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The Rayleigh-Taylor instability of a compressible plasma in the presence of a horizontal magnetic 
field is investigated, taking into account the effects of finite Larmor radius. Only transverse pertur-
bations are considered. The problem is shown to be characterized by a variational principle. Using 
it, the dispersion relation is obtained for a plasma layer of finite thickness and having an exponen-
tially varying density. It is found that the finite Larmor radius effects can thoroughly stabilize 
unstable configurations. For configurations which are not completely stabilized, the compressibility 
stabilizes some of the disturbances which are unstable for an incompressible plasma. 

The Rayleigh-Taylor instability (RTI) derives its 
character f rom adverse density gradients. It figures 
prominent ly in astrophysical and labora tory phenom-
ena. In mos t of these si tuations a magnetic field plays 
an impor tan t part . Chandrasekhar [1] has described in 
detail the various aspects of RTI in hydromagnet ics 
when the direction of the magnetic field is either hor-
izontal or vertical. F o r a general orientat ion of the 
magnet ic field, the stability criterion has been ana-
lyzed by Ariel and Aggarwala [2], 

There are several astrophysical situations in which 
the finite La rmor radius (FLR), which is usually 
neglected, cannot be ignored. Rosenbluth et al. [3] 
showed that the inclusion of the F L R effects can stabi-
lize several "weakly" unstable systems such as mir ror 
machines, slowly rota t ing plasmas, large aspect rat io 
torii, etc. They used kinetic equat ions to cater for the 
F L R effects. Roberts and Taylor [4] demonst ra ted that 
the F L R effects can be effectively included in the fluid 
equat ions in the form of magnetic viscosity terms. 
These modified equat ions have been extensively used 
for fur ther investigation of stability problems with the 
F L R effects. Thus Singh and Hans [5] showed that for 
the RTI of two superposed plasmas all transverse per-
turba t ions corresponding to wave numbers beyond a 
critical value are stabilized by the magnetic field due 
to the inclusion of the F L R effects. F o r the other 
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impor t an t configurat ion, namely a plasma with an 
exponential ly varying density in the vertical direction, 
it has been demons t ra ted by Ariel and Bhat ia [6] that 
F L R effects can completely stabilize certain unstable 
configurat ions. In fact, the larger the gradient, the 
more the conf igurat ion is stabilized. F o r a rotat ing 
stratified p lasma a similar conclusion holds (Ariel and 
Bhat ia [7]). 

Studies of the effects of F L R on other instabilities 
have been under taken dur ing the last two decades. 
O n e can ment ion thermal and thermosoluta l instabil-
ity (Sharma et al. [8], Sharma and Sha rma [9], Sharma 
and Rani [10], Sha rma and Misra [11]) and gravita-
t ional instability when a conduct ing mat ter is sur-
rounded by a non-conduct ing mat te r (Ariel [12]). In 
all these investigations the per tu rba t ions are chosen 
transverse to the hor izonta l magnet ic field. F o r longi-
tudinal pe r tu rba t ions the stability influence is not so 
p ronounced . In fact, as recently shown by Ariel 
[13], for RTI the basic stability criterion remains 
unaffected; only the rate at which the instability over-
takes the system is slowed down. 

Since most p lasmas occurr ing in na ture are com-
pressible, a more realistic s tudy must allow their com-
pressibility. The l i terature on the RTI of a compress-
ible p lasma is ra ther scarce, no doub t because of the 
complexities arising on account of the compressibility. 
Srivastava [14] for the first t ime a t tempted to investi-
gate the effects of F L R on the RTI of a compressible 
p lasma with exponential ly varying density in the ver-
tical direction. He considered bo th per turba t ions : lon-
gitudinal and transverse. Dur ing the course of his 
analysis Srivastava [14] made a number of simplifica-

0932-0784 / 93 / 0700-856 $ 01.30/0. - Please order a reprint rather than making your own copy. 

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 20.11.17 09:09



P. D. Ariel • Rayleigh-Taylor Instability of a Compressible Plasma 845 

t ions and approximat ions which may not be justified 
or even necessary. 

