Zum Tieftemperaturverhalten von Na₃NO₃

Martin Jansen

Institut für Anorganische Chemie der Universität Hannover

Z. Naturforsch. 37a, 1457-1460 (1982); eingegangen am 27. Mai 1982

On the Low - Temperature Forms of Na₃NO₃

Low temperature Guinier photographs of Na₃NO₃ (+20° \rightarrow -140°C) indicate two phase transitions to M-Na₃NO₃ and T-Na₃NO₃ at -53±3°C and -122±3°C, respectively. During the phase transitions the main structural features (NO₂⁻[ONa₃]: antiperovskite type of structure) remain unchanged. The dynamically disordered NO₂⁻ in H-Na₃NO₃ order to form an antiferroelectric arrangement in T-Na₃NO₃. Crystal structures for M-Na₃NO₃ and T-Na₃NO₃ are proposed.

Einleitung

Im Verlaufe unserer Einkristalluntersuchungen an Na_3NO_3 bei Zimmertemperatur ergaben sich Anhaltspunkte für eine dynamische Fehlordnung des Nitritanions, ohne daß statische Fehlordnung mit letzter Sicherheit ausgeschlossen werden konnte [1, 2]. Eine Entscheidung zwischen diesen beiden Möglichkeiten sollte aufgrund von Tieftemperaturuntersuchungen zu treffen sein. Dynamische Fehlordnung würde bei Abkühlung zu wenigstens einer Phasenumwandlung Anlaß geben. Als Untersuchungsmethode wurde wegen der Luftempfindlichkeit der Präparate die nach Simon modifizierte Guinier-Technik [3] gewählt.

Experimentelles

Mikrokristallines Na₃NO₃ wurde durch Feststoffreaktion zwischen Na₂O und NaNO₂ (verschlossene Ag-Tiegel, T = 280 °C, 6 d) dargestellt, vgl. [2]. Von mehreren Präparaten wurden Abkühl- und Aufheiz-Guinier-Aufnahmen im Temperaturbereich 20 bis -135 °C angefertigt. Die Aufheiz- bzw. Abkühlraten betrugen 10°/h, der Filmvorschub 10 mm/h. Die Bestimmung der Gitterkonstanten erfolgte aus stehenden, bei Zimmertemperatur mit Tiefquarz geeichten Aufnahmen (-20 bis -140 °C, Temperaturintervall jeweils 30 °C).

Ergebnisse, Strukturvorschläge

Die Abkühl- und Aufheizaufnahmen zeigen zwei reversibel verlaufende Phasentransformationen an: von der Hochtemperaturform (H-Na₃NO₃) in $M - Na_3NO_3$ bei -53 ± 3 °C und von $M - Na_3NO_3$ die Tieftemperaturform $(T - Na_3NO_3)$ bei -122 ± 3 °C. Bezüglich ihrer Reflexabfolgen zeigen beide neue Formen eine starke Ähnlichkeit mit $H - Na_3NO_3$. Das Pulverdiagramm von $M - Na_3NO_3$ weist drei zusätzliche Reflexe auf, eine lückenlose Indizierung der Guinier-Aufnahme gelingt, wenn kubische Metrik, jedoch gegenüber H-Na₃NO₃ eine verdoppelte Gitterkonstante angenommen wird. Im Falle von T-Na₃NO₃ spalten mehrere Reflexe geringfügig auf, der Zusammenhang mit dem kubischen Reflexmuster der Hochtemperaturform bleibt jedoch eindeutig. Eine Indizierung gelingt unter Annahme einer tetragonalen Elementarzelle, deren Basisvektoren sich von denjenigen des H-Na₃NO₃ gemäß (110, 110, 001) ableiten. Eine Auswertung der Pulveraufnahme ist in Tab. 1 wiedergegeben, die kristallographischen Daten enthält Tabelle 2.

a) Strukturvorschlag für $T - Na_3NO_3$

Nach "trial and error" konnte für $T - Na_3NO_3$ ein Strukturvorschlag (bezüglich der Ortsparameter siehe Tab. 3) mit geordneten Nitritanionen abgeleitet werden. Das Modell, das plausible interatomare Abstände aufweist und zu einer guten Übereinstimmung zwischen beobachteten und berechneten Intensitäten führt, ist in Projektion auf (001) in Abb. 1 wiedergegeben. Obwohl naturgemäß mit Hilfe von Pulverdaten keine genauen Ortsparameter bestimmt werden können, lassen sich einige Strukturdetails aufgrund der Intensitätsrechnungen eindeutig festlegen: So sind die NO_2 ⁻-Anionen in der Weise angeordnet, daß sich ihre Dipolmomente gegenseitig kompensieren; die Na(1) rücken in Richtung [001] aus der Ideallage 1/4, 1/4, 1/2 heraus.

