Neue Sesquisulfide der Lanthanoide im U₂S₃-Typ: Tb₂S₃ und Dy₂S₃

New U₂S₃-Type Sesquisulfides of the Lanthanides: Tb₂S₃ and Dy₂S₃

Thomas Schleid

Institut für Anorganische Chemie der Universität, Callinstraße 9, W-3000 Hannover 1

Z. Naturforsch. 47b, 45-50 (1992); eingegangen am 12. Juli 1991

Lanthanide Sesquisulfides, Crystal Structure

New sesquisulfides of the lanthanides with the U_2S_3 -type structure (M_2S_3 , M = Tb and Dy) were prepared through the oxidation of TbClH_{0.67} and DyCl₂, respectively, with appropriate amounts of sulfur in the presence of NaCl fluxes in silica protected sealed tantalum containers at 850 °C for at least seven days. The preparation from the elements (2M+3S; M = Tb and Dy) under otherwise analogous reaction conditions and temperatures was also successful when equimolar fluxes of NaCl were applied. The crystal structure was determined from single crystal data for Tb₂S₃ and Dy₂S₃, both crystallizing with the U₂S₃-type structure (orthorhom-bic, Pnma, Z = 4; Tb₂S₃: a = 1067.87(8), b = 388.06(4), c = 1049.07(7) pm; Dy₂S₃: a = 1062.45(7), b = 386.59(4), c = 1044.36(8) pm) when prepared under the above-mentioned conditions.

Einleitung

Tb₂S₃ gilt als dimorph [1]: Unter Normalbedingungen tritt es im sog. A-Typ [2] (Prototyp: A-Gd₂S₃ [3]), bei höheren Temperaturen und/oder Drücken im C-Typ [4], einer Defektvariante der Th₃P₄-Struktur gemäß M_{2 67}S₄ (\equiv M₂S₃, Prototyp: C-Ce₂S₃ [5]), auf. Die Koordinationszahl des Kations beträgt 7 und 8 im A- (bekappte trigonale Prismen) und 8 im C-Typ (Trigon-Dodekaeder). Für Dy₂S₃ kommt, zusätzlich zum A- [2] und C-Typ [4, 6], oberhalb 1000 °C der D-Typ [2, 7] (Prototyp: $D-Ho_2S_3$ [8]) hinzu, in dem die Kationen je zur Hälfte sechs- und siebenfach koordiniert sind. Für Dy, Ho, Er und Tm wird dieser zum unter Normalbedingungen stabilen Strukturtyp. Für Yb und Lu gilt dies für den E-Typ [9] (Korund-Typ, Prototyp: E-Lu₂S₃ [10]) mit trigonal-antiprismatischer Koordination (C.N. 6) des Kations.

Systematische Hochdruck-Untersuchungen von Range *et al.* haben gezeigt, daß für M = Ho-Lu (+ Y) der U₂S₃- oder U-Typ (Prototyp: U-Tm₂S₃, früher Tm₂S₃-III [11]) die Modifikation größter Dichte ist. Hier weisen die Kationen C.N. = 7 und (7+1) gegenüber den Sulfidionen auf. Die hohe Raumerfüllung des A-Typs wird jedoch nicht ganz erreicht. Da der A-Typ ab Ho bis hin zu Lu von der Hochdruckform III (U-Typ) als Modifikation größter Dichte abgelöst wird, verwundert, daß bei so ähnlichen molaren Volumina (Abb. 1) und Koordinationsverhältnissen gerade im Gebiet des Überganges keine Koexistenz von A- und U-Typ möglich sein sollte.

Kürzlich wurde am Beispiel von Gd_2S_3 [12] gezeigt, daß die U_2S_3 -Struktur auch ohne hohen Druck erhalten werden kann. Dies gab Anlaß zu der Vermutung, daß auch andere Sesquisulfide der

Abb. 1. Molare Volumina (V_m [cm³/mol]) von M_2S_3 -Modifikationen (A-, U-, D- und E-Typ) als Funktion des molaren Volumens (V_m) von M^{3+} (M = Gd-Lu). (Werte für $V_m(M_2S_3)$ nach [2, 11, 12, 24], Ionenradien (M^{3+} , C. N. 6) nach [25]).

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/92/0100-0045/\$01.00/0

Lanthanoide sowohl im A- als auch im U-Typ vorkommen könnten und legte nahe, durch ähnliche Präparationsmethoden Zugang zu weiteren Vertretern des U-Typs zu erhalten.