In the present paper we re-examine the problem of 
Srivastava [14], i.e. we investigate the stability of a 
layer of compressible plasma stratified in the vertical 
direct ion in the presence of a horizontal magnet ic 
field, taking into account the finiteness of the L a r m o r 
radius. We have confined ourselves to only transverse 
per turba t ions . O u r objective is ra ther modest . In line 
with our earlier work (Ariel and Bhatia [6]) we intend 
to investigate if there are certain unstable configura-
t ions tha t can be stabilized by the F L R effects. This 
aspect, we feel, is more impor tan t than finding out if 
the ra te at which the configurat ion departs f rom equi-
l ibr ium is slowed down by the inclusion of the F L R 
effects. It was ignored by Srivastava [14]. 

Perturbation Equations 

We star t with general equations. Consider a p lasma 
layer of density g{z) confined between the planes z = 0 
a n d z = d, where the z-axis is taken in the vertical 
direct ion. The layer is stratified in a gravitat ional field 
<j(0,0, —g) and is pervaded by a uniform magnet ic 
field H(H, 0, 0). It is assumed that the plasma is com-
pressible, inviscid and perfectly conducting. 

T h e linearized per turbat ion equat ions resulting 
f r o m giving a disturbance to the configurat ion tha t 
p roduces a velocity field u(u, v, w) are 

+ x(hxH) + göe, (1) 
or 4n 

^Sg = - g \ u - u V g , (2) 

^ Sp + If • \p = c2 Sg + u • V ^ , (3) 

ÖA 
— =\x(uxH), (4) 

and 
V • h = 0 , (5) 

where Sg, h (hx, hy, hz) are the per turbat ions in g and 
H, respectively, c is the velocity of sound in the 
m e d i u m and <511 represents the per turba t ion in the 
stress tensor II, which because of the inclusion of the 

F L R effects takes the fo rm (Roberts and Taylor [4]) 

N XX = P, 
( dv d w\ 

„ / 3 d 6 w \ 
n „ = p + e v ( - + - j , 

(9w du \ 

ä T + 0 7 > (6) 

_ „ [du 8tA 

„ f dv 6w\ 

In (6), p denotes the isotropic pressure and v=a2Q/4, 
a being the ion L a r m o r radius and Q the ion gyro-fre-
quency. In (3) Sp is the per turba t ion in p. 

It may be remarked here that Roberts and Taylor [4] 
derived the above expressions for the componentsof 
I I assuming that the magnet ic field is constant . Srivas-
tava [14], on the o ther hand , has used the same expres-
sions even for a variable magnet ic field. It is t rue that 
later in his analysis Srivastava goes to make the 
assumpt ion that the gradients of density and magnet ic 
field are small, in which case his results may probably 
be still valid in the zeroth order approximat ion . How-
ever, t ak ing the density gradient small, rules out the 
possibility of examining the stabilizing role of the F L R 
effects on those conf igurat ions which are mos t affected 
by these effects (see Ariel and Bhat ia [6]). 

We seek the solut ion of the per turba t ion equat ions 
in terms of no rma l modes in which the y an d t depen-
dence is given by 

exp(iky + nt), (7) 

where k is the wave n u m b e r and n the rate at which the 
system depar t s f rom equilibrium. No te tha t we are 
only considering transverse per turbat ions . 

Equa t ions ( l ) - (6 ) take the form 

ngu = likxDqu , (8) 

ngv = — ikSp + QV(D2 — k2)W 

— vDg(ikv — Dw) — (H/4ri)ikhx , (9) 

ngw = — DSp — gv(D2— k2)v 

- vDg(Dv + ikw) - gSg - (H/4n) Dhx, (10) 

nSg = — g \ • u — wDg , (11) 
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nöp = ggw — c2g \ • u, 

nhx = — H\ • u , 

V • u = ikv + Dw , 
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(12) 
(13) 

(14) 

where D stands for d/dz. 
O n e can eliminate various quanti t ies f rom (8)-(14) 

to arrive at the following pair of equat ions in w and 
V u. 

n [D(gD w) — k2gw] + (gk2/ri) Dgw 

+ 2 ivk[D (Dg Dw] - k2{Dg)w - nD{g\• u) 

+ (gk2/n)g\-u 

+ ivk[g(D2 — k2) V • u-D2g\• u] = 0 

and 

[gn + ivkDg + (k 2 /n ) {QC2+H2/An)] V • u 

= gnDw -f (gk2/n) + ivkg(D2 — k2)w 

+ 2ivkDgDw. 