0340-4811 / 82 / 1200-1457 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Sonderdruckanforderungen an Prof. Dr. Martin Jansen, Institut für Anorganische Chemie, Callinstraße 9, D-3000 Hannover 1.

1458

Tab. 1. Pulv	erdaten von	H-, M	I- und	T-Na ₃ N	VO_3 ,	Guinier-	Technik,	CuKa,	Eichung 1	mit Tiefq	uarz.
--------------	-------------	-------	--------	---------------------	----------	----------	----------	-------	-----------	-----------	-------

M-Na	₃ NO ₃ * (-	110°C)			H-Na	₃ NO ₃	T-Na ₃	$NO_3 (-140^\circ$	C)	1.25	2
I ₀	Ic	$\sin^2 \theta_0 \cdot 10$	$\sin^2 \theta_{\rm c} \cdot 10^5$	hkl	hkl	$\sin^2 \theta_0 \cdot 10^5$	hkl	$\sin^2 heta_0 \cdot 10^5$	$\sin^2 heta_{ m c} \cdot 10^5$	I ₀	Ic
30	$\left\{\begin{array}{c} 4,3\\18,0\end{array}\right.$	2814	$\left\{\begin{array}{c}2829\\2829\end{array}\right.$	$\begin{array}{c} 002\\ 110 \end{array} \Big \{$	100	2812 }	$\left. \begin{array}{c} 001\\ 110\\ 101 \end{array} \right\}$	2850 —	$2798 \\ 2859 \\ 4228$	30 	19,6 21,7 9,0
230	$\Big\{\begin{array}{c}180,4\\23,9\end{array}$	5649	$\left\{\begin{array}{c}5658\\5658\end{array}\right.$	$\begin{array}{c} 112\\200\end{array} iggl\{$	110	5607 $\}$	$\left. \begin{smallmatrix} 111\\200 \end{smallmatrix} \right\}$	5677	5657 5719	300	300,9 24,9
180	205,3	7795	7780	211			210	7144	7148	150	136,6
900	1000,0	8492	8487	202	111	8409	201 211	8519 9950	8517 9946	1000 100	1000,0 141,6
1000	{ 453,4 672,4	11317	$\left\{ \begin{array}{c} 11316 \\ 11316 \end{array} \right.$	$\left. \begin{array}{c} 004\\220 \end{array} \right\}$	200	11215 $\Big\}$	$\begin{array}{c} 002\\ 220 \end{array}$	$\begin{array}{c} 11222\\ 11426 \end{array}$	$11192 \\ 11437$	400 800	373,3 754,8
60	81,1	13434	13438	213			102	_	12622	-	6,7
250	$\left\{ \begin{array}{c} 41,1 \\ 83,9 \\ 149,3 \end{array} \right.$	14157	$\left\{ \begin{array}{l} 14146 \\ 14146 \\ 14146 \\ 14146 \end{array} \right.$	$ \begin{array}{c} 114 \\ 222 \\ 310 \end{array} $	210	14016 }	$egin{array}{c} 112 \\ 221 \\ 310 \\ 301 \end{array} ight angle$	14040 14265 —	14052 14235) 14297 } 15665	200 250 —	291,4 72,4 170,3 13,0
20	{ 5,8 35,0	16975	$\left\{ \begin{array}{c} 16975 \\ 16975 \end{array} \right.$	$\begin{array}{c} 204\\ 312 \end{array} \Big $	211	16806 }	202 311 212	 17087 18354	16911 17095 18341		29,2 139,5 32,1
50	68,8	19103	19097	321			320 321	18578 21398	$\begin{array}{c} 18586\\ 21384 \end{array}$	50 70	$ \begin{array}{r} 40,5 \\ 56,1 \end{array} $
400	$\left(\begin{array}{c} 377,1\\113,1 \end{array} \right)$	22634	$\Big\{\begin{array}{c} 22633 \\ 22633 \end{array}$	$\left. \begin{array}{c} 224 \\ 400 \end{array} \right $	220	22419	$\begin{array}{c} 222 \\ 400 \end{array}$	$22615 \\ 22873$	22630 22874	$\begin{array}{c} 350 \\ 150 \end{array}$	316,5 126,6
10	$\left\{ \begin{array}{c} 26,0 \\ 42,2 \\ 2,0 \end{array} \right.$	24760	$\left\{ \begin{array}{c} 24755 \\ 24755 \\ 24755 \\ 24755 \end{array} \right.$	215 323 411			302 410		24059 24304		19.1 1,0
300	$\left\{\begin{array}{c} 7,3\\ 168,2\\ 121,0\\ 6,7\end{array}\right.$	25440	$\left\{\begin{array}{c} 25462\\ 25462\\ 25462\\ 25462\\ 25462\end{array}\right.$	$egin{array}{c} 006 \\ 314 \\ 402 \\ 330 \end{array}$	$\left[\begin{array}{c} 300 \\ 221 \end{array}\right]$	25221 }	003 312 401 330	$25495 \\ 25662 \\ -$	25183 25489 25673 25734		1,5 196,6 98,6 7,2

