Die Wechselwirkung von N₃F mit Lewis-Säuren und HF. N₃F als möglicher Vorläufer für die Synthese von N₃⁺-Salzen

The Interaction of N₃F with Lewis-Acids and HF. N_3F as Possible Precursor for the Synthesis of N_3^+ Salts

Gabriele Schatte und Helge Willner*

Institut für Anorganische Chemie der Universität Hannover, Callinstraße 9, D-3000 Hannover 1

Herrn Prof. Dr. Kurt Dehnicke zum 60. Geburtstag gewidmet

Z. Naturforsch. 46b, 483-489 (1991); eingegangen am 3. September 1990

Triazadienyl Fluoride, IR Spectra, Lewis Acids, Proton Affinity

Triazadienyl fluoride, N₃F, forms stable adducts with BF₃ and AsF₅ at low temperatures, as demonstrated by infrared measurements. The Lewis acids are bonded to the N_{a} -atom of $N_{3}F$, as deduced from the data for 15 N-isotopically enriched N₃F. The basicity of N₃F is comparable to that of ethine and ethene, according to the HF stretching frequency of the N_3F/HF complex isolated in an argon matrix. Despite the low NF bond energy (<150 kJ/mol), abstraction of the fluoride ion and formation of an N_3^+ salt was not possible. The different behavior of N_3F and ClN₃ towards Lewis acids is discussed.

Unter den Halogenaziden nimmt das Triazadienylfluorid, N₃F, eine Sonderstellung ein, da seine N₃-Gruppe positiv polarisiert ist. Als letzte Verbindung in dieser Substanzklasse wurde N₃F 1942 durch Umsetzung von HN₃ mit F₂ synthetisiert [1]. Da N₃F in der Gasphase bei Raumtemperatur in N₂F₂ und N₂ zerfällt und im kondensierten Zustand außerordentlich leicht explodiert, gelang die Reindarstellung und eine nähere Charakterisierung erst in jüngster Zeit. Eine verbesserte Synthese ist in [2] beschrieben. In diesem Zusammenhang wurden auch verschiedene spektroskopische Daten sowie die Werte für Schmelz- und Siedepunkt mitgeteilt. Die Gasphasenstruktur, das vollständige Schwingungsspektrum und die Ergebnisse einer Normalkoordinatenanalyse sind in [3]-wiedergegeben. Über die Ergebnisse der Analyse des Photoelektronenspektrums wird in [4] berichtet. N₃F dissoziiert exotherm in N2 und elektronisch angeregte NF($a^{1}\Delta$)-Moleküle, so daß es möglicherweise zum Betrieb energiereicher chemischer Laser eingesetzt werden kann [5, 6].

Zur Darstellung von Nichtmetallkationen werden bevorzugt Fluoridionendonatoren wie O₂F, N₂F₂, ONF usw., die schwache Element/Fluor-Bindungen aufweisen, mit starken Lewis-Säuren (BF₃, AsF₅, SbF₅) umgesetzt. Auch aus N₃F sollte sich aufgrund der geringen NF-Bindungsenergie (<150 kJ/mol [7]) ein F⁻-Ion unter Bildung eines N_3^+ -Salzes abspalten lassen.

Mit der Synthese eines N₃⁺-Salzes würde sich eine Möglichkeit ergeben, die strukturellen, spektroskopischen und physikalisch-chemischen Eigenschaften dieses bisher präparativ nicht zugänglichen Nichtmetallkations zu analysieren. Besonderes Interesse kommt dabei der Struktur des N₃⁺-Ions zu. Aufgrund von ab initio Berechnungen [8, 9] soll das N_3^+ -Ion eine lineare Struktur aufweisen, während das zu N3⁺ isoelektronische Cyclopropenylkation eine Ringstruktur besitzt [10]. In [11] wurde jedoch anhand von theoretischen Berechnungen gezeigt, daß sich die Energien von linearem und cyclischem N₃⁺ nicht sehr unterscheiden. Experimentell konnte das N₃⁺-Ion bisher in den Massenspektren kovalenter Azide nachgewiesen werden. Aus dem Photoelektronenspektrum des N3-Radikals ließen sich zwei Schwingungsfrequenzen des N₃⁺-Ions zu 1170 und 1395 cm⁻¹ abschätzen [12].

Im folgenden werden die Ergebnisse der IRspektroskopischen Untersuchungen über das Verhalten von N₃F gegenüber BF₃, AsF₅, SbF₅ und HF mitgeteilt.

