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We study the optimal way of creating bi-partite entanglement using a general two-qubit in­
teraction. On the one hand, we analyze the entanglement capability of an arbitrary non-local 
Hamiltonian acting on two qubits. We explicitly calculate the state which maximizes the entangle­
ment produced per time step 81 during the non-local evolution. On the other hand, we determine the 
maximal amount of entanglement which can be produced by an arbitrary two-qubit gate. We also 
give the separable state which leads to the output state containing this amount of entanglement. 
Furthermore, we consider the situation where auxiliary systems are present. Finally, we determine 
the non-unitary processes which are able to create entanglement from an initially separable state 
of two systems. - Pacs: 03.67.-a, 03.65.Bz, 03.65.Ca, 03.67.Hk
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I. Introduction

Entanglement is one of the most fascinating fea­

tures of quantum mechanics [1 , 2], and at the same 

time, a highly preciated resource in quantum infor­

mation science. In recent years, considerable effort 

has been devote to create entanglement in the labora­

tory [3]. In some of these experiments entanglement 

is produced by starting out from a product state of 

two systems (typically qubits) and using some phys­

ical process that gives rise to an interaction between 

them. Thus, one of the relevant problems in this con­

text is to find ways of generating “as much entangle­

ment as possible” for a given experimental set-up, i. e. 
a non-local interaction.

The first steps towards answering this problem have 

been given in [4-7]. In [5] we considered an arbitrary 

non-local Hamiltonian H  acting on two qubits. The 

time evolution induced by H  changes the (possibly 

entangled) state of the two qubits and in particular 

its entanglement. For any given amount of initial en­

tanglement E, we first determined the state \̂e ) for

which more entanglement bE is produced after a time 

step 51, and then the amount of initial entanglement 

Eq which leads to the maximal entanglement pro­

duction. Remarkably, a unique parameter, the entan­

glement capability of the two-qubit Hamiltonian H, 

determines the optimal bE  for any initial amount of 

entanglement E. This quantity, that we computed for 

an arbitrary H, completely characterizes how effi­

cient H  is at producing entanglement. It also turned 

out that, for finite-time evolutions, the optimal en­

tanglement production requires that we apply local 

unitary operators after each time step bt. In some 

situations, however, one cannot apply fast local oper­

ations during the process, but rather a fixed quantum 

gate is given. This problem was analyzed in [6]. There 

we determined the separable input state which max­

imizes the entanglement of the state obtained after 

applying an arbitrary two-qubit gate. These results 

allow us to characterize arbitrary two qubit interac­

tions in terms of the entanglement which they can 

produce. For example, we determined which are the 

two-qubit gates that can create maximally entangled
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states. While most of our results are concerned with 

two qubits, we also showed that if we allow the latter 

to be initially (locally) entangled with some ancillas, 

one can obtain more entanglement, at least for cer­

tain measures of entanglement. A natural question in 

this context is: which physical actions (not necessary 

unitary) are able to create entanglement? In [7] we an­

swered this question using an isomorphism between 

physical actions and density operators. This powerful 

one-to-one correspondence allows us to translate all 

the known properties of density operators to the ones 

of physical processes.

This paper can be viewed as a unified summary of

[5], [6] and [7], We show how much entanglement 

can be produced by an arbitrary non-local two-qubit 

interaction and determine the input states which lead 

to this amount of entanglement. We also define the 

entanglement capability of an arbitrary Hamiltonian 

acting on two qubits. In the case where we allow 

for auxiliary systems we discuss the maximal entan­

glement production for certain measures of entangle­

ment. Finally, we show which non-unitary processes 

are able to create entanglement.
This paper is divided into five sections. In Sect. II 

we recall some definitions and introduce some nota­

tion. In Sect. Ill we study how much entanglement 

can be created by a two-qubit unitary operation. This 

section is divided into two parts. In the first one we 

analyze the maximum amount of entanglement which 

can be created by an arbitrary non-local Hamiltonian 

if we are allowed to apply fast local unitary operations 

during the evolution. In the second part we show how 

much entanglement can be produced by an arbitrary 

two-qubit gate. In both cases we will determine the 

initial state which maximizes the entanglement pro­

duction. In Sect. IV we consider the situation where 

Alice and Bob have more than one qubit each, which 

they are allowed to entangle initially locally. We will 

see there with some examples that the question of the 

best input state is not well-defined since the answer, 

in this case, depends on the measure of entanglement. 

