Synthese und Kristallstruktur von Triphenylmethylphosphoniumtriiodid $[P(C_6H_5)_3CH_3]I_3$

Synthesis and Crystal Structure of $[P(C_6H_5)_3CH_3]I_3$

Mervat El Essawi und Sawsan Abd El Khalik

Department of Chemistry, University of Cairo-Giza, Egypt

H. J. Berthold* und R. Wartchow

Institut für Anorganische Chemie und Sonderforschungsbereich 173 der Universität Hannover, Callinstraße 9, D-3000 Hannover 1

Frau Prof. Dr. Marianne Baudler zum 70. Geburtstag gewidmet

Z. Naturforsch. 46b, 703-708 (1991); eingegangen am 4. Dezember 1990

Triphenylmethylphosphonium Triiodide, Synthesis, Crystal Structure

Triphenylmethylphosphonium triiodide $[P(C_6H_5)_3CH_3]I_3$ has been prepared by the reaction of $[P(C_6H_5)_3CH_3]I$ with iodine in ethanol. Deep violet crystals were obtained by recrystallization from dichloromethane.

The crystal and molecular structure of the compound has been determined. The crystals are orthorhombic, space group P*bca*, Z = 8, a = 1182.2(2), b = 1987.6(3), c = 1798.8(3) pm.

Least squares refinement of the structure yielded R = 0.038 ($R_w = 0.030$, $R_G = 0.030$) for 2433 independent reflections.

The triodide ion I_3^- is slightly asymmetrical and slightly bent. The distances are 293.7(1) pm (I(1)-I(2)) and 291.7(1) pm (I(2)-I(3)), the angle I(1)-I(2)-I(3) is 179.3(1)°.

The structure contains layers perpendicular to the *c* axis, which follow each other with a period of c/2 and are built up by I_3^- anions and $[P(C_6H_5)_3CH_3]^+$ cations. They are stacked to give layers of cations and layers of anions perpendicular to the *b* axis. The shortest $I \cdots I$ distance between I_3^- ions in the anion layer occurs in the *c* direction. It amounts to 414 pm, thus indicating that there are only very weak $I \cdots I$ interactions between the I_3^- ions. Further $I \cdots I$ contacts in the layer lie between 510 and 746 pm.

Einleitung

Die Struktur des I_3^- -Ions in kristallinen Triiodiden ist in der Vergangenheit Gegenstand umfangreicher Untersuchungen und Diskussionen gewesen [1, 2]. Das Ion I(1)–I(2)–I(3)⁻ tritt in den untersuchten Verbindungen gestreckt oder geringfügig gewinkelt auf, und es besitzt im Hinblick auf die Abstände zwischen dem zentralen Iodatom I(2) und den beiden terminalen Iodatomen I(1) und I(3) symmetrischen oder unsymmetrischen Bau. Maßgebend für die Geometrie des Ions sind neben der durch die Kationen bedingten Symmetrie des umgebenden Kristallfeldes auch Größe und Ladung des Kations sowie bei komplexen Kationen auch deren Symmetrie.

Unsymmetrische und gewinkelte I_3^{-} -Ionen (Eigensymmetrie C_s) findet man in der Regel in

Strukturen, in denen das Anion in unterschiedlicher Weise an der Koordination von Kationen, an H-Brückenbindungen oder an Verknüpfungen zu anderen Anionen merklich beteiligt ist. Das Triiodidion besetzt dabei eine kristallographische Lage der Symmetrie 1 oder *m*. Beispiele sind CsI₃ [3], RbI₃ [4], TII₃ [4] und NH₄I₃ [5], aber auch zahlreiche Verbindungen mit komplexen symmetrisch oder unsymmetrisch gebauten Kationen [2]. Die im NH₄I₃ beobachtete extreme Asymmetrie (I(1)–I(2) = 311,4 pm, I(2)–I(3) = 279,7 pm, Winkel I(1)–I(2)–I(3) = 178,55°) ist überwiegend durch unsymmetrisch verteilte Wasserstoffbrükkenbindungen bedingt.