Ergebnisse und Diskussion

Bei der Umsetzung von N₃F mit den Lewis-Säuren BF3 und AsF5 in der Gasphase bei 25 °C ent-

^{*} Sonderdruckanforderungen an Prof. Dr. H. Willner.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/91/0400-0483/\$01.00/0

steht kein N_3^+ -Salz, vielmehr wird der Zerfall von N_3F in *cis/trans*- N_2F_2 (erkennbar am Auftreten von IR-Banden bei 989 (*cis*), 952 und 737 cm⁻¹ (*trans*)) und N_2 stark katalysiert. Somit sind mildere Reaktionsbedingungen (tiefere Temperaturen) für eine Untersuchung der Lewis-Base-Eigenschaften von N_3F erforderlich. Dazu bedarf es einer speziellen Präparationstechnik, wie z. B. der Cokondensation der Reaktionspartner (Lewis-Säure/ N_3F) auf einen IR-durchlässigen Träger bei –196 °C im Hochvakuum. Langsames Erwärmen des Cokondensats (3 °C/min) und eine laufende IR-spektroskopische Kontrolle gestatten Aussagen über:

- 1. den Ablauf der Reaktion als Funktion der Temperatur;
- die thermische Stabilität der entstehenden Spezies;
- 3. die Struktur und Bindungsverhältnisse der gebildeten Produkte.

Die Cokondensation von N₃F mit BF₃ bei -196 °C im Molverhältnis 1:1 führt bereits zu einer Reaktion. Neben den Banden des festen BF₃ {1420 vs [ν (BF₃)], 643 s [ν (BF₃)] und 490 s [δ (FBF)], vgl. [13]} liegt ein Teil des Bortrifluorids adduktgebunden vor, erkennbar an den Banden bei 1243 (vs), 1215 (vs), 832 (s), 607 (s) und 530 (m) cm⁻¹.

Die jeweils wichtigsten Resonanzformeln für die beiden möglichen Addukte sind:

Die Verschiebungen der Schwingungsfrequenzen des adduktgebundenen Triazadienylfluorids gegenüber denen des freien N₃F-Moleküls geben Aufschluß darüber, ob das BF₃-Molekül am N_{α}oder F-Atom gebunden ist. Die IR-Banden des adduktgebundenen N₃F erscheinen bei 2180 [$\nu(N_{\beta}N_{\gamma})$], 972 [$\nu(N_{\alpha}N_{\beta})$] und 875 [$\nu(N_{\alpha}F)$] cm⁻¹. Die im Bereich von 650 bis 500 cm⁻¹ zu erwartenden (N_{α}N_{β}N_{γ}/FN_{α}N_{β})- und (N_{α}N_{β}N_{γ})_{oop}-Deformationsschwingungen können durch Überlagerung mit Banden von festem und adduktgebundenem Bortrifluorid nicht zugeordnet werden. Bemerkenswert ist die Verschiebung der $(N_{\beta}N_{\gamma})$ -Valenzschwingung zu höheren Wellenzahlen im Vergleich zu N₃F im festen Zustand (2052 cm⁻¹). Da diese Bindung also im Addukt verstärkt wird, ist eine Adduktbildung unter Einbeziehung des N_γ-Atoms unwahrscheinlich. Auch die $(N_{\alpha}F)$ -Valenzschwingung erscheint jetzt bei höherer Frequenz $[N_{3}F(s):$ $\nu(N_{\alpha}F) = 853 \text{ cm}^{-1}]$, dagegen nimmt die Schwingungsfrequenz für $\nu(N_{\alpha}N_{\beta})$ ab $[N_{3}F(s): 1084 \text{ cm}^{-1}]$.

Das Vorliegen der Form (B) steht mit dem obigen Befund im Einklang. Die Bildung einer koordinativen $(N_{\alpha} \rightarrow B)$ -Bindung führt zu einer Schwächung der $(N_{\alpha}N_{\beta})$ -Bindung und gleichzeitig zu einer Verstärkung der $(N_{\alpha}F)$ -Bindung, da die Abstoßung zwischen den freien Elektronenpaaren am F- und N_{α} -Atom verringert wird.

Aufgrund der ähnlichen Flüchtigkeiten der Edukte und des gebildeten Addukts gelang es nicht, die Spezies $[N_3F \cdots BF_3]$ in reiner Form zu erhalten. Das Addukt sublimiert oberhalb – 165 °C im Hochvakuum. Bei reinem Bortrifluorid liegt der Sublimationsbeginn bei *ca.* –170 °C. Eine Umwandlung Addukt – Salz fand nicht statt, da die für das BF₄⁻-Ion charakteristischen Banden bei 1070 [ν (BF)] and 533 [δ (FBF)] cm⁻¹ [14] im Spektrum nicht auftreten.

