〉 − 1
4ε−2 gab〈Fi j,F i j〉 = 0 (2.13)

for the Yang–Mills energy-momentum tensor T ε
μν , i.e. its compo-

nents along �2 are vanishing. Its other components, T ε
i j or T ε

aj , are 
not constrained. Note that we might employ the invariance under 
diffeomorphisms on �2 to locally fix its metric, e.g., to a flat met-
ric in the conformal gauge. Nevertheless, (2.13) must be added as 
an external constraint.

4 It is usually assumed that Aμ and Fμν smoothly depend on ε2 with a well-
defined limit for ε2 → 0.
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3. Low-energy effective action

Adiabatic limit As usual in the adiabatic approach (see e.g. [16,
17]), we assume that the connection A for small ε2 can be ex-
panded in a Taylor series in ε2, i.e. A = A0 + ε2A1 + O (ε4). In 
particular, A

T 2 =A0
T 2 + ε2A1

T 2 + O (ε4) and therefore

Fi j = F0
i j + ε2(D0

i A
1
j − D0

jA
1
i ) + O (ε4) , (3.1)

where D0
i = ∂i + [A0

i , ·] and F0
i j = [D0

i , D
0
j ]. From (2.9) one sees 

that the term ε−2〈F0
i j, F0 i j〉 in the Yang–Mills action diverges 

when ε2 → 0. To avoid this one should impose the condition

F0
i j = 0 (3.2)

on the components of the Yang–Mills field along T 2. We denote by 
M

T 2 the moduli space of solutions (flat connections) to the equa-

tions (3.2) on T 2 with a puncture at p. It is known (see e.g. [17,
18]) that terms of order ε2k in A

T 2 for k ≥ 1 are orthogonal to 
M

T 2 and yield some massive modes in the effective theory on 
�2. A consideration of these modes goes beyond the scope of this 
paper. In the limit ε2 → 0 we keep only A0 and F0 (zero-mode 
moduli approximation), and from now on we omit the index “0” 
in connection A0 and the curvature F0.

In the adiabatic approximation (when ε2 → 0), the Yang–Mills 
action (2.9) becomes

S0 =
∫

M4

d4x
√

|det g�2
| 〈Fai,Fai〉 . (3.3)

As equations of motion one gets

DiF ib ≡ 1√
|det g�2

|
∂i

(√
|det g�2

| gab gi jFaj

)
+ [Ai,F ib] = 0 ,

(3.4)

DaFaj ≡ 1√
|det g�2

|
∂a

(√
|det g�2

| gab gi jFib

)
+ [Aa,Faj] = 0 .

(3.5)

The constraint equations (2.13) in the limit ε2 → 0 have the form

T 0
ab ≡ gij〈Fai,Fbj〉 − 1

2 gab〈Fci,F ci〉 = 0 . (3.6)

Flat connection on T 2 It is well known that on smooth tori T 2

(compact, without punctures) there are no irreducible flat con-
nections A

T 2 ∈ g [19]. There exist only reducible flat connections 
which are constant and take values in the Cartan subalgebra of 
g (see e.g. [8]). This so-called “abelianization” theorem is widely 
used in the literature on Yang–Mills confinement on R3 × S1 and 
R

2 × T 2. However, this theorem is not valid on Riemann surfaces 
with punctures or fixed points (see e.g. [20–22]). In particular, on 
tori T 2 with a puncture one can find irreducible flat connections 
on G-bundles over T 2 [21], and the same is true for higher genus 
(see e.g. [21,22]).5

Flat connections, i.e. solutions of (3.2), on a torus T 2 with a 
puncture can be described as follows [21]. The puncture p ∈ T 2

can be considered as infinity similar to the north pole on the two-
sphere S2, and one can introduce cylindrical coordinates (�, θ)

5 Irreducible flat connections on complex vector bundles over smooth Riemann 
surfaces define stable holomorphic bundles. For vector bundles over Riemann sur-
faces with punctures, stability is replaced with Seshadri’s notion of parabolic stabil-
ity [20,21].
on a small disk centered at p via x3 = exp(−�) cos θ and x4 =
exp(−�) sin θ . The group of gauge transformations is defined as 
the Banach Lie group