Once we have specified the measure of entanglement 

we will show that for some two-qubit operations, aux­

iliary systems will help to create more entanglement. 

In Sect. V we analyze general (not necessary unitary) 

physical processes. We develop an isomorphism be­

tween physical actions and density operators acting 

on two systems, which allows us to decide when a 

physical process is able to create entanglement out of 

an initially separable state.

II. Definitions and Measures of Entanglement

This section is divided into two parts. In the first one 

we recall some definitions and thereby introduce our 

notation. In the second part we recall some measures 

of entanglement.

II.A Definitions

Throughout this paper we consider two systems A 

and B at different locations, held by Alice and Bob, 

respectively. These systems will be composed of one 

or two qubits each. Their states are represented by 

vectors in the Hilbert space H a,b respectively.
We will use the following maximally entangled 

state of the two systems, of d dimensions each,

1
( 1)

where {|«)}f=1 is an orthonormal basis in H a and H b - 
For two qubits, a basis of H a ® H b which contains 

only orthogonal maximally entangled states is the Bell 

basis. It is defined as

l#±> = = ^=(|oi>±|io».(2)

We also make use of the so-called magic basis [8], 

which is defined in the same way as the Bell-basis, 

except for some global phases. We will denote the 

elements of this basis by

(3)

Throughout this paper we use capital Greek letters for 

joint states of systems A and B and small letters for 

states describing either system A or system B. We 

denote by l^ 1) a state which is orthogonal to \̂ ), 

whereas |&*) denotes the complex conjugate of \)P) in 

the computational basis, {|0), 11)}. We will denote the 

Pauli operators by crj, <72, <73 and a  denotes the vector 

whose elements are the Pauli operators. Furthermore 

crT denotes the transpose of a. If it is not clear which 

system an operator is acting on, we specify it with 

either a sub- or superscript.

II.B Measures of Entanglement

For bipartite systems several measures of entangle­

ment have been proposed, each one inducing a differ-

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 20.11.17 08:37



B. Kraus et al. • Entanglement Capability of Two-qubit Operations 93

ent ordering in the set of entangled states. Nonethe­

less, they all agree that ( 1) are the maximally entan­

gled states, and they all vanish for product (i. e. separa­

ble, or non-entangled) states. Let us now review some 

of these measures of entanglement for pure states of 

two systems. We start out with the so-called concur­

rence [9], C, which is a measure of entanglement for 

states of two qubits. It is defined as

C(\'P)) = \('P\o2®<T2\'tr*)\- (4)

Writing I#') in the magic basis, i.e \̂) = 

£ t= i ßk\i’k). we obtain

C(|4>)) = | £ /4 l-  (5)
k

Let us note here that C(|^)) = 1, that is \\P) is max­

imally entangled, if = et<5 |/xfc |2 Vfc. On the other 

hand C(\\P)) = 0, that is \̂) is a product state, if

Eit A  = o.
The rest of measures, we will make use of, are 

better described in terms of the Schmidt coefficients. 

A pure state |^), describing the state of two systems, 

A and B, each of dimension d, always has a Schmidt 

decomposition in the form

m

\&) = y i  Ck\<t>k)AVl>k)B, (6)

fc=l

where m < d and {(f>k\<f>i) = {^k\ î) = h i  
Vfc,/ = 1 ,... ,m . The real and positive coefficients 

C f c ,  which are the square roots of the eigenvalues 

of the reduced density operator, pa = tr^(|^r)(lfr|) 

(or pb = tr^d ^ )^ !)) , are called Schmidt coeffi­
cients. We will choose them in decreasing order, i. e. 