Im Fall des Bortrifluorids reichen also die Fluoridionen-Akzeptoreigenschaften dieser Lewis-Säure nicht aus, um ein $N_3^+[BF_4^-]$ -Salz zu bilden, so daß eine stärkere Lewis-Säure eingesetzt werden muß.

Auch die Cokondensation von N₃F mit AsF₅ im Molverhältnis 1:1 bei -196 °C führt zu einer Reaktion der beiden Komponenten. Neben festem AsF₅ {825 cm⁻¹ ($v_{as}AsF_3 eq$), 775 cm⁻¹ ($v_{as}AsF_2$ ax), vgl. [13]} liegt eine große Menge des Arsenpentafluorids adduktgebunden vor. Die Banden des N₃F-Teils bei 2184, 969 und 924 cm⁻¹ entsprechen denen des BF₃-Addukts, so daß auch in diesem Fall das Arsenpentafluorid koordinativ am N_o-Atom gebunden sein sollte.

Langsames Erwärmen des Cokondensats führt zu einer kontinuierlichen Abnahme an nicht umgesetztem N₃F und AsF₅. Das Addukt ist bis -110 °C stabil. Oberhalb dieser Temperatur sublimiert es unzersetzt im Hochvakuum. Eine Reaktion Addukt \rightarrow Salz tritt also auch hier nicht ein. Für ein AsF₆⁻-Ion würde man eine Bande im Bereich von 689 bis 710 cm⁻¹ (ν_{as}) [15] erwarten. Ebenso wird ein [N₂F⁺AsF₆⁻]-Salz als mögliches Sekundärprodukt als Folge des N₃F-Zerfalls nicht gebildet. Die für das N₂F⁺-Ion (C_{..v}-Symmetrie) charakteristischen Schwingungsfrequenzen liegen bei 2370 cm⁻¹ [ν (NN)], 1056 cm⁻¹ [ν (NF)] und 803 cm⁻¹ [δ (N₂F⁺)][16].

Um die oben angenommene Adduktbildung am N_{α} -Atom zusätzlich abzusichern, wurden Experimente mit ¹⁵N-isotopangereichertem N_3F durchgeführt.

Abb. 1 zeigt die IR-Spektren von $[N_3F \cdots AsF_5]$ und von $[NN^{15}NF \cdots AsF_5]/[^{15}NNNF \cdots AsF_5]$. In Tab. I sind die gemessenen Schwingungsfrequenzen und ihre Zuordnung zusammengestellt.

Tab. I. Schwingungsfrequenzen [cm⁻¹] der [N₃F···AsF₅]-Addukte und ihre Zuordnung: natürliche (a), α - (b), β -(c) und γ - (d) ¹⁵N-substituierte Spezies. Zum Vergleich sind die Schwingungsfrequenzen von N₃F im festen Zustand mit aufgeführt.

$N_{3}F(s)$	а	b	с	d	Zuordnung
2052 vs	2184 s	2181	2142	2148	$[v(N_{\beta}N_{\gamma})]$
		(3)	(42)	(36)	P
1084 m	969 m	950	966	969	$v(N_{\alpha}N_{\beta})$
		(19)	(3)	(0)	$u = p^{\mu}$
853 s	924 s	907	923	922	$v(N_F)$
		(17)	(1)	(2)	(u)
	743 vs				$v(AsF_4, A_1)$
		729	743	740	49 19
	733 s		733		v(AsF)
	675 w	675	675	675	$v(AsF_4, E)$
649 w	633 w	632	623	631	$\delta(NNN/NNF)$
		(1)	(10)	(2)	
505 vw	524 vw	520	506	520	$\delta(N N_{a}N)$
		(4)	(18)	(4)	$\alpha^{-1}\beta^{-1}\gamma^{-1}$ oop
	515 vw	507	(10)	514	$v(N \rightarrow As)$
		(8)		(1)	α
	380 m			(1)	$\delta(F_{ax} - AsF_4)_{wagg.}$

* Die Werte in () geben die Isotopenverschiebungen $\Delta v (^{14/15}N)$ in [cm⁻¹] an.