GT 2 = {
smooth maps g : T 2 → G

}
, (3.7)

whose topology is described in [21,22].
On the flat connections A

T 2 we impose the boundary condi-
tion

AT 2 = A�d� +Aθ dθ → Ap = a dθ for � → ∞ . (3.8)

Here a is either an arbitrary element of m for the decomposition 
g = h ⊕ m introduced in (2.1), or a = gph0 g−1

p , where h0 ∈ h is 
fixed and gp ∈ G/H is arbitrary. Then Ap is parametrized by g0 =
exp(2πa) ∈ G/H for a ∈m or gp ∈ G/H , where the case H = {Id} is 
included. If we denote by N the space of all such flat connections 
then their moduli space is

M = N /GT 2 = G/H . (3.9)

In other words, the gauge group (3.7) forms the fibers over points 
in M for the bundle

π : N
G

T 2−−−−→ M = G/H . (3.10)

Note that, if G/H is an adjoint orbit, e.g. the Kähler coset space

G/H = U(N)/U(N1) × ... × U(Nk) with N1 + ... + Nk = N ,

(3.11)

then M is the moduli space of irreducible flat connections on vec-
tor bundles with parabolic structure (see [20,21] for more details).

Moduli space We endow our moduli space M of flat connec-
tions on a punctured T 2 with local coordinates (φα), with α =
1, . . . , dim(M). In the adiabatic approach, the moduli approxima-
tion assumes that φα depend on xa ∈ �2 [14,4–10] In this way, the 
moduli of flat connections on T 2 define a map

φ : �2 → M via (xa) �→ {φα(xa)}
so that AT 2 = AT 2(φ

α(xa), xi) . (3.12)

Now our space N of solutions to (3.2) depends on x ∈ �2 as well 
as on elements g of the gauge group G

T 2 . In fact, for any fixed 
x ∈ �2 and Gx = G

T 2 (xa), the gauge group G of the full theory on 
M4 = �2 × T 2 coincides with G

T 2 . Said differently, for any fixed 
x ∈ �2 we have a copy of the moduli space Mx = Nx/Gx ∼= G/H
of flat connections on T 2.

The maps (3.12) are not arbitrary – they are constrained by 
the equations (3.4)–(3.6). Since A

T 2 is a flat connection on T 2

for any point in �2, the derivatives ∂aAi have to satisfy the lin-
earized (around Ai ) flatness equations (3.2). In other words, ∂aAi
belong to the tangent space TAN of the solution space N . Using 
the projection (3.10), one can orthogonally decompose ∂aAi into 
two parts,

TAN = π∗TAM⊕ TAG ⇒ (3.13)

∂Ai

∂φα
= ξαi + Diεα ⇔

∂aAi = ∂φα

∂xa

∂Ai

∂φα
= (∂aφ

α)ξαi + Diεa , (3.14)

where

dxi Diεα ∈ TAG and εa := (∂aφ
α)εα , (3.15)
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i.e. εα are g-valued gauge parameters from the viewpoint of gauge 
theory on T 2, and ξα = ξαidxi ∈ TAM can be identified with vec-
tor fields on M = G/H . Thus, ξα correspond to generators from 
the subspace m in the Lie-algebra decomposition g = h ⊕m.

The fields εa are determined by the gauge-fixing conditions

gij Diξα j = 0 ⇒ gij Di D jεa = gij Di∂aA j . (3.16)

Note that, due to (3.2), one can solve the first equation,

2εi j Di D j = εi jFi j = 0 ⇒ ξα j = εk
j Dkξα , (3.17)

with εk
j := gklεl j and εi j = gikε

j
k .

Effective action Recall that Ai obey (3.2) and have the moduli 
space M = G/H , which parametrizes the boundary values of the 
connection at the puncture p ∈ T 2. The case H = {Id} of a group 
manifold M = G is included. On the other hand, the components 
Aa are yet free. It is natural to identify them with εa [9,15],6

Aa = εa ⇒ Fai = ∂aAi − DiAa = (∂aφ
α)ξαi ∈ TAM .