C l  >  c 2  . . .  >  Cm >  0 .

The Entropy of entanglement is defined as

E e(I#)) =  S(pA) = -tr[pA log2(pa )\

V ' 2 , , 2x W  = ~ 2̂ ck lo g 2(Cfc).
fc=l

This measure has an interesting operation meaning: 

given n copies of a state ]&), then one can produce, 

using only local operations and classical communi­

cation, tlE e H^)) maximally entangled states of two 

qubits and vice versa (in the limit n —» oo) [1 1 ].
Another useful measure is the Schmidt number

[10], which we will denote by Es. It is the number of 

Schmidt coefficients minus one, i.e. Es(|^)) = m — 1.

In the context of manipulating a single copy of a 

bipartite pure state, the set of entanglement mono­

tones [12]

m

£ » (W ) = £ 4 ,  (*)
k=n

for n = 1, . . . ,7 7 i, provides all the information about 

which transformations are possible using only local 

operations and classical communication, and we will 

also consider them.
Finally, we will also use the so-called 2-Entropy 

(related to the 2-Renyi entropy) of the reduced density 

operator [13]. It is defined as

m

£ r ( )) =  SrOu ) = 1 -  trtp2„ )  = 1 -  • (9)

fc=l

In the following we will call this measure the Renyi 

entanglement.

Note that any measure of entanglement must only 

depend on the Schmidt coefficients, given the fact 

that it must be invariant under local unitary opera­

tions. Thus, in the case of two qubits the situation is 

fairly simple, because a state describing two qubits 

can have at most two Schmidt coefficients. Due to the 

normalization only one of these is independent. This 

implies that in this case all the measures of entan­

glement are monotonic functions of each other. Note 

further that two states of two qubits which are equally 

entangled can always be transformed into each other 

using local unitary operators. In higher dimensions, 

however, this is no longer true. There it might happen 

that, according to some measure of entanglement, a 

state is more entangled than some other, whereas for 

some other measure it is the other way around.

III. Optimal Way of Entangling Two Qubits

In this section we show how to entangle two qubits 

in an optimal way. We consider the situation where 

Alice and Bob have one qubit each. Note that in or­

der to maximize the entanglement production we only 

have to consider pure states*. We are going to treat

’ Note that the maximum entanglement reached for pure states 

is always larger than the one reached by a mixed state. This can 

be seen as follows: let us write an arbitrary mixed state, p in 

its eigenbasis, i.e p = Ylk P k I- ^Jsing the fact that any 

measure of entanglement, E, is convex [14] we have that E(p) < 
max|^fc) E(\\Pk))- Thus it suffices to consider only pure states.
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two different scenarios. In the first part of this section 

we will show how to create as much entanglement as 

possible using a non-local Hamiltonian, H  [5], We 

will allow Alice and Bob to apply some fast local 

unitary operations to their qubits during the process. 

From the analysis it will become clear why these in­

termediate local operations will increase the entangle­

ment production. In the second part of this section we 

will determine the maximum amount of entanglement 

which can be produced by a general two-qubit gate, U

[6]. Here we will not allow for operations during the 

process, but rather deal with the situation where Alice 

and Bob apply a non-local unitary operator to their 

qubits. In both cases we will also determine the state 

which Alice and Bob have to use initially in order to 

create, given a certain non-local interaction, as much 

entanglement as possible. In the first case it will turn 

out that, independently of the Hamiltonian it is better 

to start with some initially entangled state. In the sec­

ond case we only consider initially separable states. 

The method used there can be easily generalized to 

initially entangled states.