* Aufstellung: tetragonal-I.

b) Strukturvorschlag für $M - Na_3NO_3$

Innerhalb der Fehlergrenzen der Guinier-Technik besitzt $M - Na_3NO_3$ kubische Metrik. Nimmt man auch kubische Symmetrie an und berücksichtigt fer-

Tab. 2. Kristallographische Daten von H-, M- und $\rm T-Na_3NO_3.$

	H-Na ₃ NO ₃	M-Na ₃ N	T-Na ₃ NO ₃	
	(20°C)	((-140°C)	
Raum- gruppe bzw. Bravaistyp	Pm3m	kubF	tetragI	P 42 ₁ m
a[pm] c[pm]	460,3	915,9	647,6 915,9	644,2 460,4
$MV[cm^3]$	58,7	57,9	57,9	57,6
	1	8	4	2

ner die systematischen Auslöschungen, die auf ein F-zentriertes Bravais-Gitter verweisen, so lassen sich nur Strukturmodelle aufstellen, die einen ähnlich hohen Unordnungsgrad aufweisen wie die Hochtemperaturform $H-Na_3NO_3$. Dementsprechend ist es nicht möglich, mit diesen Modellen die Zusatzreflexe im Pulverdiagramm von $M-Na_3NO_3$ zu erklären.

Tab. 3. Ortsparameter von T-Na₃NO₃, Raumgruppe $P\overline{4}2_1m$.

		x	\boldsymbol{y}	z
Na (1)	4 (e)	1/4	1/4	0,572
Na (2)	2 (a)	0	0 [′]	0
N	2(c)	0	1/2	-0,072
0(1)	2(b)	0	0 [′]	1/2
O (2)	4 (e)	0,615	0,115	0,935

M. Jansen · Zum Tieftemperaturverhalten von Na₃NO₃

Abb. 1. Projektion der Kristallstruktur von T-Na₃NO₃ auf (001), der gestrichelte Ausschnitt entspricht der Elementarzelle von H-Na₃NO₃.

Offensichtlich liegt in $M - Na_3NO_3$ der die Metrik bestimmende ONa_3 -Teil der Struktur gegenüber der Hochtemperaturform unverändert vor, und die NO_2 -Gruppen bilden unter zumindest partieller Ausrichtung relativ zueinander Anordnungen niedrigerer Symmetrie aus. Daß im Existenzbereich der Phase $M - Na_3NO_3$ noch keine Anpassung der Kuboktaeder um NO_2^- an die lokal niedrigere Symmetrie erfolgt, dürfte auf eine noch vorhandene Beweglichkeit der Anionen zurückzuführen sein. Denkbar wären gekoppelte Rotationssprünge benachbarter NO_2 -Gruppen oder Bereiche mit geordneten Nitritanionen, deren Grenzen stark fluktuieren. Auf der Basis dieser Vorstellungen ausgeführte Modellrechnungen führten auf zwei Strukturvorschläge, die schematisch

Abb. 2. Schematische Wiedergabe der Strukturmödelle für M-Na₃NO₃ in Projektion parallel [001].

in Abb. 2 in der Projektion entlang [001] wiedergegeben sind. Aufgrund der uns vorliegenden Pulverdaten läßt sich keine Entscheidung zugunsten des einen oder des anderen Modells treffen. Es ist somit z. Z. nicht möglich, zu unterscheiden, ob eine Ausrichtung der NO₂-Gruppen im ferro- oder antiferroelektrischen Sinne erfolgt. Da die Tieftemperaturform antiferroelektrische Ordnung aufweist und mit einer Änderung des Wechselwirkungstyps im Verlaufe der Abkühlung nicht zu rechnen ist, erscheint der Strukturvorschlag a) in Abb. 2 wahrscheinlicher.