(3.18)

Substituting (3.18) into (3.4), we see that (3.4) is resolved due to 
(3.16). Plugging (3.18) into the action (3.3), we get the effective 
sigma-model action

S0 =
∫

�2

dx1dx2
√

|det g�2
| gab ∂aφ

α ∂bφ
β Gαβ , (3.19)

where

Gαβ(φ, τ ) =
∫

T 2

dx3dx4 gij 〈ξαi, ξβ j〉 (3.20)

is a metric on the moduli space M, and the argument τ reminds 
us of a dependence on the shape of T 2. One can also show that 
the equations (3.5) are equivalent to the Euler–Lagrange equations 
for φα following from (3.19) (cf. [11]). Finally, substituting (3.18)
into (3.6), we arrive at
(
δc

aδ
d
b − 1

2 gab gcd) ∂cφ
α ∂dφ

β Gαβ = 0 , (3.21)

which can also be obtained from (3.19) by varying the metric g�2
. 

These are the Virasoro-type constraint equations.

4. Examples

Here we briefly discuss examples of d = 10 manifolds consid-
ered in the string literature. The list is not complete and serves 
only illustrative purposes. Superstring theories in all these back-
grounds can be obtained from Yang–Mills theory via the adiabatic 
limit ε2 → 0 as discussed in the previous section.

AdS4 ×CP 3 The background

G/H = AdS4 ×CP 3 = SO(3,2)

SO(3,1)
× SU(4)

U(3)
(4.1)

is considered in the context of the AdS4/CFT3 correspondence re-
lating the IIA string in the coset (4.1) with N = 6 super-Chern–
Simons theory in three dimensions. Here CP 3 is the standard com-
plex projective space fibered over S4 with CP 1-fibers,

6 In fact, εαdφα in (3.14) is a connection on a G-bundle over M, and εadxa from 
(3.15) is the pull-back of the connection εαdφα from the G-bundle over M to the 
G-bundle over �2 [9]. Therefore, Aadxa and εadxa are connections on the same 
bundle over �2, and it is natural to identify them.
CP 3 CP 1−−−−→ S4 .
(4.2)

It has an integrable almost complex structure J+ defining (1,0)-
forms ωa on CP 3 (a = 1, 2, 3) via J+ωa = iωa .

AdS4 ×CP 3
qK The background (4.1) is not suitable for the consid-

eration of heterotic strings since the Kähler space CP 3 has a U(3) 
holonomy. The situation is changed if one switches from the inte-
grable almost complex structure J+ on CP 3 to a non-integrable 
one J− , which defines a quasi-Kähler space CP 3

qK isomorphic to 
CP 3 as a smooth manifold. The (1,0)-forms �a with respect to J− , 
obeying J−�a = i�a , relate to the previous ones as follows [23],

�1 = ω1̄ , �2 = ω2̄ and �3 = ω3 . (4.3)

The manifold CP 3
qK , defined by J− and the (1,0)-forms (4.3), has 

the structure group U(2) ⊂ SU(3), and its almost complex struc-
ture J− is non-integrable due to torsion [23]. Let � be the radius 
of S4 and R be the radius of CP 1 from (4.2). For �2 = 2R2 the 
space CP 3

qK is nearly Kähler and the torsion is totally antisymmet-
ric. Since the latter may then be identified with the H-field flux, 
such manifolds appear in heterotic string compactifications with 
fluxes (see e.g. [24–26] and references therein).

Resolved conifold The resolved conifold O(−1) ⊕ O(−1) → CP 1

can be obtained in our approach by considering a moduli space of 
flat connections on the punctured T 2 of the form

G/H = R
3,1 × SU(5)

U(4)
= R

3,1 ×CP 4 (4.4)

and restricting to the non-singular quintic threefold in CP 4 (the 
zeros of a homogeneous quintic polynomial in the homogeneous 
CP 4 coordinates) [27]. The same trick can be employed in the ap-
proach of Shifman and Yung, since CP N spaces are the standard 
moduli spaces of non-Abelian vortices (see reviews [4–7]).