III.A Entanglement Capability of Non-local 

Hamiltonians

We will characterize the entanglement of a state at 

a given timet, by some entanglement measure

E. In order to quantify the entanglement production, 

we define the entanglement rate r  at a particular time 

t of the interaction as

m  =
d E(t) 

d t
(10)

The goal is then to find the conditions which must be 

satisfied in order to obtain a maximal entanglement 

rate. In particular, we will be interested in determining 

the following:

(i) For any initial entanglement E  of the two-qubit 

system, what is the state \̂ ), say |^e), for which the 

interaction produces the maximal rate /# .
(ii) The maximal achievable entanglement rate

r n

Tmax =  maxTg (11)

and the state |̂ max) for which r  = r max.

In order to explain why those quantities are inter­

esting, let us write the state of the qubits, | i n  its 

Schmidt decomposition (6)

I*) = x) + e'a -  P|*>\ Xx >, (12)

where for the sake of short-hand notation we have 

omitted the time dependence of all these quanti­

ties. We take P  < 1/2. Note that, as mentioned in 

Sect. II.B, any measure of entanglement, E, must 

only depend on the Schmidt coefficient P, so we write 

E(P) for some given measure of entanglement. Given 

now some value E, let \&e) be the state with entangle­

ment E  and in which |x) and a are chosen such 

that Te is maximized. As explained in Sect. II.B, it 

is always possible to transform a state of two qubits 

with entanglement E  into \̂ e) by local unitary op­

erators. Let the system now evolve under H. Then 

the state after a very small time step 81 will change 

its entanglement to E  + bE and the states |ip) and 

|x) will change too. We apply now fast local unitary 

operators to transform this new state into \̂e+5e)- 

Proceeding in the same way after every time step, and 

taking the continuous time limit 51 —► 0 , we obtain 

that the state of the qubits at time t is always the 

optimal one, \'&E(t))-

Knowledge of also permits us to determine 

the maximum amount of entanglement Emax =  

/ t* d trE(t) produced after a given finite time t — to- 

We just have to express as an explicit function 

of E, substitute it in (10) and solve that differential 

equation to determine Emax(t). Note that the optimal 

procedure described above will precisely reach the 

entanglement Emax(t).

The state |^max) is important since it gives rise to 

the maximal increase of entanglement, and therefore 

corresponds to the best operational point. After reach­

ing the state |^max) with the procedure described in 

the previous paragraph, the entanglement would be 

produced in a very efficient way if one could transfer 

the entanglement that is gained after each time step 51 

to other qubits (using entanglement dilution [1 1 ] or 

some other means). In particular, the entanglement of 

the system would increase proportionally to the time, 

i'max being the proportionality constant.

In the following, we will show how to determine 

|\PE), r E, l^max), and r max for an arbitrary Hamil­

tonian H. Given the fact that the entanglement, E, 

of the state (12) must only depend on the Schmidt 

coefficient P, we find that

( 13)
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In (13), given a particular entanglement measure 

E(P), we just have to determine dP /d t. In order 

to do so, we need to find the (infinitesimal) time evo­

lution of the Schmidt coefficients of the state of the 

qubits. Using standard perturbation theory we find [5]

dP
—  = 2\fP(1 - P)xlm[e’“ (ip,xl#k\ x-L>],04) 
d t

where we have omitted the time-dependence. Upon 

substitution in (13) we obtain the entanglement rate. 

Since we are interested in maximizing r ,  it is clear 

that we can always choose a such that

where

/CP) = 2y/P(\-P)E\P\

h(H , <p, x) = (tf>, x l#

(15)

(16a)

(16b)

From (15) it is clear that we can maximize /  and h 

independently, since they depend on different param­

eters. We want to stress that (15) tells us that for any 

value E  of the entanglement, the states \ip) and |x) 

for which the maximal entanglement rate P# is ob­

tained do not depend on E, but only on the form of the 
Hamiltonian H. Let us denote by /imax the maximum 

value of \h\; that is,

/ W =  max \(ip,x\H\ipL,XL)Y (17)
IMI. 11x11=1

Now, we can easily solve (14) and find P it) = 

sin2[/imaxt + 0O], with P(0) = sin2(̂ o)- For concrete­
ness sake, in order to maximize now /  we choose the 