Beide Strukturmodelle ergeben für die Zwischenreflexe um ca. 20% zu hohe relative Intensitäten. Wir führen dies auf den Anteil ungeordneter Bereiche (z. B. fluktuierende Domänenwände) zurück, die im zur Diskussion stehenden Temperaturbereich noch vorhanden sein sollten. Unterstützt wird diese Deutung durch eine Intensitätszunahme der Zusatzreflexe bei Temperaturerniedrigung, allerdings wird auch unmittelbar vor der Umwandlung in die vollständig geordnete Tieftemperaturform nicht die volle Intensität erreicht, wie sie die Modellrechnung unter Zugrundelegung der Modelle a) oder b) fordert.

Diskussion

Im Verlauf der beobachteten Phasenumwandlungen bleibt der Aufbau von Na₃NO₃ (anti-Perowskit im Sinne der Formulierung NO₂[ONa₃]) im Grundsätzlichen erhalten. Bei den Umwandlungstemperaturen treten keine Volumensprünge auf, die Abnahme des Molvolumens bei Temperaturerniedri-

Abb. 3. Molvolumen von Na₃NO₃ in Abhängigkeit von der Temperatur.

M. Jansen · Zum Tieftemperaturverhalten von Na₃NO₃

gung ist relativ gering (vgl. Abb. 3; der lineare thermische Ausdehnungskoeffizient α beträgt 3,9 · 10^{-5} Grad⁻¹).

Die Interpretation der Ergebnisse im Hinblick auf eine Unterscheidung zwischen dynamischer und statischer Fehlordnung der Hochtemperaturform scheint eindeutig: Die ohne erkennbare Hysterese reversibel ablaufenden Phasenumwandlungen lassen sich nur bei Annahme einer dynamisch fehlgeordneten Phase $H - N_3 NO_3$ und geordnetem $T - Na_3 NO_3$ verstehen. Naturgemäß sind auf der Basis des vorliegenden experimentellen Materials keine Aussagen über die Rotationsfrequenzen bzw. über die Sprungraten der NO₂-Gruppe in der H-Form möglich. In Analogie zu den Phänomenen, wie sie im Zusammenhang mit magnetischen Ordnungsvorgängen auftreten, interpretieren wir den Existenzbereich von M-Na₃NO₃ als Induktionsperiode für den Übergang in die geordnete Form, wobei hier die NO2-Gruppen über die elektrischen Dipolmomente miteinander in Wechselwirkung treten und entweder gekoppelte Bewegungen ausführen oder aber geordnete Bereiche entstehen, die in ihrer Ausdehnung vergleichbar mit der Kohärenzlänge bei Röntgen-Beugungsexperimenten sind. Gegen diese Auffassung

 M. Jansen, Angew. Chem. 88, 410 (1976); Intern. Ed. Engl. 15, 376 (1976). spricht allerdings, daß solche Erscheinungen gewöhnlich nur in unmittelbarer Nähe der Umwandlungstemperatur auftreten, hier jedoch über einen bemerkenswerten ausgedehnten Temperaturbereich beobachtet werden.

Obwohl die vorliegenden Untersuchungen Aufschluß über die Art der Fehlordnung der bei Zimmertemperatur stabilen Form von Na_3NO_3 geben, bleiben noch verschiedene, für das Verständnis der Vorgänge bei den Phasenumwandlungen wichtige Einzelheiten ungeklärt. Weitere Aufschlüsse erhoffen wir uns von inelastischer Neutronenstreuung und von einer quantitativen Bestimmung der Umwandlungswärme, die im wesentlichen mit dem Einfrieren von Rotationsfreiheitsgraden in Zusammenhang zu bringen sein sollten.

Wegen der beschriebenen Besonderheiten, vor allem aber wegen ihres einfachen Aufbaus verdient die Substanzklasse der "Orthonitrite" weiterhin Beachtung als Modellsubstanz für die Untersuchung dynamischer Unordnung in Festkörpern.

Die Deutsche Forschungsgemeinschaft und der Fonds der Chemischen Industrie unterstützten die vorliegende Arbeit in großzügiger Weise mit Sachmitteln.

[2] M. Jansen, Z. Anorg. Allg. Chem. 435, 13 (1977).
[3] A. Simon, J. Appl. Crystallogr. 3, 11 (1970).

Bereitgestellt von | Technische Informationsbibliothek Hannover Angemeldet Heruntergeladen am | 20.11.17 10:16