Space T ∗ S3 One can always view the cotangent bundle T ∗K of 
a Lie group K as a Lie group. To this end, one performs a left 
trivialization (admitted by the parallelizability of K ) and endows 
the resulting trivial bundle K × (LieK )∗ with the semi-direct prod-
uct K � (LieK )∗ by using the coadjoint action of K on the space 
(LieK )∗ dual to LieK . In the case of K = SU(2) we can identify 
su(2)∗ with su(2) and consider the six-dimensional real group 
manifold SU(2) � su(2), which is diffeomorphic to the deformed 
conifold T ∗ S3. Choosing a proper metric tensor Gαβ on this space, 
one can obtain string theory on R3,1 × T ∗ S3 as the low-energy 
limit of Yang–Mills theory.

Flat d = 10 superspace For obtaining the Green–Schwarz super-
string action (of type I, IIA or IIB) one should employ supergroups 
G̃ instead of Lie groups G which can be embedded in G̃ as bosonic 
subgroups, G ⊂ G̃ , and the infrared limit of the corresponding su-
pergroup gauge theories. This was demonstrated for superstrings 
in [11,13] and for supermembranes in [12]. Those papers treated 
the moduli space of flat connections on the circle S1 or on the 
disk H2 with proper boundary conditions. Here instead we use the 
moduli space of super-Lie-algebra valued flat connections on the 
punctured T 2. This moduli space is a finite-dimensional supercoset 
space

M̃ = G̃/H , (4.5)

and the analysis is simpler than in [13] where moduli spaces were 
loop supercosets. However, the derivation of the low-energy limit 
is so similar that we will not repeat it here and describe only the 
final results.



O. Lechtenfeld, A.D. Popov / Physics Letters B 762 (2016) 309–314 313
So, for superstrings moving in Minkowski space R9,1, one 
should extend the bosonic Lie group of translation G = R

9,1 to the 
supergroup (cf. [28])

G̃ = N = 2 SUSY

SO(9,1)
, (4.6)

which is a subgroup of the N = 2 super-Poincaré group in ten 
dimensions generated by translations and N = 2 supersymme-
try transformations. Coordinates on G̃ are (X�) = (Xα, θ Ap), 
where Xα with α = 0, . . . , 9 parametrize R9,1 and θ Ap with A =
1, . . . , 32 and p = 1, 2 are the components of two Mayorana–Weyl 
spinors θ p . By considering Yang–Mills theory on M4 = �2 × T 2

with G̃ as the gauge group and taking the adiabatic ε2 → 0 limit 
in (2.9), we get a string moving in the moduli space G̃ of flat con-
nections on the punctured T 2. Its action functional reads

S0 =
∫

�2

dx1dx2
√

|det g�2
| gab ηαβ �α

a �
β

b , (4.7)

where η = (ηαβ) is the Minkowski metric on R9,1, and

��
a = (�α

a , �
Ap
a )

with �α
a = ∂a Xα − iδpq θ̄

pγ α∂aθ
q and �

Ap
a = ∂aθ

Ap (4.8)

are the components of one-forms �� = dxa��
a on �2 pulled back 

from one-forms dXα and dθ Ap on G̃ . Finally, γ α are γ -matrices in 
R

9,1 and θ̄ p := (θ p)�C , where C is the charge conjugation matrix.
The action (4.7) is not yet the full Green–Schwarz action, which 

needs an additional Wess–Zumino-type term [29]. This term may 
also be obtained from supergroup gauge theory, by extending �2
and T 2 to a Lorentzian 3-manifold �3 with boundary ∂�3 = �2
(as in [28]) and to a Riemannian 3-manifold B3 with boundary 
∂ B3 = T 2 (as in [13] for H2). Then on M6 = �3 × B3 one can for-
mulate the topological Yang–Mills term