entropy of entanglement (7) as a measure of entan­

glement E(P). As discussed in Sect. II.B, any other 

two-qubit measure would lead to similar results. With 

this choice of measure the value of P0 that maximizes 
/(P ) has to fulfill

In
1 -Po  

Po 1 -2P 0’
(18)

i.e. Po ~ 0.0832, which gives E(Pq) ~ 0.413. This 

shows that, in order to increase the entanglement of a 

two-qubit system in an optimal way, it is better to start 

with some initially entangled state rather than a prod­

uct state. Note that the optimal initial entanglement 

E(Pq) is independent of the Hamiltonian.

As we have seen above, the evolution of the en­

tanglement is fully characterized by /imax. We call 

this quantity, since it depends only on the interac­

tion Hamiltonian, the entanglement capability of the 

Hamiltonian, H. Let us now show how one can de­

termine this quantity.

Any Hamiltonian can be written (except for a trivial 

constant) as

H  = ( a V A)<g> llß +11,4 (S>(/3T<Tß) + cr^7 <Tß. (19)

Here a , ß, and 7  are, respectively, two real vectors and 

a real matrix, and T denotes transposition. Allowing 

for local unitary operations, in order to determine hmax 

we only have to consider Hamiltonians of the form

(20)
fc=i

where 71 > 72 > 73 > 0 are the (sorted) singular 

values* of the matrix 7 .

The reason for that is two fold. On the one hand, it 

is clear that the terms (c*TcrA)(g) 11ß and <2> C/3Tcr B) 

in (19) do not contribute in the expression (17). 
On the other hand, we can write 7  in its singular 

value decomposition, i.e 7  = Oi^dOj, where 0\ 

and O2 are orthogonal matrices and 7  ̂ is a posi­
tive diagonal matrix. The sorted singular values of 

7  (the diagonal elements of 7 d) will be denote by 

7 h 72 573 (7 i > 72 > 73 > 0). Now, allowing for 

local unitary operators, Ua (Vb) and U\ (V^), before 

and after the evolution, where U\ctja Ua = <rTA0 ] 

(VßO-ßVß = Ojo-ß) we find that the Hamiltonian is 

transformed into the standard form (20). In that case, 

we obtain that the total (non-local) effect of the evo­

lution for a time t is equivalent to the one obtained 

with the Hamiltonian H  for the same time. Using this 

fact one can show [5] that

hmax ~ 7 l "*■ 72- (21)

Note that this maximum is reached if |x) -L Iv?) and 
|</?) = |0) or \if) = |1 ), i.e. an eigenstate of 0-3.

Summarizing, once we have transformed the 

Hamiltonian H  to the standard form (20) we obtain 

that for a given value of E  (and therefore of P),

’ Given a real matrix 7  one can always find two orthogonal 

matrices O 1 and O 2 such that 7  = O lßO2, where n is a diagonal 

positive matrix. This is called singular value decomposition of 7 .
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| ¥e ) = V^|0 , 1 ) + n/n="P| l,0), (2 2a)

(22b)

where /imax = 71 + 72 . The maximum rate Pmax is 

obtained for P  = P0, where Po is the value that max­

imizes /(P ). Thus, I^max) and Pmax are given by (22) 

with P = Po. For example, for the entropy of en­

tanglement as entanglement measure Po 0.0832, 

which leads to /(Po) — 1.9123.

III.B Two-Qubit Gates

In this section we address similar questions as in 

the previous one, but here we determine the maximal 

amount of entanglement produced by a general uni­

tary operator acting on two qubits. Note that, contrary 

to the previous section, we do not allow for local uni­

tary operations during the process. We are also going 

to determine the initially separable input state which 

leads to the maximal amount of entanglement of the 

output state. We will call this state best input state. As 

measure of entanglement we are going to use (without 

loss of generality, see Sect. II.B) the concurrence (4).