Experimentelles

TbCl₃ und DyCl₃ (gewonnen nach der "NH₄Cl-Methode" [13]) wurden zunächst in geeignete "reduzierte" Chloride bzw. Chlorid-Hydride der entsprechenden Lanthanide überführt: Äquimolare Gemenge von DyCl2 und NaCl erhält man bei der metallothermischen Reduktion [14] von DvCl₂ mit Natrium (750 °C, 7d, verschweißte Ta-Ampulle; vgl. etwa [15] zur Technik). TbClH_{0.67} und Na_{0.25}TbClH_{0.75} sind durch Synproportionierung [16] von Gemengen aus TbCl₃, Tb und TbH₂ (erhältlich aus den Elementen), letzteres in Gegenwart von Na, in geeigneten molaren Verhältnissen zugänglich (Ta-Ampulle, 750-900 °C, 7-10d). Die Oxidation mit Schwefel (molare Verhältnisse: S:Tb = 1:1 bzw. S:Dy = 1:2) in verschweißten Ta-Ampullen (Aufheizrate: jeweils 2°/h bis 850 °C, dann 7d bei dieser Temperatur), teils unter Zusatz von NaCl als Flußmittel, liefert gemäß:

 $\begin{array}{l} 3 \ TbClH_{0,67} + 3 \ NaCl + 3 \ S = Tb_2S_3 + Na_3TbCl_6 + H_2, \\ 8 \ Na_{0,25}TbClH_{0,75} + 9 \ S = 3 \ Tb_2S_3 + 2 \ NaTbCl_4 + 3 \ H_2 \\ bzw. \end{array}$

$$6 \text{ DyCl}_2 + 6 \text{ NaCl} + 3 \text{ S} = \text{ Dy}_2 \text{ S}_3 + \text{ Na}_3 \text{ DyCl}_6 + 3 \text{ Na} \text{ DyCl}_4$$

fast schwarze, an Bruchkanten dunkelrot durchscheinende, stäbchenförmige Einkristalle von Tb₂S₃ bzw. Dy₂S₃ im U₂S₃-Typ. Phasenreine Pulverproben von Tb₂S₃ und Dy₂S₃ im U-Typ sind auch durch Umsetzung der Elemente (molares Verhältnis: M:S = 2:3; verschweißte Ta-Ampulle, 850 °C, 7d) in Gegenwart von NaCl als Flußmittel zugänglich.

Unter ansonsten gleichen Reaktionsbedingungen, jedoch mit CsCl anstelle von NaCl als Flux, erhält man bei der Umsetzung der Elemente (M = Tb und Dy sowie Schwefel) phasenreine Proben des A-Typs. Zügiges Auswaschen der Chlorid-Anteile mit dest. Wasser und anschließende Trocknung der Rückstände im Vakuumexsikkator hinterläßt in allen Fällen die reinen, unzersetzten Sesquisulfide, obwohl ein leichter H₂S-Geruch den ersten Waschvorgang begleitet. Völlig übereinstimmende Befunde liegen bereits für beide Formen (A- und U-Typ) von Gd₂S₃[12] vor.

Geeignete Einkristalle von Tb₂S₃ und Dy₂S₃ wurden unter trockenem Paraffinöl ausgewählt, in dünnwandige Glaskapillaren eingeschmolzen, mit Hilfe röntgenographischer Filmmethoden auf ihre Qualität hin überprüft und anschließend anhand von Vierkreis-Diffraktometerdaten strukturell charakterisiert. Tab. I informiert über Einzelheiten der Datensammlungen und der Strukturverfeinerungen an Tb₂S₃ und Dy₂S₃ im U₂S₃-Typ, in Tab. II sind die betreffenden Lageparameter und