Symmetrische gewinkelte I_3^- -Ionen (Eigensymmetrie $C_{2\nu}$) sind in zahlreichen Verbindungen mit großen komplexen Kationen beobachtet worden. Das zentrale Atom I(2) besetzt in diesen Verbindungen Lagen der Symmetrie 2 oder *m*. Beispiele sind das $[(C_6H_5)_4As]I_3$ [3] und das $[Ru(C_5H_5)_2I]I_3$ [6]. Im $[Ni(NH_3)_6](I_3)_2$ [2] ist das eine der beiden I_3^- -Ionen symmetrisch gewinkelt gebaut – die Lagesymmetrie für I(2) ist m –, das andere unab-

^{*} Sonderdruckanforderungen an Prof. Dr. H. J. Berthold.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/91/0600-0703/\$01.00/0

hängige I_3^- -Ion besitzt eine symmetrische und gestreckte Stuktur (Lagesymmetrie \overline{I}).

Symmetrische und gestreckte I_3^- -Ionen (Eigensymmetrie $D_{\infty h}$) wurden bisher nur in Strukturen mit großen komplexen Kationen gefunden, in denen das zentrale Iodatom I(2) die Lagesymmetrie \overline{I} , 2/m oder eine andere, der Eigensymmetrie des Ions entsprechende Lage besitzt. Beispiele sind $1,6[Co(NH_3)_4(NO_2)_2]I_3$ [2, 7], in dem das zentrale Iodatom I(2) eine Lage der Symmetrie \overline{I} besetzt, sowie die Modifikation I des $[(C_2H_5)_4N]I_3$ [8] und $[Cu(NH_3)_4I_3]I_3$ [9], in denen die zentralen Iodatome Lagen der Symmetrie 2/m besetzen. Zahlreiche weitere Beispiele findet man z. B. in [9].

Die Gesamtlänge des I_3^- -lons ist einmal davon abhängig, ob das Ion isoliert oder in kettenförmige Verbände eingebunden auftritt, zum anderen aber auch von seiner Symmetrie. Je unsymmetrischer das Anion gebaut ist, um so größer ist im allgemeinen seine Gesamtlänge. Im NH₄I₃ beträgt sie z. B. 591,0 pm. Symmetrische gestreckte Anionen besitzen oft eine Gesamtlänge in der Nähe von 584(2) pm [5].

Die interessante Frage nach der Geometrie, des freien I₃⁻-Ions", nämlich ob es bei Vernachlässigbarkeit äußerer, durch die Struktur gegebener Einflüsse symmetrisch und gestreckt gebaut ist oder unsymmetrisch und gestreckt oder gewinkelt, ließe sich bei kristallinen Verbindungen zuverlässig nur dann beantworten, wenn man eine Struktur fände, in der das Triiodidion zum einen nur geringen äu-Beren Kräften ausgesetzt ist und zum anderen eine Punktlage besetzt – z.B. 1 oder m (für alle drei Iodatome) -, die nicht von vornherein eine bestimmte Symmetrie für das Anion vorschreibt. Wird das I₃⁻-Ion symmetrisch und gestreckt beobachtet und besetzt das zentrale Iodatom eine Lage der Punktsymmetrie $\overline{1}$ oder 2/m, so könnte die hohe Eigensymmetrie durch eine Lagefehlordnung einer niedriger symmetrischen Form vorgetäuscht sein (vgl. z. B. [2, 9]).

Einen Beitrag zur Frage nach der Struktur des freien I_3 -Ions erhofften wir uns von einer Kristallstrukturuntersuchung des Triphenylmethylphosphoniumtriiodids [P(C₆H₅)₃CH₃]I₃ aus dem Grund, weil IR-spektroskopische Messungen und die Kristallstrukturanalyse des Triphenylmethylphosphoniumnitrits [P(C₆H₅)₃CH₃]NO₂ gezeigt haben, daß die kleinen NO₂⁻-Ionen in dieser das gleiche Kation enthaltenden Verbindung völlig voneinander getrennt sind und damit als "frei" angesehen werden können. Das in der Struktur in allgemeiner Punktlage befindliche NO_2^- -Ion nutzt seine Freiheit zur Vergrößerung des Winkels O-N-O und zur Verkürzung des N-O-Bindungsabstandes [10].