(15) 

(16) 

Of course, the value of V • u can be subst i tuted f rom 
(16) into (15) to ob ta in a single differential equa t ion in 
w. F o r the present, however, we shall prefer to deal 
with the pair of equat ions. Also, we find it convenient 
to int roduce co, a measure of the frequency of oscilla-
tions of the dis turbance, defined by 

n = ico, (17) 

in which case (15) and (16) can be rewrit ten as 

gk2DQ 
co[D{gDw)-k2gw]- w 

CO 

+ 2 x k [ D ( D Q D w ) - k2(DQ)w] - WD{QV • u) (18) 

gk2g 

at 
\ • u + vk [Q(D2-k2) V • u - D2Q V • u] = 0 , 

and 

k2 ( . H2\l 
Qco + vkDg e c 2 + — V u (19) 

a> \ A:i)_ 

g k.2 Q 
= QO)DW — w + vkQ(D2 — k2)w + 2vkDQ D w . 

co 

Boundary Conditions 

The boundary condit ions on w are 

w(0) = 0, w(d) = 0, (20) 

which imply that vertical mot ion is prohibited at the 
boundaries . 

Fol lowing Hosking and Harinoff [15], we shall 
assume 

V • «f(0) = 0 , V •»(</) = o (21) 

This bounda ry condit ion is only an approximat ion 
and we shall be requiring it only to establish the exis-
tence of the variat ional formulat ion for the problem at 
hand. 

A Variational Formulation 

We will now show that the present problem is char-
acterized by a variat ional principle. For this we multi-
ply (18) by w and integrate across the vertical extent of 
the fluid to obta in 

d £ 2 d 
o> J g[(Dw)2+ k2w2] d z + -— \DQ\v2dz 

0 0 J 0 
a 

+ 2vk\ Dg[{Dw)2+k2w2] dz 
o 

+ { |o)D{g\ • u)-vk[g(D2-k2) \ • u 

(22) 

co 

in which use has been made of the boundary condit ion 
(20) on w, for example 
d d d 
J D{DgDw) w d z = Dg wDw \ - j Dg{Dw)2 dz .(23) 
0 0 0 

The integrated par t becomes zero on account of the 
vanishing of w at the boundary . 

The V • u term in (22) can be written as 

J <—g(oDw — vk[D2(gw) — gk2w — D2g w] 
o I 

ggk2 

+ 
co 

w}\-udz, (24) 

where we have again integrated a few terms by parts. 
The integrated parts vanish on account of the 
bounda ry condi t ion (20) or (21). The above term can 
be simplified to 

d c 
' w + gvk(D2- k) w — j" j e c o D ' 

0 t 

+ 2DgvkDw — g e k 2 

CL) 
w > V • u dz (25) 
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N o w use is made of (19) for substi tuting for w-terms 
in (25) and inserting the result in (22). O n e finally 
obta ins 

co f Q[(Dw)2+K2W2] dz + —— \DQW2 dz 
o « o 

d 
+ 2vk§ DQ [(Dw)2 + k2 w2] dz (26) 

o 

Equa t ion (26) is the required variat ional formula-
t ion of the problem. We now show that , if the first 
o rder variations 5w and 5V • u are made in w and V • u, 
respectively, which are consistent with the boundary 
condi t ions (20) and (21), then 8co is zero to the first 
o rder or co is stationary. The implementat ion of the 
suggested variations in (26) yields to the first order 

\ dco j [Q [(D w)2 + k2 w2] - w2 

0 I (O2 

1 (V • u)2 j dz 

f , Qk2 r 
-I- q[Dw Döw + k w 5w] dz + - — Dgwöwdz 

o Q> o 
d 

+ 2vk \ DQ[DW Dbw + k2wbw]dz (27) 

k2 ( , H2 

+ —[QC2 + — 
or \ 4n 

- J 

d r k2 

Qco + Dgvk ( Q C 2 + 
03 

H
2

\\ 
— ) V w5V i i dz = 0. 