	$U-Tb_2S_3$	$U - Dy_2S_3$
Kristallsystem	orthorhombisch	
Raumgruppe	Pnma (Nr. 62)	
Strukturtyp	$U_{2}S_{2}(Z = 4)$	
Gitterkonstanten	2 3 (
<i>a</i> [pm]	1067,87(8)	1062,45(7)
b[pm]	388,06(4)	386,59(4)
[pm]	1049,07(7)	1044,36(8)
nolares Volumen		
V_m/cm^3mol^{-1}	65,45(1)	64,58(1)
Datensammlung	Vierkreisdiffraktometer S	Siemens-Stoë AED 2
Strahlung	Mo-Ka (Graphit-Mond	ochromator, $\lambda = 71,07 \text{ pm}$)
Scan	ω (Breite und Geschwind	ligkeit: variabel)
9-Bereich	$2^\circ \le \theta \le 30^\circ$	$2^\circ \le \theta \le 34^\circ$
F(000)	712	720
u/cm^{-1}	312,29	342,48
Datenkorrektur	Untergrund, Polarisation	ns- und Lorentzfaktoren
Absorption	ψ -scan für 10 unabhängi	ge Reflexe
Extinktion ($g \cdot 10^3$)	1,86(3)	1,16(3)
gemessene Reflexe	3992	4231
symmetrieunabhängig	995	1051
R _{int}	0,032	0,041
peobachtete Reflexe	981	1013
Kriterium	$ \mathbf{F}_{o} \ge 2\sigma(\mathbf{F}_{o})$	
Strukturverfeinerung	Programm SHELX-76 [1	7]
Streufaktoren	nach Cromer et al. [18]	
R	0,024	0,027
R _w	0,022	0,025
	$w = \sigma(F_o)^{-2}$	

Tab. I. $U-Tb_2S_3$ und $U-Dy_2S_3$: Kristallographische Daten und ihre Bestimmung.

Tab. II. Lageparameter für U-Tb₂S₃ und U-Dy₂S₃.

	$U-Tb_2S_3$	$U - Dy_2S_3$
$\frac{x/a(M1)}{z/c(M1)}$	0,98993(3) 0,31317(3)	0,98991(3) 0,31304(3)
x/a(M2)	0,30806(3)	0,30804(3)
z/c(M2)	0,50434(4)	0,50429(3)
$\frac{x/a(S1)}{z/c(S1)}$	0,0469(2) 0,8731(2)	0,0467(2) 0,8733(2)
x/a(S2)	0,8806(2)	0,8809(2)
z/c(S2)	0,5548(2)	0,5551(2)
x/a(S3)	0,2276(2)	0,2274(2)
z/c(S3)	0,1981(2)	0,1973(2)

alle Teilchen besetzen die Punktlage 4c: x, 1/4, z

Tab. III. Koeffizienten der anisotropen Temperaturfaktoren für $U-Tb_2S_3$ und $U-Dy_2S_3$.

	$U-Tb_2S_3$	$U - Dy_2S_3$
$U_{11}(M 1) \\ U_{22}(M 1) \\ U_{33}(M 1) \\ U_{13}(M 1)$	114(2) 136(2) 115(1) -6(1)	132(1) 151(2) 75(1) -6(1)
$U_{11}(M 2) \\ U_{22}(M 2) \\ U_{33}(M 2) \\ U_{13}(M 2)$	112(1) 131(2) 154(2) 7(1)	131(1) 146(2) 112(1) 10(1)
$\begin{array}{c} U_{11}(S1) \\ U_{22}(S1) \\ U_{33}(S1) \\ U_{13}(S1) \end{array}$	125(8) 132(9) 139(8) -3(6)	143(7) 163(8) 89(7) -10(6)
$\begin{array}{c} U_{11}(S2) \\ U_{22}(S2) \\ U_{33}(S2) \\ U_{13}(S2) \end{array}$	127(8) 152(9) 108(7) -4(6)	134(7) 164(8) 91(7) -11(5)
$\begin{array}{c} U_{11}(S 3) \\ U_{22}(S 3) \\ U_{33}(S 3) \\ U_{13}(S 3) \end{array}$	113(7) 168(9) 148(8) 13(6)	127(7) 191(9) 103(7) 13(6)

Koeffizienten (U_{ij}) des "anisotropen" Temperaturfaktors der Form: (exp $[-2\pi^2 (a^{*2} h^2 U_{11} + ... + b^* c^* k l 2U_{23} + ...)]$, U_{ij} [pm²]); für alle Teilchen gilt: U₁₂ = U₂₃ = 0.

in Tab. III die Koeffizienten der anisotropen Temperaturfaktoren zusammengestellt.

Ergebnisse und Diskussion

Nach Ausweis der Strukturbestimmungen (Tab. I–III) liegt für die beiden untersuchten Einkristalle jeweils die Zusammensetzung M_2S_3 (M = Tb und Dy) und die dem U_2S_3 analoge Struktur vor. Diese ist an Einkristallen der Hochdruckform (III) von Tm_2S_3 [11] und erst kürzlich an Gd_2S_3 [12] sowie für durch Hochdruckpräparation gewonnene Pulverproben von M_2S_3 -III mit M = Ho-Lu (+ Y) [11] bei den Sesquisulfiden der Lanthanoide nachgewiesen worden. Bei den Seleniden, M_2Se_3 (M = Gd-Dy [19]), ist sie bereits seit 1963 als sog. η -Form [20] bekannt.