Experimenteller Teil

Darstellung von

Triphenylmethylphosphoniumtriiodid

Zur Darstellung von $[P(C_6H_5)_3CH_3]I_3$ wurde eine ethanolische Lösung von [P(C₆H₅)₃CH₃]I dargestellt durch Umsetzung von $P(C_6H_5)_3$ mit CH₃I in Ethanol – unter Rühren bei Raumtemperatur tropfenweise mit einer Lösung von Iod in Ethanol im Molverhältnis 1:1 versetzt. Das in Ethanol schwerlösliche Triiodid fiel sofort nach Beginn der Zugabe der Lösung in Form tief violetter Kristalle aus. Die Kristalle wurden abfiltriert, mit Ethanol gewaschen und zur Umkristallisation bei Raumtemperatur in der benötigten Menge CH2Cl2 gelöst. Anschließend wurde mit Petrolether überschichtet und das Gefäß nach dem Verschließen bei ca. 8 °C aufbewahrt. Die Kristallisation der für eine röntgenographische Untersuchung geeigneten Einkristalle erfolgte innerhalb weniger Stunden. Schmelzpunkt 105 °C.

Ber.	C 34,68	H 2,76,
Gef.	C 34,0	H 2,7.

Gang der Strukturbestimmung

Die Intensitätsmessung des Kristalls wurde unter Anwendung der learnt profile-Methode [11, 12] auf einem Vierkreisdiffraktometer AED2 der Fa. Siemens/Stoe durchgeführt. Einzelheiten über die Kristalldaten und über die Messung gehen aus Tab. I hervor.

Die Strukturaufklärung erfolgte über Patterson-Synthesen und nachfolgende Differenz-Fouriersynthesen. Zur Parameterverfeinerung standen 2433 unabhängige Reflexe ($R_F(int) = 3,4\%$) zur Verfügung. Die Atomformfaktoren für neutrale Atome I, P, C und H sowie die Dispersionskorrekturen wurden den Internationalen Tabellen Vol. IV, S. 99f. bzw. 149f. entnommen. Die Ortsparameter der H-Atome wurden nach Kenntnis der Lage der C-Atome geometrisch berechnet (d(C-H) = 96 pm). Für die Atome I, P und C wurden anisotrope Temperaturparameter, für alle H-Atome ein gemeinsamer isotroper Temperaturparameter verfeinert. Die abschließende Differenz-Fouriersynthese zeigte Dichteschwankungen zwi-

		T-L I	V
Kristallsystem	orthorhombisch	Angaber	n zur Intensitäts-
Gitterkonstanten	$a = 1182,2(2) \mathrm{pm}$	messung	und Datenreduk-
	$b = 1987,6(3) \mathrm{pm}$	tion.	
	$c = 1798,8(3) \mathrm{pm}$		
Zellvolumen	$V = 4227(1) \cdot 10^6 \text{ pm}^3$		
Formeleinheiten/Zelle	Z = 8		
Dichte, berechnet	$D_x = 2,07 \text{ g/cm}^3$		
Raumgruppe	Pbca		
Strahlung	MoK _a (Graphit-Monochromator)		
Meßtemperatur	23 °C		
Zahl der Reflexe zur Gitterkonstanten- bestimmung	24		
Meßbereich	$2\theta_{\max} = 43^\circ; -1 \le h \le 12$ -21 < k < 21		
	-19 < l < 19		
Abtastung	learnt profile-Methode ω -scan		
	$\Delta \omega = 0.038 \cdots 0.043^{\circ}$		
Schrittzahl	2124		
Schrittmeßzeit	0.5 sec		
Zahl der gemessenen Reflexe	11518		
Zahl der Reflexe mit $I > 2\sigma_{r}$	9386		
Zahl der unabhängigen Reflexe	2433		
Korrekturen			
a) Lorentz- und Polarisationsfaktor			
b) Numerische Absorptionskorrektur	$\mu(MoK) = 42 \text{ cm}^{-1}$		
c) Empirische Extinktionskorrektur	$F_{1} = F_{1} \cdot (1 + 4.97 \cdot 10^{-8} \cdot F^{-2} / \sin \theta)$		
Verwendete Programme	SHELX-76, SCHAKAL, PARST, KPLOT		