T h e variations 5w and 8V • u are not independent . 
In fact, they are related through (19), the relation being 

QCO + DQ vk — 
k2 

> c + 
H 

5 \ u 
co \ 4n 

= QCOD6w - vQk(D2— k2) bw-2DßvkD5w 

gk2e + 
co 

V u 

— QDW — 
gk2

Q 

CO 
w } 5w . (28) 

The substitution of 8V • u from (28) into (27) and a 
few integrations by parts , for which use is made of the 
appropr ia te boundary condit ions on vv, V • u or 5w 

and 8V • u, yields the following equat ion for 8co: 

i5co j j g [ (V•« — Dw)2 + k2w2] + ( e c 2 + ^ j ( \ u)2 

- 2 3 Q f w(V • u — D w ) | dz 

(29) 

CO 

= } \co[D(QDw)-k2Qw]-
gk2Dg 

w 
0 I w 

+ 2vk[D(Dg Dw) - k2Dgw] - coD{e\ • u) 

gk2Q 
CO 

\ u + vk[Q(D2-k2)\ u-D2eV m ]>5wdz . 

F r o m (29) it is clear tha t a necessary and sufficient 
condi t ion for 8co to vanish in the first order approxi-
mat ion is that w and V • u satisfy the eigen-value prob-
lem (18)-(21). Hence a variat ional principle for find-
ing an approx imate solut ion is available. No te that its 
existence is valid for any general density distribution. 

The Case of Exponentially Varying Density 

In the present section we consider the case of a 
p lasma layer confined between planes z = 0 and z = d, 
in which in the undis turbed state the density is given 
by 

Q = Q0eßz, (30) 

Qo being the density at the lower boundary . 
O n e can subst i tute for V • u f rom (19) into (26) to 

obta in the equivalent variat ional formulat ion 
d d 

CO2 { e [ (Dw) 2 + k2w2] dz + gk2\DQW2 dz 

- 1 

+ 2vkco f De[{Dw)2+ k2w2] dz 

[ecj2Dw + ßvkco(D2-k2)w + 2Devk(oDw-gk2ew]2 

QCO2+ Devkco - k2(gc2 + H2/An) 

(31) 

dz = 0, 

which is more useful as it contains only the variable w. 
Now, in order to ob ta in an approximate solution, 

any trial funct ion can be chosen for w which satisfies 
the b o u n d a r y condi t ions of the problem. O u r choice is 
the same value of w which is the exact solution for the 
case of the incompressible plasma. It is given by (Ariel 
and Bhat ia [6]) 

w = W exp { —i ßz} sin Iz, (32) 
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where 

I = ns/d, (33) 

s being an integer. 
In principle, the value of w can be subst i tuted f rom 

(32) into (31) in order to obtain the required dispersion 
relation between k and co. In practice, the evaluat ion 
of the last integral is not easy. In keeping with the 
spirit of an approximate solution it seems reasonable 
to approximate the integral also and evaluate it by 
using some integration rules. 

N o w the use of any integration rule results in (Isaac-
son and Keller [15]) 

/ ( / ) s f / ( x ) dx = £ * t f ( x t ) , (34) 

where N is a finite integer, x, e [a, b] and af are the 
corresponding weights for the nodes x,-. 

If the value of w is substi tuted f rom (32) into (31) 
and the discretization is performed using the general 
integrat ion rule (34), this will yield a dispersion rela-
t ion which is a polynomial of degree 2 N + 2 in co with 
real coefficients. Fo r a polynomial with real coeffi-
cients, since the complex roots occur in pairs, we can 
conclude that for stability a necessary and sufficient 
condition is that co is real. Fo r if co is complex, corre-
sponding to the root with the negative imaginary part , 
the real par t of n given by (17) will be positive. This 
implies instability of the system - in fact, overstabili ty 
because of the oscillatory nature of the mot ion . 

It is evident that a too large value of N would give 
rise to a ra ther unwieldy dispersion relation. Ideally, 
one would like to choose N = 1. This can be accom-
plished by invoking the mean value theorem of inte-
gral calculus. Thus, taking co to be real for stability, 
the last term in (31) can be written as 

- [co2 + (D e*/e*) vkco — k2 {c*2 + H2/4 n g*)] ~1 

d 
• J Q [co2 D w + Vkco(D2 - k 2 ) w 

+ 2(Dg/e)vkco Dw — gk2 w]2 d z , (35) 

where a starred quant i ty denotes the value of tha t 
quant i ty at some interior point in the doma in (0, d). 
Under the Boussinesq approximat ion , these quant i -
ties can be taken to correspond to the lower 
boundary , but that will restrict us to smaller density 
gradients which, as remarked earlier, would not allow 
us to see the effects of F L R in the p roper perspective. 