In [6] we showed that for any unitary operator Uab 

there exist local unitary operators, Ua ,Ub ,Va ,Vb , 

and a non-local unitary operator Ud such that

Ua b  = Ua  0  Ub UclVa <S> Vb ,

where

(23)

(24)

and d is a diagonal matrix. We will denote the di­

agonal elements of d by « 1, 0:2, <23. Note that any 
measure of entanglement is not changed under local 

unitary operators. Thus the entanglement created by 

Ua b  is the same as the one created by UdVA 0  Vb - 

And so the maximal amount of entanglement which 

can be produced by applying a general unitary Ua b  

is the same as the one created by the corresponding 

operator Ud. This means that we have to deal with 

unitary operators which are determined by only 3 pa­

rameters, a 1, c*2, <23, instead of 15 parameters, which 

are required in order to describe a general (special) 
unitary operator acting on two qubits.

When studying the maximum amount of entan­

glement created by a two-qubit gate we can restrict 

ourselves to the case where

7t/4 >  Ckfj > 02 > «3 > 0. (25)

This is due to the fact that the maximal amount of 

entanglement created by Ud is symmetric around tt/4 
and 7r/2-periodic in a  1, <22, and 0:3 [6 ].

It can be easily shown that the operator Ud is diag­

onal in the magic basis, and therefore we can write

(26)

fc=l

The phases are

A i =  Q j -  Oi2 +  CÜ3, A 2 =  — Oi\ +  OC2 +  ol3, 

A3 =  —Ot\ — OL2 — CH3, A4 = Q!i +  0?2 — 0:3.
(27)

According to the above discussion, we just have to 

find which states \4>) aA^) b maximize the concur­

rence of the output state Ud\(f>) a\ )̂ b  •
Writing the input and output state in the magic basis 

with the coefficients Wk, Hk respectively, we apply the 

unitary operator Ud and obtain

Y^ßk\$k) = U d i l^ A ^ B ) = J2 w ke~lXk\<P fc).(28)

We want to maximize the concurrence of the output 

state, C = I ^2k ßl\, under the following conditions:

(cl) J2k l f̂cl2 = 1 ; that is the output state (and 
therefore the input state) must be normalized.

(c2) lAellXk = 0- This condition is due to the 
fact that the input state is a product state, which 

can be seen as follows. From (28) we see that 

Wk = /ifcelAfc, and as mentioned in Sect. II.B the input 

state Wk\$k)) is a product state if the sum of the 

coefficients in the magic basis squared vanishes.

We can determine the maximum of the concurrence 

of the output state under the conditions (cl), (c2) by 

maximizing C2 and imposing the above conditions in 

terms of Lagrange multipliers, i. e. we maximize

/ ( / x = ^2ti2M )2 -  2r]\(̂ 2 lA Î2 ~ 0 
k,l k 

_  _  (29)

- V*2 5 I ( /4 ) 2e' 
k k

- 2 i \ i

where r/\ is real. The result of this maximization is 
the following [6]:

(a) If Qi+a2 > 7r/4 and, at the same time, « 2+0:3 <
7t/4 , Ud is able to create a maximally entangled state.
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The input states which lead to a maximally entangled 

output state follow from this maximization [6].
(b) Otherwise we have that the largest reachable 

concurrence is

C  = maxfct/| sin(Afc — A/)|. (30)

Except for global phases the corresponding output 

state is \/\f2(\$k) + i\$i)eXk~Xl), and the separable 
input state, which leads to this maximum is

- J= (h M + W )-  (31)

Note that in the case a\ < it/8, we obtain that 

C = sin(o;i + 0:2), which is directly related to the 

entanglement capability of the Hamiltonian of the 

form a\d(TB, (̂ max would be a 1 + a2 in this case) in 
the previous subsection. For higher values of a\ the 

result may not be directly related to that quantity.