Atom	X	у	Ζ	$U_{eq}/(pm^2)$
I(1)	0,13807(7)	0,03116(3)	0,16805(3)	753(3)
I(2)	0,19698(6)	0,05113(3)	0,01100(3)	565(2)
I(3)	0,25749(6)	0,07224(3)	-0,14446(3)	685(3)
P	0,35998(21)	0,28517(11)	0,06660(11)	434(8)
C(1)	0,41985(71)	0,20363(38)	0,07521(41)	425(32)
C(2)	0,47207(75)	0,17159(42)	0,01627(44)	528(35)
H(1)	0,47143(75)	0,19191(42)	-0,03215(44)	578(58)
C(3)	0,52240(81)	0,10951(47)	0,02642(50)	661(41)
H(2)	0,56054(81)	0,08869(47)	-0,01470(50)	578(58)
C(4)	0,52074(87)	0,07839(47)	0,09425(56)	731(45)
H(3)	0,55546(87)	0,03508(47)	0,10028(56)	578(58)
C(5)	0,46945(88)	0,10952(50)	0,15293(51)	716(48)
H(4)	0,46873(88)	0,08819(50)	0,20081(51)	578(58)
C(6)	0,41934(76)	0,17138(45)	0,14437(44)	580(42)
H(5)	0,38279(76)	0,19233(45)	0,18603(44)	578(58)
C(7)	0,23211(72)	0,29069(40)	0,11974(36)	393(29)
C(8)	0,16346(80)	0,23421(42)	0,12862(39)	496(37)
H(6)	0,18827(80)	0,19157(42)	0,10958(39)	578(58)
C(9)	0,05997(83)	0,23936(48)	0,16517(42)	589(42)
H(7)	0,01450(83)	0,19992(48)	0,17267(42)	578(58)
C(10)	0,02458(82)	0,30120(52)	0,19053(42)	623(41)
H(8)	-0,04836(82)	0,30550(52)	0,21350(42)	578(58)
C(11)	0,09310(93)	0,35710(48)	0,18192(46)	667(43)
H(9)	0,06891(93)	0,39938(48)	0,20223(46)	578(58)
C(12)	0,19635(84)	0,35261(45)	0,14652(42)	573(37)
H(10)	0,24194(84)	0,39202(45)	0,13917(42)	578(58)
C(13)	0,32688(70)	0,30373(37)	-0,02822(38)	393(31)
C(14)	0,35805(76)	0,36393(39)	-0,05987(42)	521(35)
H(11)	0,40390(76)	0,39483(39)	-0,03204(42)	578(58)

Tab. II. Atomkoordinaten und Temperaturparameter $U_{\mbox{\scriptsize eq}}.$

706 M. El Essawi et al. Synthese und Kristallstruktur von Triphenylmethylphosphoniumtriiodid $[P(C_6H_5)_3CH_3]I_3$

Atom	X	У	Z	$U_{eq}/(pm^2)$
C(15)	0,32272(86)	0,37977(44)	-0,13117(50)	653(42)
H(12)	0,34366(86)	0,42199(44)	-0,15312(50)	578(58)
C(16)	0,25683(85)	0,33395(50)	-0,17037(46)	639(42)
H(13)	0,22979(85)	0,34535(50)	-0,21910(46)	578(58)
C(17)	0,22922(79)	0,27333(44)	-0,14024(44)	576(34)
H(14)	0,18567(79)	0,24121(44)	-0,16798(44)	578(58)
C(18)	0,26454(74)	0,25802(40)	-0.06908(40)	480(35)
H(15)	0,24531(74)	0,21542(40)	-0,04733(40)	578(58)
C(19)	0,45991(73)	0,34529(37)	0,10064(38)	592(36)
H(16)	0,42903(73)	0,38979(37)	0,09637(38)	578(58)
H(17)	0,52799(73)	0,34226(37)	0,07174(38)	578(58)
H(18)	0,47674(73)	0.33597(37)	0.15182(38)	578(58)