Im Gegensatz zum BF₃-Addukt sind im AsF₅-Addukt neben den $(N_{\beta}N_{\gamma})$ -, $(N_{\alpha}N_{\beta})$ - und $(N_{\alpha}F)$ -Valenzschwingungen auch die beiden Deformationsschwingungen $[\delta(N_{\alpha}N_{\beta}N_{\gamma}/FN_{\alpha}N_{\beta}), \gamma(N_{\alpha}N_{\beta}N_{\gamma})_{oop}]$ des N₃F-Teils zu beobachten. Sie liegen bei 633 und 524 cm⁻¹ und werden in bezug auf N₃F (s) (649, 505 cm⁻¹) geringfügig zu niedrigeren Wellenzahlen verschoben. Die ¹⁵N-Substitution des N_βoder N_γ-Atoms verursacht bei der Bande bei 2184 cm⁻¹ eine große Isotopenverschiebung; sie ist

Abb. 1. IR-Spektren von Cokondensaten bei -196 °C, die bis auf -110 °C erwärmt wurden: (A) N₃F mit AsF₅; (B) NN¹⁵NF/¹⁵NNNF mit AsF₅.

cm-

daher als $v(N_{\beta}N_{\gamma})$ zu beschreiben. Eine ¹⁵N-Isotopensubstitution in α -Position hat einen großen Einfluß auf die Banden bei 969 und 924 cm⁻¹, und entsprechend sind diese den N_{α}N_{β}- und N_{α}F-Schwingungsbewegungen zuzuordnen. Somit wird die bereits oben getroffene Zuordnung der

Schwingungsfrequenzen für den N_3F -Teil des BF_3 und AsF_5 -Addukts bestätigt.

Für eine weitergehende Interpretation des Schwingungsspektrums ist das Addukt

 $[N_3F \cdots AsF_5]$ als Molekül mit der Symmetrie C_s zu betrachten. Von den 24 möglichen Grundschwingungen entfallen dann 16 auf die Schwingungsrasse A' und acht auf die Schwingungsrasse A". Das Addukt läßt sich in die Gruppierungen N_a \rightarrow AsF₅ und N₃F gliedern. Man erhält somit für das $(N_a \rightarrow AsF_5)$ -Gerüst die lokale Symmetrie C_{4v} (Schwingungsrassen: A₁, A₂, B₁, B₂, E) und für das (N_3F) -Gerüst C_s (Schwingungsrassen: A', A"). Damit ergibt sich die folgende Verteilung für die 24 Normalschwingungen:

$$\Gamma_{\rm vib} = 4 A_1 + 1 A_2 + 2 B_1 + 1 B_2 + 5 E + 5 A' + 1 A''$$
(1)

Die Trennung der Gesamtsymmetrie in zwei lokale Symmetrien gilt nur unter der Voraussetzung, daß die Schwingungskopplung zwischen den beiden Bestandteilen des Addukts zu vernachlässigen ist.

Die Zuordnung der Grundschwingungen des $(N_{\alpha} \rightarrow AsF_5)$ -Gerüstes auf die Schwingungsrassen unter der Annahme der lokalen Symmetrien C_{4v} ist aus Tab. II ersichtlich. Zusätzlich treten noch eine Torsion (A₂) und eine (N_βN_αAs)-Deformationsschwingung (E) auf, die in Gl. (1) bereits berücksichtigt worden sind. Beim Übergang von C_{4v} nach C_s gehen die Schwingungen der Rassen A₁, B₁ in die Schwingungsrasse A' und die der Rassen A₂ und B₂ in die Schwingungsrasse A'' über. Die E-Schwingungen spalten in A'- und A''-Schwingungen auf.

Die (AsF)-Valenzschwingungen $v(AsF_4)$ (A₁), $v(AsF_{ax})$ (A₁) und $v(AsF_4)$ (E) im Addukt $[N_3F\cdots AsF_5]$ sind analog zum $[CH_3CN\cdots AsF_5]$ [17] und $[F_3SN\cdots AsF_5]$ [18] den Banden bei 743 (s), 733 (s) und 675 (vw) cm⁻¹ zuzuordnen. Die beiden Schwingungen $v(AsF_4, E)$ und $v(AsF_{ax})$ werden in den ¹⁵N-isotop-substituierten Addukten nicht mehr aufgelöst. Sie zeigen jedoch bei α -Substitution eine ^{14/15}N-Isotopenverschiebung. Dies ist ein weiterer Beweis dafür, daß eine koordinative (N $\alpha \rightarrow$ As)-Bindung vorliegt. Als (N $\alpha \rightarrow$ As)-Valenzschwingung käme die Bande bei 515 cm⁻¹ in Frage, deren Lage von der "Kristallinität" des Produktes und der Temperatur abhängt. Daher sind die ¹⁵N-Isotopenverschiebungen wenig aussagekräftig. Für die Addukte [CH₃CN…AsF₅] [17] und [F₃SN…AsF₅] [18] wird die entsprechende Bandenlage mit 281 und 239 cm⁻¹ angegeben.