IV. Using Ancillas

Here we analyze the two scenarios described in the 

previous section, where we now allow Alice and Bob 

to use auxiliary systems. So, we consider the situation 

where Alice and Bob have two qubits each*. We will 

call a state locally entangled if the two qubits at Al­

ice’s or Bob’s side are entangled. If none of the qubits 
is entangled we will call the corresponding state a lo­

cal product state. Analogously to the previous section 

we apply a general non-local Hamiltonian (two-qubit 

gate) on one of Alice’s qubits and one of Bob’s. As 

shown in Sect. Ill we can, while maximizing the en­

tanglement rate, restrict ourselves to Hamiltonians 

of the form (20) and unitary operators of the form

(24) with the restrictions (25). The main difference 

between this scenario and the one described in the 

previous section is that the states no longer belong to 

a Hilbert space of two qubits. Here we have to deal 

with higher dimensional Hilbert spaces and therefore, 

as explained in Sect. II.B, the measures of entangle­

ment are not monotonic functions of each other. We 

will show that this implies that the question, which 

input state is the best input state, is not well-defined. 

Thus, in order to analyze this problem we first of all

*Note that, since one of Alice’ and Bob’s subsystems (the ones 

on which they apply the unitary operator) are qubits, the state 

describing such a subsystem and an ancilla of arbitrary dimension 

can always be viewed as a state describing two qubits (it has at 

most two Schmidt coefficients).

have to specify according to which measure of en­

tanglement we want to determine the best input state. 
Once we have specified the measure of entanglement 

it is possible to answer the same questions as in the 

previous section.

Let us start now by comparing some measures of 
entanglement. We consider some special unitary oper­

ators, fix the measure of entanglement, and determine 

the best input state. Summarizing the results obtained 

by numerical procedures, we have that:

• Schmidt number: Locally entangled states are 

always “better” than local product states. This can be 

easily understood since in the first case the maximum 

value which Es can take is 3, whereas in the latter 

one it can be at most 1. Thus, using this measure of 

entanglement the ancillas will, in general, increase 

the entanglement of the output state.

• Renyi entanglement: We have checked that for 

this measure the best input states are always either lo­

cal product states or local maximally entangled states. 

In particular, in [6] we provide analytical results for 

some special cases.

• Entanglement monotones: We have verified that 

there are unitary operators Ud for which local product 

states are the best input states, whereas for some oth­

ers the local maximally entangled states lead to the 

most entangled output state. However, there also exist 

some Ud for which neither the product state nor the 

maximally entangled state is the best input state.

From these examples it becomes clear that it does 

not make much sense to ask for the best input state, if 

one does not specify according to which measure of 

entanglement.

So, let us specify now the measure of entangle­

ment according to which we want to maximize the 

entanglement production. We calculate the maximum 

entanglement rate using the entropy of entanglement. 

Then, it is possible to show that [5] if 73 =/ 0, the use 

of ancillas can help to increase the maximum rate of 

entanglement r max as well as the rate for a given 
entanglement E  of state |ty).

It is also possible to calculate the best input state 

for a given measure of entanglement for certain two- 

qubit gates. For instance in [6] we showed that for 

Ud with a = a\ = a 2 = 0:3 the input states which 

lead to the most entangled output state according to 

the Renyi entanglement are, depending on a, either 

locally maximally entangled states or local product 

states: for small values of a  the ancillas do not help at
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all, whereas for larger a ’s the use of them increases 

the Renyi entanglement of the output state.

V. Non-unitary Processes

So far, we have shown how much entanglement can 

be created by a general unitary operator, with or with­

out using local unitary operators during the process. 

It is natural to ask now which physical interactions, 

in general, are able to create entanglement. In [7] we 

answered this question.
Mathematically, a physical action can always be 

described as a completely positive linear map (CPM), 

which we will denote by 8 . That is a map which 

transforms a positive operator into a positive opera­

tor, no matter which extension is used [15]. We will 

show now that there exists a one-to-one correspon­

dence between completely positive maps and positive 

operators (unnormalized density operators) acting on 

two systems.