Tab. II. (Fortsetzung).

schen +0,66 und $-0,94 \text{ e/Å}^3$ mit Maximalwerten in der Nähe der Iodatome. Die *R*-Werte betragen R = 3,8%, $R_w = 3,0\%$ und $R_G = 3,0\%$. Die Ortsparameter der Atome und die isotropen Temperaturparameter U_{eq} sind in Tab. II zusammengestellt. Die Bezeichnung der Atome geht aus Abb. 1 hervor.

Tab. III enthält die wichtigsten Bindungsabstände, Tab. IV die wichtigsten Bindungswinkel.

Listen der beobachteten F-Werte und der anisotropen thermischen Parameter sind beim Fachinformationszentrum Karlsruhe, D-7514 Eggenstein-Leopoldshafen 2, unter der Nummer CSD 55199 hinterlegt.

Atom-Atom	d/pm
I(1) - I(2)	293,7(1)
I(2) - I(3)	291.7(1)
P-C(1)	177,5(8)
P-C(7)	179,2(8)
P - C(13)	178.9(7)
P - C(19)	178,8(8)
C(1) - C(2)	138,2(11)
C(1) - C(6)	140,0(11)
C(2) - C(3)	138,2(13)
C(3) - C(4)	136,8(14)
C(4) - C(5)	136,6(14)
C(5) - C(6)	137,3(13)
C(7) - C(8)	139,4(12)
C(7) - C(12)	138,8(12)
C(8) - C(9)	139,3(13)
C(9) - C(10)	137,6(14)
C(10) - C(11)	138,4(14)
C(11) - C(12)	138,0(14)
C(13) - C(14)	137,5(11)
C(13) - C(18)	138,1(11)
C(14) - C(15)	138,5(12)
C(15) - C(16)	139,1(13)
C(16) - C(17)	136,1(13)
C(17) - C(18)	138,1(11)

Tab. III. Ausgewählte Abstände im Kation und Anion.

Atome	Winkel/° (Fehler)
I(1) - I(2) - I(3)	179 3(1)
C(13) = P = C(19)	109.5(4)
C(7) = P = C(19)	109,5(4)
C(7) - P - C(13)	108,2(4)
C(1) = P = C(19)	108,2(1) 108,5(4)
C(1) = P = C(13)	1110(4)
C(1) - P - C(7)	110.2(4)
P = C(1) = C(6)	119 6(6)
P = C(1) = C(2)	122.1(6)
C(2) - C(1) - C(6)	118.2(7)
C(1) - C(2) - C(3)	120.2(8)
C(2) - C(3) - C(4)	121.0(9)
C(3) - C(4) - C(5)	119,4(9)
C(4) - C(5) - C(6)	120,7(9)
C(1) - C(6) - C(5)	120,5(8)
P-C(7)-C(12)	119,8(6)
P - C(7) - C(8)	120,2(6)
C(8) - C(7) - C(12)	119,8(8)
C(7) - C(8) - C(9)	120,4(8)
C(8) - C(9) - C(10)	119,3(9)
C(9) - C(10) - C(11)	120,1(9)
C(10) - C(11) - C(12)	121,2(9)
C(7) - C(12) - C(11)	119,2(8)
P-C(13)-C(18)	119,2(6)
P-C(13)-C(14)	121,0(6)
C(14) - C(13) - C(18)	119,7(7)
C(13) - C(14) - C(15)	120,0(8)
C(14) - C(15) - C(16)	119,3(8)
C(15) - C(16) - C(17)	120,8(8)
C(16) - C(17) - C(18)	119,5(8)
C(13) - C(18) - C(17)	120.7(7)

Tab. IV. Ausgewählte Winkel im Kation und Anion.