Durch Oxidation $MClH_{0.67}$ und von $Na_{0.25}MClH_{0.75}$ (M = Gd [12] und Tb) bzw. DyCl₂ mit Schwefel in Gegenwart von NaCl wurden somit erstmals Einkristalle der betreffenden Sesquisulfide im U-Typ erhalten. Phasenreine Pulverproben entstehen auch aus den Elementen (M:S = 2:3) im NaCl-Flux, der aufgrund der geringen Hydrolyseempfindlichkeit der Sesquisulfide durch Auswaschen mit dest. H₂O leicht zu entfernen ist. Analoge Umsetzungen von Y, Ho und Er mit Schwefel liefern dagegen stets Y₂S₃, Ho₂S₃ und Er₂S₃ im D-Typ [21, 22]. Interessant erscheint, daß bei der Oxidation von $MClH_{0.67}$ (M = Y und Er) mit Schwefel in Gegenwart von NaCl ebenfalls die betreffenden Sesquisulfide im D-Typ erhalten werden, während für M = Ho der U-Typ anfällt [22]. Dies könnte an dem von freigesetztem H₂ aufgebauten Überdruck (< 100 bar) innerhalb der Tantal-Ampulle liegen, der für Ho₂S₃ wohl noch ausreicht, um den U-Typ zu stabilisieren, für Y₂S₃ und Er₂S₃ jedoch nicht.

Bei der Betrachtung der molaren Volumina (V_m, Abb. 1) der verschiedenen Modifikationen (A-, Uund D-Typ) wird dies verständlich. Mit $V_m =$ 66,34; 65,19 bzw. 64,32 cm³/mol ist der A-Typ von M_2S_3 (M = Gd, Tb bzw. Dy) stets die Modifikation mit der größten Dichte ($D_x = 6,19$; 6,35 bzw. 6,55 g/cm³). Für den U-Typ dieser Elemente sind die entsprechenden Werte nur unwesentlich verschieden: 66,51; 65,45 bzw. 64,58 cm3/mol und 6,17; 6,33 bzw. 6,52 g/cm³. Y₂S₃ und Er₂S₃ vermögen wohl aufgrund der zu kleinen Ionenradien von Y^{3+} und Er^{3+} den hochkoordinierten A-Typ (C.N. = 7 und 8) nicht mehr auszubilden. Der U-Typ ist trotz seiner nur geringfügig verschiedenen Koordinationsverhältnisse (C.N. = 7 und 7+1) für Y_2S_3 und Er₂S₃ nur unter der Aufbietung von Drücken von 10-20 kbar (bei 850-900 °C) als Hochdruckform (III) zu realisieren. Da für Dy₂S₃, Tb₂S₃ und Gd₂S₃ der U-Typ nun ebenfalls erhalten werden konnte, und sich dieser mit molaren Volumina von 64,58; 65,45 bzw. 66,51 cm³/mol nicht als Hochdruckform erweist (hier sollte der A-Typ die Hochdruck-Modifikation sein!), stellt der U-Typ für Y_2S_3 ($V_m = 64,26 \text{ cm}^3/\text{mol}$) und Er_2S_3 ($V_m =$ 62,87 cm³/mol) wohl die "Höchstdruck"-Form größter Dichte dar. Anhaltspunkte für die Existenz von A-Ho₂S₃ bei Drücken oberhalb 4 kbar und Temperaturen ≥ 1200 °C liegen zwar vor [23], doch scheint die Präparation und Charakterisierung reiner Proben schwierig. Für Holmium ist demnach noch nicht klar, ob der A-Typ (V_m = 63,62 cm³/mol, $D_x = 6,70$ g/cm³ [23]) tatsächlich die Modifikation größter Dichte darstellt, kommen doch die Werte für den U-Typ ($V_m = 63,72$ cm^3/mol , $D_x = 6,69 g/cm^3$ [22] sowie: $V_m = 63,68$ [11] und $63,62 \text{ cm}^3/\text{mol}$ [23]) jenen des A-Typs sehr nahe. Die Bestimmung genauerer Daten für A-Ho₂S₃ anhand von Einkristall-Untersuchungen wäre wünschenswert, fraglich ist jedoch, ob sich hier der A-Typ (nur in engen Druck-Temperatur-Bereichen stabil, vgl. [23]) bei Raumtemperatur überhaupt metastabil (und einkristallin!) erhalten läßt.