Der Bande bei 380 (m) cm⁻¹ im IR-Spektrum von $[N_3F \cdots AsF_5]$ wird analog zum $[CH_3CN \cdots AsF_5]$ [17] der wagging-Schwingung $\delta(F_{ax}-AsF_4)_{wagg}$ zugeordnet.

Nach Cokondensation von N_3F und SbF_5 bei –196 °C erfolgte bei den Versuchen, das Gemisch IR-spektroskopisch zu untersuchen, immer ein explosiver Zerfall. Möglicherweise kommt es tatsächlich zur Bildung eines N_3^+ -Salzes, das bei Tempern, IR-Bestrahlung oder leichten Erschütterungen explodiert.

Zusammenfassend kann festgestellt werden, daß die Fluoriddonator-Eigenschaften des Triazadienvlfluorids nicht ausreichen, in Gegenwart der Lewis-Säuren BF₃ und AsF₅ die entsprechenden N₃⁺-Salze zu bilden. Vielmehr entstehen immer nur die Addukte, die eine koordinative ($N_{\alpha} \rightarrow M$)-Bindung (M = B, As) aufweisen. Die Zunahme der Elektronenpaar-Akzeptoreigenschaften vom BF3 zum AsF₅ kommt auch in dem Anstieg der ($N_{\beta}N_{\gamma}$)und $(N_{\alpha}F)$ -Schwingungsfrequenzen bzw. in der Abnahme der $(N_{\alpha}N_{\beta})$ -Schwingungsfrequenz zum Ausdruck. Dabei wird die Lage der (N_aF)-Schwingung am stärksten beeinflußt (vgl. Tab. III). Sie verschiebt sich mit zunehmender Stärke der Lewis-Säure in Richtung der Schwingungsfrequenz des NF-Moleküls {NF: $v(NF) = 1115 \text{ cm}^{-1}[19]$ }.

Um nun die Basizität des N_{α} -Atoms im N_3F näher zu charakterisieren, wurde ein N_3F/HF -Komplex in einer Argonmatrix isoliert und IR-spektroskopisch untersucht.

A ₁	A_2	B_1	B ₂	E
$v(AsF_{ax}) v(AsF_{4})_{eq} \delta_{s}(AsF_{4})_{eq, oop} v(N_{\alpha} \rightarrow As)$	Torsion	$v_{as}(AsF_4)$ $\delta_{as}(AsF_4)_{oop}$	$\delta_{\rm as}({\rm AsF_4})_{\rm oop}$	$ \begin{array}{c} v_{e}(AsF_{4}) \\ \delta_{e}(AsF_{4}) \\ \delta(F_{ax}AsF_{4})_{wagg.} \\ \delta(N_{\alpha} \rightarrow AsF_{4})_{wagg.} \\ \delta_{e}(N_{\beta}N_{\alpha} \rightarrow As) \end{array} $

Tab. II. Definition der Grundschwingungen für das $(N_{\alpha} \rightarrow AsF_5)$ -Gerüst im $[N_3F \cdots AsF_5]$ in den Schwingungsrassen A_1 (IR, Ra p), A_2 (-, -), B_1 (-, Ra dp), B_2 (-, Ra dp) und E (IR, Ra dp).

Tab. III. Frequenzen $[cm^{-1}]$ der $(N_{\alpha}N_{\beta})$ -, $(N_{\beta}N_{\gamma})$ - und $(N_{\alpha}F)$ -Valenzschwingungen im adduktgebundenen Triazadienylfluorid im Vergleich zu $N_{3}F$ (s).

	$N_3F(s)$	$[N_3F\cdots BF_3]$	$[N_3F\cdots AsF_5]$
$v(N_{\beta}N_{\gamma})$	2052	2180	2184
$v(\mathbf{N}_{\alpha}\mathbf{N}_{\beta})$	1084	972	969
$v(N_{\alpha}^{\alpha}F)$	853	875	924

Charakteristisch für HF-Komplexe ist die Verschiebung der HF-Valenzschwingung zu tieferen Wellenzahlen verglichen mit dem freien HF-Molekül in der entsprechenden Matrix. Die Verschiebung der HF-Valenzschwingung ist um so größer, je stärker die Wasserstoffbrückenbindung ist. Die Stärke der Wasserstoffbrückenbindung kann dabei direkt mit der Protonenaffinität der betrachteten Base korreliert werden (vgl. dazu [20]).