Strukturbeschreibung und Diskussion

Abb. l zeigt eine Formeleinheit der Verbindung $[P(C_6H_5)_3CH_3]I_3$, die der asymmetrischen Einheit entspricht. Die auch in den Tabellen benutzten Bezeichnungen der Atome I, P und C sind angegeben. Die Blickrichtung verläuft parallel zur

P-C(Methyl)-Bindung, so daß die Abweichung der Symmetrie des Kations von der idealen Symmetrie C_{3v} deutlich wird. Man erkennt, daß die Ebene einer Phenylgruppe nahezu parallel zur Achse des Triiodidions liegt. Der Abstand des zentralen Iodatoms I(2) zur Ringebene beträgt 390 pm. Das Kation besitzt im untersuchten Triiodid bis auf sehr geringfügige Unterschiede bei einigen Abständen und Winkeln die gleiche Konformation wie im entsprechenden Nitrit [10].

Die Abstände im Triiodidion, dessen zentrales Iodatom I(2) eine Punktlage der Lagesymmetrie 1 besetzt, betragen 293,7(1) pm (I(1)–I(2)) und 291,7(1) pm (I(2)–I(3)), der Bindungswinkel I(1)–I(2)–I(3) liegt bei 179,3(1)°. Die Gesamtlänge des Anions beträgt 585,3(2) pm.

Das I_3^- -Ion zeigt eine geringfügige Abweichung von der gestreckten symmetrischen Struktur, für die eine eindeutige Erklärung aufgrund der durch die komplexen Kationen [P(C₆H₅)₃CH₃]⁺ gebildeten Umgebung jedoch nicht gegeben werden kann.

Abb. 1. Formeleinheit der Verbindung $[P(C_6H_5)_3CH_3]I_3$. Die Blickrichtung verläuft parallel zur P-C(Methyl)-Bindung.

Abb. 2 zeigt einen Ausschnitt aus der Struktur in einer Projektion entlang der *a*-Achse auf die *bc*-Ebene. Die H-Atome sind nicht wiedergegeben. Die *x*-Parameter der Iod- und Phosphor-Atome sind angegeben. Die Projektion läßt Schichten senkrecht zur *c*-Achse in Abständen von c/2 erkennen, die aus Kationen und Anionen aufgebaut sind.

Abb. 3 zeigt den Aufbau einer derartigen Schicht zwischen z = 0,25 und z = 0,75 in einer Projektion entlang der *c*-Achse. Die Stapelung der Schichten erfolgt derart, daß die großen komple-

Abb. 2. Projektion entlang der *a*-Achse auf die *bc*-Ebene. Die H-Atome sind nicht wiedergegeben. Die Projektion zeigt Schichten senkrecht zur *c*-Achse in Abständen von c/2, die aus Kationen und Anionen aufgebaut sind. Die *x*-Parameter der Atome I und P sind angegeben.

xen Kationen Schichten senkrecht zur *b*-Achse ausbilden. Zwischen diesen Kationenschichten sind die I_3^- -Ionen eingelagert, die ihrerseits ebenfalls Schichten senkrecht zur *b*-Achse und parallel zur *ac*-Ebene ausbilden (vgl. auch Abb. 2).

Abb. 3. Aus Kationen und Anionen aufgebaute, senkrecht zur *c*-Achse liegende Schicht zwischen z = 0.25 und 0.75.

Abb. 4. Aufbau einer Anionenschicht senkrecht zur *b*-Achse zwischen y = 0,43 und y = 0,57. Die nur geringfügig verzerrten Triiodidionen (Symmetrie C_s) sind schraubenförmig um in der *c*-Richtung liegende 2₁-Achsen angeordnet. Die kürzesten interionischen I···I-Abstände mit einer Länge von 414 pm sprechen dafür, daß die interionischen Wechselwirkungen äußerst gering sind.