The values of Q and w are now substi tuted f rom (30) 
and (32), respectively, in (31), and the integrals are 

evaluated after use is made of (35). As a result the 
following dispersion relation is obta ined: 

gßk2 

co2 — 2 vßkoj — 
l2+k2 + 

l2(a>2 + v ßk(o)2 +[gk2 + ±a)2 ß+ vkw(l2 + k2 + Iß2 

(I2 + k2 + i ß2) [co2 + v ß k co - k2 (c*2 + V*2)] 

where 

V* = 
H 

(36) 

= 0, 

(37) 

is a characteristic Alfven velocity in the medium. 
It is easy to see that for an incompressible plasma 

(c* —> GO), (36) reduces to the corresponding dispersion 
relation obtained by Ariel and Bhatia [6]. In the ab-
sence of F L R effects (v = 0), (36) is essentially the same 
as that obtained by Talwar [16] for the RTI of an 
compressible fluid in the presence of a horizontal mag-
netic field for transverse perturbations. It is also wor th 
not ing that , even though we are considering trans-
verse per turbat ions , unlike the case of incompressible 
plasma, the magnet ic field has still a direct influence 
on the dispersion relation because of the presence of 
the term involving V*. 

Equa t ion (36) can be expanded and written as a 
b iquadra t ic in co as under 

co 4 + 2v ßkoo3 

- {(a2 + k2)(c*2 + V*2) + v2 [(a2 + k2)2 - ß2 k2]} co2 

- 2 v kco (a2 + k2) [ß(c*2 + V*2) + g] 

-gk2[ß(c*2 + V*2) + g] = 0 , (38) 

where 

a2=l2+\ß2 (39) 

It will be found convenient in the ensuing analysis 
to measure the quanti t ies k and co in units of a c m - 1 

and (gß) 1 / 2 s e c - 1 . This allows (38) to be expressed in 
the non-dimensional form 

co 4 + 2 | / g / c c o 3 

- {Q(l +/c2) + G [a(l +fc2)2— k2]} co2 

— 2 j /G/c( l + k2) {Q + a) CD — k2(Q + a) = 0, (40) 

where 
v2oc2/? 

G = 

a = 

(41) 

(42) 

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 20.11.17 09:09



P. D. Ariel • Rayleigh-Taylor Instability of a Compressible Plasma 849 

and 

Q = a 2 ( c* 2 + V*2) 

i f 
(43) 

are dimensionless numbers. G is a measure of the mag-
netic viscosity, a determines the density gradient and 
Q is a n u m b e r characterizing the joint effect of com-
pressibility and the magnetic field in terms of the 
buoyancy forces. 

Analysis of the Dispersion Relation 

Equa t ion (40), being a biquadratic, admits four 
roots which are either all real or at least one pair 
complex. F o r stability, we require all the four roots to 
be real. N o w the biquadrat ic 

ax4-+bx3+cx2+dx + e = 0 (44) 

has all its roots real or two roots real and the remain-
ing roo ts a pair of complex conjugates according to 

A = P-21J2 ^ 0 , (45) 

where 

I = ae — 4 b d + 3 c 2 , 

J = ace + 2bcd-ad2-eb2-c\ (46) 

A subst i tu t ion is made of the coefficients of various 
terms in (40) into (46) to calculate / and J. These 
values, in turn, are inserted in (45) to calculate A. The 
change in the sign of A separates the stable and un-
stable configurations. Evidently J is a funct ion of k. It 
also involves the parameters G, a, and Q. 

F o r a given set of parameters G, a, and Q, k < 0 (at 
k = 0, A is zero). F o r small values of k, it can be verified 
tha t 

^ = Q(Q + G af (Q +a) (1-G)k2, fc - 0 . (47) 

Thus , if G > 1, A is positive for small values of k. In 
fact, when G > 1 it is found that A is positive for all 
values of k irrespective of the values of Q and a. Hence 
the configurat ion characterized by G > 1 is com-
pletely stabilized by the finite Larmor radius effect, 
and this result does not depend on the compressibility 
of the plasma. This conclusion is identical to the one 
derived by Ariel and Bhatia [6] for incompressible 
plasmas. 