Der D-Typ erweist sich mit niedrigeren Koordinationszahlen (C.N. = 6 und 7) für die Sesquisulfide M_2S_3 mit M = Dy, Y, Ho, Er als die Modifikation des größten molaren Volumens ($V_m = 71,10$; 71,03; 70,16 bzw. 69,33 cm³/mol). Für M = Gd und Tb tritt er wohl nicht mehr auf. Erst schonende Präparationsbedingungen und/oder die Anwendung des geeigneten Flußmittels (hier: NaCl) machten den U-Typ für M_2S_3 (M = Gd [12], Tb und Dy) überhaupt und für M = Ho [22] auch ohne sehr hohe Drucke (z. B. 10 kbar und 900 °C [11]) zugänglich. Unter ansonsten analogen Reaktionsbedingungen (M:S = 2:3, Tantal-Ampulle, 800-850 °C, 7d) läßt das Flußmittel CsCl dagegen in allen drei Fällen (Gd, Tb und Dy) den A-Typ der betreffenden Sesquisulfide entstehen. Für M = Y, Ho und Er sind die unter den gleichen Bedingungen (CsCl-Flux) erhaltenen Produkte noch nicht charakterisiert.

Die Sesquisulfide M_2S_3 (M = Tb und Dy) weisen sowohl im A- als auch im U-Typ zwei kristallographisch unterschiedliche Kationen M^{3+} auf. Der A-Typ enthält $M1^{3+}$ in achtfacher (doppelt bekapptes trigonales Prisma), $M2^{3+}$ in siebenfacher Koordination von S^{2-} (einfach bekapptes trigonales Prisma). Im U-Typ (Abb. 2) sind die Koordinationsverhältnisse nicht wesentlich verschieden: $M1^{3+}$ ist hier von sieben, $M2^{3+}$ dagegen von sieben plus einem Anion einfach- bzw. doppelt-bekappt trigonal prismatisch umgeben (vgl. Tab. IV bez. wichtiger interatomarer Abstände). Die unterschiedliche Verknüpfung der Koordinationspolyeder, die den Unterschied zwischen A- und U-Typ zu größeren Anteilen bestimmt, als das blo-

	U-Gd ₂ S ₃	U-Tb ₂ S ₃	$U - Dy_2S_3$
$ \frac{M1 - S2(2 \times)}{-S1(2 \times)} \\ -S2' \\ -S3 \\ -S3' $	277,2	275,6	274,2
	279,4	278,2	277,0
	280,2	279,1	278,1
	282,7	280,4	279,1
	282,6	281,0	279,8
$\overline{d}(M1-S)(C.N.7)$	279,8	278,3	277,1
$ \begin{array}{l} M2 - S3(2 \times) \\ - S1(2 \times) \\ - S1' \\ - S2(2 \times) \\ - S3' \end{array} $	286,2	283,6	281,8
	284,8	283,9	282,7
	287,6	285,6	284,0
	287,5	286,5	285,5
	333,2	332,6	331,9
$\overline{d}(M2-S)(C.N.7)$	286,4	284,8	283,4
$\overline{d}(M2-S)(C.N.8)$	292,2	290,8	289,5
$\begin{array}{l} M \ 1 - M \ 1 \ (\equiv M \ 2 - M \ 2, je \ 2 \times) \\ M \ 1 - M \ 2 \\ - M \ 2 \end{array}$	389,8	388,1	386,6
	386,9	385,6	383,6
	396,4	394,5	392,6
S 2 - S 3	312,9	311,6	310,0
S - S (sonstige)	>344	>340	>338

Tab.	IV.	Wichtige	inte	ratomare	Abst	ände
[pm]	in	$U - Tb_2 S_3$	und	U-Dy ₂ S	3 im	Ver-
gleic	h m	it U-Gd ₂ S	3[12]			

ße Absinken der Koordinationszahl eines der Kationen von 8 auf 7+1, wurde bereits am Beispiel von Gd_2S_3 [12] ausführlich beschrieben.

Herrn Professor G. Meyer danke ich für das Interesse an dieser Arbeit sowie für vielfältige Unterstützung durch die Bereitstellung von Institutsmitteln.