Let us consider two systems, A and B, spatially 

separated, each of them composed of two particles 

(A\ 2, and B\ )̂. We also consider a CPM 8 act­
ing on systems A\ and B\. We are interested in 

whether this CPM can create “non-local” entangle­

ment between the systems A and B [16]. We de­

fine the operator E Axa2,b xb 2 acting on H a 0  H b 

[where Ha  =  W a , ® H Al and Hb = H b ,® H b2, and 

d\m(HAi) = d\m(HBi) = d\ as follows:

Ea\A2,bxB2 = £(Pa<a2 0  Pb\B2)- (32)

Here, PAxa2 = \$)axa2{$\, where \$)axa2 is defined 
in (1). In the definition (32) the map 8 is understood to 

act as the identity on the operators acting on Ha2 and 

Hb2 ■ The operator E  has a clear interpretation since it 

is proportional to the density operator resulting from 

the operation 8 on systems A\ and B\ when both of 

them are prepared in a maximally entangled state with 

two auxiliary systems, respectively.
On the other hand, one can easily show that

£ (P A ,B t) = d^tTA2A-\B2 Bt,
~ (33)

( F a \ a 2,B\ BjPa -sB-s P a 2a , P b2b -̂)-

This equation also has a very simple interpretation. It 

reflects the fact that if we have the state E a xa2,b xb 2 

at our disposal, we can always produce the map 8 
on any state of systems A3 and B3 by performing 

a joint measurement locally such that both systems

A2 A3 and B2 B 3 are projected onto the maximally 

entangled state (1). Of course, this will happen with 
certain probability.

The relations (32) and (33) induce a linear one-to- 

one correspondence between CPM acting on tensor 

product spaces and positive operators. In fact, this 

correspondence can be viewed as an extension of the 

isomorphism introduced by Jamiolkowski [ 15] to ten­

sor product spaces. Using these relations it is very 

easy to show that:

(i) 8  is separable if E a xa2,b 1b 2 is separable with 
respect to the systems {A\ Ai) and (B\B2). Thus, we 

can study the separability of CPM by studying the 

problem of separability of positive operators. This 

immediately implies that we can use all the results 

derived for the latter problem [17].

(ii) 8 can create non-local entanglement between 

A  and B if E a 1a 2,b 1b 2 is non-separable with respect 

to the systems (A1A2) and (B 1B2). In particular, we 

can always obtain a state whose density operator is 

proportional to E a ]a2,b 1b ] out of separable states by 
entangling our systems locally with ancillas.

(iii) If 8 corresponds to a unitary action, the corre­

sponding operator has rank one, i. e. it can be written 

as£ = |#)(V|, where |!P) G H Ax® H a2® H b,® H b2 
is a normalized state.

Using this isomorphism it is possible to calculate 

the amount of entanglement which is used in order 

to implement a non-local operation. There are many 

other important applications of this powerful isomor­

phism. For instance, as shown in [18] it is possible to 

prove that non-local unitary operations can be puri­

fied, stored, or compressed.

VI. Conclusion

In this paper we have shown how one can entan­

gle two systems in an optimal way using two qubit 

interactions. On the one hand, we have studied the 

maximum entanglement rate obtainable with a non­

local Hamiltonian. We have allowed for local unitary 

operations during the process, in order to increase the 

entanglement production. On the other hand, we have 

studied the situation where we use a two-qubit gate 

to entangle the systems as much as possible. Here we 

have not allowed for intermediate operations. In both 

cases we have determined the input state which leads 

to this maximal production of entanglement. Further­
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more we have analyzed the situation where both par­

ties use auxiliary systems. We have shown that in this 

case the question for the best input state is not well- 

defined, since the answer depends on the measure of 

entanglement. We have shown that the entanglement 

production can be increased with the help of auxil­
iary systems for particular non-local interactions. We 

have also determined the physical processes which are 

able to create entanglement, using an isomorphism 

between density operators and physical actions. We

have shown that this isomorphism allows to translate 

all the properties known for density operators to the 

one of physical processes.
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