In order to see the effects of compressibility on the 
onset of instability let us, therefore, restrict ourselves 

Q c 5. 

Q=10 

Q = cc 

Q=50 

0-8 

Fig. 1. Illustrating the variation of ke, the critical wave num-
ber, with G, the dimensionless measure of the FLR effects, for 
a = 1 and various values of Q, a measure of the joint effects 
of compressibility and magnetic field in terms of buoyancy 
forces. 

to the case G < 1 . Now, for small values of k, A is 
negative, implying overstability. F o r large values of k, 
the behavior of A is 

A=±G*a3Q(Q + a)k 18 
>00 (48) 

Since A > 0, the conf igurat ion is stabilized for large 
values of k. F r o m the foregoing it appears tha t there 
exists a critical value of k, say kc, where the configura-
tion goes th rough the t ransi t ion f rom being overstable 
to stable. This was conf i rmed numerically by comput -
ing the value of A as a funct ion of k for G < 1 and 
various values of Q an d a. 

In Fig. 1, kc is p lot ted against the G for a=i and 
various values of Q. The region k > kc is stabilized by 
the F L R effects, and the region k < kc remains over-
stable. As the value of Q is decreased, one may note 
f rom the figure, the value of kc also decreases. Thus the 
compressibili ty of the p lasma stabilizes certain modes 
which are otherwise unstable. 
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Conclusions 

We have examined the effects of compressibility on 
the RTI, taking into account the finiteness of the Lar-
m o r radius. It is shown that when the dimensionless 
parameter G, defined by (41), is greater t han unity, the 
configurat ion is thoroughly stabilized by F L R effects, 
regardless of the compressibility of the medium. When 
G is smaller than unity, overstabili ty takes place for 
values of k, the wave number of dis turbance, smaller 
than a critical value kc. This critical value decreases as 
the compressibility of the med ium is increased, imply-
ing that for a compressible p lasma certain modes are 

stabilized which were unstable for incompressible 
plasma. 

Acknowledgements 

The au thor wishes to thank D A A D (Deutscher 
Akademischer Austauschdienst) for the award of a 
visiting fellowship, and Moi University for providing 
the travel funds. He is also grateful to the referee for 
drawing at tent ion to a questionable argument used in 
the earlier version of the paper to derive the dispersion 
relation. 

[1] S. Chandrasekhar, Hydrodynamic and Hydromagnetic 
Stability. Clarendon Press, Oxford 1962. 

[2] P. D. Ariel and B. D. Aggarwala, Can. J. Phys. 57, 1094 
(1979). 

[3] M. N. Rosenbluth, N. Krall, and N. Rostoker, Nucl. 
Fusion Suppl. 1, 143 (1963). 

[4] K. V. Roberts and J. B. Taylor, Phys. Rev. Letters 8, 197 
(1962). 

[5] S. Singh and H. Hans, Nucl. Fusion 6, 6 (1966). 
[6] P. D. Ariel and P. K. Bhatia, Can. J. Phys. 47, 2235 

(1969). 
[7] P. D. Ariel and P. K. Bhatia, Nucl. Fusion 10, 141 

(1970). 
[8] R. C. Sharma, R. Nyland, and K. P. Thakur, Physica 

112B, C, 341 (1981). 

[9] R. C. Sharma and K. N. Sharma, Phys. Fluids 24, 2242 
(1981). 

[10] R. C. Sharma and N. Rani, Z. Naturforsch. 41a, 724 
(1986). 

[11] R. C. Sharma and J. N. Misra, Astrophys. Space Sei. 126, 
223 (1986). 

[12] P. D. Ariel, Astrophys. Space Sei. 141, 141 (1988). 
[13] P. D. Ariel, Astrophys. Space Sei. 196, 153 (1992). 
[14] K. M. Srivastava, Z. Naturforsch. 29 a, 518 (1974). 
[15] E. Isaacson and H. B. Keller, Analysis of Numerical 

Methods, John Wiley & Sons, New York 1966. 
[16] S. P. Talwar, NASA Tech. Note D-2218, 1965. 

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 20.11.17 09:09