Abb. 2. Oben: Projektion der Kristallstruktur des U-Typs der Sesquisulfide M_2S_3 auf (010). (M: kleine, S: große Kreise; schraffiert in y/b = 1/4, offen in y/b = 3/4); unten: Koordinationspolyeder [M1S₇] (links) und [M2S₍₇₊₁₎] (rechts) von S²⁻ um M³⁺.

- [1] G. Collin und J. Loriers, C. R. Acad. Sci. Paris 260, 5043 (1965).
- [2] A. W. Sleight und C. T. Prewitt, Inorg. Chem. 7, 2282 (1968).
- [3] C. T. Prewitt und A. W. Sleight, Inorg. Chem. 7, 1090 (1968).
- [4] J. Flahaut, M. Guittard, M. Patrie, M. P. Pardo, S. M. Golabi und L. Domange, Acta Crystallogr. 19, 14 (1965).
- [5] W. H. Zachariasen, Acta Crystallogr. 1, 265 (1948);
 2, 57 (1949).
- [6] J. Flahaut, Med. Techn. Publ. Co. (MTP), Intern. Rev. Sci. Inorg. Chem., Ser. One 10, 189 (1972).
- [7] J. Flahaut, M. Guittard, J. Loriers und M. Patrie, 2ème Colloq. Natl. Chim. Hautes Temp., Paris, Ed. C.N.R.S. **1957**, pp. 51 (1959).
- [8] J. G. White, P. N. Yocom und S. Lerner, Inorg. Chem. 6, 1872 (1967).
- [9] J. Flahaut, L. Domange, M. Guittard, M. P. Pardo und M. Patrie, C. R. Acad. Sci. Paris 257, 1530 (1963).

J. Flahaut, L. Domange und M. P. Pardo, C. R. Acad. Sci. Paris **258**, 594 (1964).

- [10] K.-J. Range und R. Leeb, Z. Naturforsch. 30b, 637 (1975).
- [11] K.-J. Range und R. Leeb, Z. Naturforsch. 30b, 889 (1975).
- [12] Th. Schleid, Z. Anorg. Allg. Chem. 590, 111 (1990).
- [13] G. Meyer und P. Ax, Mat. Res. Bull. 17, 1447 (1982).

G. Meyer, Inorg. Synth. 25, 146 (1989).

- - [14] G. Meyer und Th. Schleid, J. Less-Common Met. 116, 187 (1986); Inorg. Chem. 26, 217 (1987).
 - [15] J. D. Corbett, Inorg. Synth. 22, 15 (1983).
 - [16] G. Meyer, Sh.-J. Hwu, S. Wijeyesekara und J. D. Corbett, Inorg. Chem. 25, 4811 (1986).
 Th. Schleid und G. Meyer, J. Less-Common Met. 149, 73 (1989).
 - [17] G. M. Sheldrick, SHELX-76: Programm zur Kristallstrukturbestimmung aus Diffraktometerdaten, Cambridge U. K. (1976).
 - [18] D. T. Cromer und J. B. Mann, Acta Crystallogr.
 A24, 321 (1968).
 D. T. Cromer und D. Liberman, J. Chem. Phys. 53
 - D. T. Cromer und D. Liberman, J. Chem. Phys. 53, 1891 (1970).
 - [19] J. Flahaut, L. Domange, M. Guittard und M. P. Pardo, Bull. Soc. Chim. Fr. **1965**, 326 (1965).
 K.-J. Range und R. Leeb, Z. Naturforsch. **31 b**, 685 (1976).
 - [20] M. Guittard, J. Flahaut und L. Domange, C. R. Acad. Sci. Paris 256, 427 (1963); M. Guittard, A. Benacerraf und J. Flahaut, Ann. Chim. Paris [13] 9, 25 (1964).
 - [21] Th. Schleid, Eur. J. Solid State Inorg. Chem., in Vorbereitung.
 - [22] Th. Schleid und F. Lissner, Z. Anorg. Allg. Chem., in Vorbereitung.
 - [23] K.-J. Range, K. G. Lange und H. Drexler, Comments Inorg. Chem. 3, 171 (1984).
 - [24] K.-J. Range, H. Drexler, A. Gietl, U. Klement und K. G. Lange, Acta Crystallogr. C46, 487 (1990).
 - [25] R. D. Shannon, Acta Crystallogr. A32, 751 (1976).