SWZ =
∫

�3×B3

f��� F̂� ∧ F̂� ∧ F̂� (4.9)

for a LieG̃-valued gauge field F̂ on M6, where the structure con-
stants f��� are given in [28]. By the same calculations as in [13]
one finds that in the low-energy limit ε2 → 0 the action (4.9)
reduces to a Wess–Zumino-type action functional [28,29] which 
should be added to (4.7) with a proper coefficient. Also, similarly 
to [13] one can show that the Kalb–Ramond B-field appears from 
the topological term ηαβFα∧Fβ , whose integral in the adiabatic 
limit ε2 → 0 becomes
∫

M4

d4xεabεi j〈Fai,Fbj〉 =
∫

�2

dx1dx2 εcd Bαβ ∂c Xα∂d Xβ , (4.10)

where

Bαβ =
∫

T 2

dx3dx4 εi j〈ξαi, ξβ j〉 (4.11)

are components of a two-form B = (Bαβ) on the moduli space 
(4.6).

AdS5 × S5 The coset space

G/H = AdS5 × S5 = SO(4,2)

SO(4,1)
× SO(6)

SO(5)
(4.12)

is important in the AdS5/CFT4 correspondence between type IIB 
strings on this coset space and N = 4 super-Yang–Mills theory on 
the boundary R3,1 of AdS5. The group G = SO(4, 2) × SO(6) can 
be embedded into the supergroup G̃ = PSU(2, 2|4), and the super-
coset G̃/H with H = SO(4, 1) × SO(5) is used for describing the 
superstring action [30]. Considering gauge theory with the super-
group G̃ = PSU(2, 2|4) on M4 = �2 × T 2, we get in the ε2 → 0
limit the moduli space G̃/H of flat connections on T 2 as the string 
target space. Both (4.7) and (4.9) will apply with a proper choice 
of Gαβ and f��� on G/H and G̃/H , because in this limit the 
non-vanishing components of F (and F̂ ) are proportional to the 
pull-back

L� = (dX M)L�
M → �� = (dxa)��

a

where ��
a = (∂a X M)L�

M , (4.13)

and the index � runs over the coset parts of the generators of 
psu(2, 2|4) [30]. The explicit form of the superstring action (both 
kinetic and WZ terms) in terms of ��

a can be found in [30]. Sim-
ilarly one can derive the full type IIA string action on AdS4 ×CP 3

by considering supergroup gauge theory on �2 × T 2 with G̃ =
OSp(2, 2|6) and H = SO(3, 1) × U(3). Note that in (4.7) one will 
have the metric Gαβ on the coset G/H instead of ηαβ .

5. Conclusions

We have shown that the Yang–Mills action on the product of a 
two-dimensional Lorentzian manifold �2 and a singly-punctured 
two-torus T 2

p , augmented by a topological term, flows to the 
Green–Schwarz superstring action on the worldsheet �2 in the 
infrared limit, when T 2

p shrinks to a point. Upon choosing a super-

group G̃ as the gauge group and picking a closed subgroup H ⊂ G̃ , 
the string target space becomes the supercoset G̃/H as the moduli 
space of flat Yang–Mills connections on T 2

p . We mainly focused on 
the bosonic part of the superstring action because we want to em-
phasize the fundamental possibility of receiving superstring sigma 
models in an infrared limit of corresponding suitable Yang–Mills 
theories. A lot of backgrounds, including PSU(2, 2|4)/SO(4, 1) ×
SO(5) and OSp(2, 2|6)/SO(3, 1) × U(3), may appear as moduli 
spaces of flat connections on T 2

p . Various other backgrounds can 
be obtained by generalizing the T 2

p factor to a Riemann surface �̃2
with punctures or boundaries, whose moduli space of flat connec-
tions will depend on the geometry and boundary conditions. In the 
infrared limit of gauge theory on �2 × �̃2, this moduli space be-
comes the target space of a string sigma model on �2, promising a 
fresh perspective on the string vacuum landscape. Clearly, the rela-
tion between Yang–Mills and string theories deserve further study.
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