Abb. 4 zeigt den Aufbau einer solchen aus I_3^- -Ionen aufgebauten Schicht zwischen y = 0,43 und y = 0,57. Man erkennt, daß die Triiodidionen mit interionischen Abständen von 414 pm schraubenförmig um in der *c*-Richtung liegende 2₁-Achsen angeordnet sind. Die Abstände zwischen den Triiodidionen sind nur geringfügig kleiner als der van der Waals-Kontakt (d(I…I) ≈ 430 pm), so daß die interionischen Wechselwirkungen in *c*-Richtung nur sehr gering sein dürften. Bei Triiodidstrukturen mit deutlicher Kettenbildung liegen die inter-

- L. Gmelin, "Handbuch der Anorganischen Chemie" Iod, System-Number 8, S. 403, Verlag Chemie, Weinheim/Bergstraße (1983), Nachdruck (1955).
- [2] K.-F. Tebbe, Polyhalogen Cations and Polyhalide Anions, in A. L. Rheingold (ed.): Homoatomic Rings, Chains and Macromolecules of Main-Group Elements, S. 551–606, Elsevier, Amsterdam–Oxford–New York (1977).
- [3] J. Runsink, S. Swen-Walska und T. Migchelsen, Acta Crystallogr. B28, 1331 (1972).
- [4] K.-F. Tebbe und U. Georgy, Acta Crystallogr. C42, 1675 (1986).
- [5] K.-F. Tebbe, B. Freckmann, M. Hörner, W. Hiller und J. Strähle, Acta Crystallogr. C41, 660 (1985).

ionischen Abstände bei Werten wesentlich unterhalb von 400 pm. Die übrigen I \cdots I-Abstände zwischen den I₃⁻-Ionen in der Anionenschicht liegen zwischen 510 und 746 pm. Ein Schichtverband liegt nicht vor.

Die einleitend aufgeworfene Frage nach der Geometrie des freien I_3^- -Ions im Kristall kann durch die Strukturuntersuchung des Triphenylmethylphosphoniumtriiodids [P(C₆H₅)₃CH₃]I₃ nicht abschließend beantwortet werden.

Im Vergleich zum $[P(C_6H_5)_3CH_3]NO_2$ zeigt sich, daß das sehr viel größere I₃⁻-Ion im entsprechenden Triiodid doch nicht so weitgehend isoliert ist, um als "frei" bezeichnet werden zu können. Zwar liegen im [P(C₆H₅)₃CH₃]I₃ keine erkennbaren unterschiedlichen elektrostatischen Wechselwirkungen zwischen den drei Iodatomen und den umgebenden Kationen und auch keine Wasserstoffbrückenbindungen vor, aber ein Einfluß der örtlichen Unsymmetrie durch die komplexen Kationen sowie sehr schwache interionische I.--I-Kontakte können nicht ausgeschlossen werden. Beide Einflüsse reichen offensichtlich aus, um das bei Annahme einer (3z, 4e)-Bindung symmetrisch und gestreckt zu erwartende freie I₂⁻-Ion geringfügig zu verzerren. Die Suche nach einer Kristallstruktur, in der das I₃⁻-Ion in allgemeiner Punktlage noch geringeren Kräften ausgesetzt ist, bleibt eine Aufgabe.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung, dem Regionalen Rechenzentrum in Niedersachsen (RRZN, Hannover) für Rechenzeit an der Anlage CYBER 180-995. Herrn Prof. Dr. K.-F. Tebbe gilt unser Dank für die Durchsicht des Manuskripts.

- [6] Y. S. Sohn, A. W. Schlueter, D. N. Hendrickson und H. B. Gray, Inorg. Chem. 13, 301 (1974).
- [7] K.-F. Tebbe, Beiträge zur Chemie und Strukturchemie der Polyiodide komplexer Kationen, Habilitationsschrift, Münster (1975).
- [8] T. Migchelsen und A. Vos, Acta Crystallogr. 23, 796 (1967).
- [9] K.-F. Tebbe, Z. Anorg. Allg. Chem. 489, 93 (1982).
- [10] M. El Essawi, H. Gosmann, D. Fenske, F. Schmock und K. Dehnicke, Z. Naturforsch. 43b, 1279 (1988).
- [11] W. Clegg, Acta Crystallogr. A 37, 22 (1981).
- [12] Fa. Stoe, STRUCSY, Software-Paket zum AED2-Vierkreisdiffraktometer.