In Tab. IV sind die gemessenen Schwingungsfrequenzen des freien N_3F und des N_3F/HF -Komplexes zusammengestellt.

Tab. IV. Schwingungsfrequenzen $[cm^{-1}]$ von N_3F und $[N_3F\cdots HF]$ isoliert in Ar-Matrix.

	$N_3F(Ar)$	$[N_3F\cdots HF]$	
v(HF)		3740,5	
$v(N_{\beta}N_{\gamma})$	2031,0	2050,1	
$v(N_{\alpha}N_{\beta})$	1085,6	1070,0	
$v(N_{\alpha}^{\alpha}F)$	868,1	893,3	

Die Wechselwirkung zwischen dem HF- und dem N_3F -Molekül ist im Vergleich zu den oben genannten Addukten schwächer, da hier die Bandenverschiebungen von N_3F geringer ausfallen.

Die Schwingungsfrequenz des freien HF-Moleküls isoliert in Ar-Matrix (3920 cm⁻¹, [21]) liegt 180 cm⁻¹ höher als die des N₃F/HF-Komplexes. Für einige HF-Komplexe sind Werte für die HF-Frequenzverschiebung [Δv_1 (HF)] und die Protonenaffinität (PA) bekannt [20, 22] und in Abb. 2 graphisch dargestellt. Mit Δv_1 (HF) = 180 cm⁻¹ für N₃F ergibt sich für die Protonenaffinität ein Wert von 660 kJ/mol. Die Basizität des N₃F-Moleküls ist damit zwischen der von Ethin und Ethen einzuordnen.

Es ist interessant, die Wechselwirkung von N_3F gegenüber BF_3 oder AsF_5 mit dem Reaktionsverhalten von ClN_3 gegenüber $SbCl_5$ und AsF_5 zu ver-

Abb. 2. Verschiebung der (HF)-Valenzschwingung Δv_1 (HF) [cm⁻¹] als Funktion der Protonenaffinität (PA) [kJ/mol]: 1: [N₂…HF]; 2: [CO₂…HF]; 3: [HF…HF]; 4: [OC…HF]; 5: [C₂H₂…HF]; 6: [C₂H₄…HF]; 7: [HCN…HF]; 8: [H₂O…HF]; 9: [H₃N…HF]; 10: [(CH₃)₃N…HF]. Die Zahlenwerte wurden aus [20, 22] entnommen.

gleichen. Setzt man ClN_3 mit $SbCl_5$ oder anderen chlorhaltigen Lewis-Säuren um, so wird durch den Angriff der Lewis-Säure am N_{α}-Atom die Elektronendichte am Cl-Atom weiter verringert und das Halogenatom stärker positiv polarisiert. Da die Cl-Atome der Lewis-Säure negativ polarisiert sind, kommt es im nächsten Schritt zur Abspaltung von Cl_2 infolge des Redoxausgleiches der entgegengesetzt polarisierten Chlorspezies. Das Ergebnis ist also eine Substitution eines Halogenatoms der Lewis-Säure durch eine N₃-Gruppe:

$$2 \operatorname{ClN}_3 + 2 \operatorname{SbCl}_5 \rightarrow 2 \left[\operatorname{SbCl}_4 \operatorname{N}_3 \right] + 2 \operatorname{Cl}_2 (2)$$

Das primär gebildete $[SbCl_4N_3]$ dimerisiert zu $(SbCl_4N_3)_2$. Versetzt man eine konzentrierte Lösung von $(SbCl_4N_3)_2$ in CCl_4 mit Pyridin, so entsteht ein $[SbCl_4N_3 \cdots$ Pyridin]-Komplex [23, 24 und dort zitierte Literatur].

Im Gegensatz dazu ist bei einer Reaktion von N_3F mit einer Lewis-Säure eine positive Polarisierung des Fluoratoms nicht möglich und sie bleibt auf der Stufe des Molekülkomplexes stehen.

Die Cokondensation von ClN₃ mit AsF₅ bei -196 °C führt aufgrund der höheren Aktivierungsenergie für eine ClF-Abspaltung ebenfalls nur zu einem Addukt. Neben der breiten IR-Absorption von adduktgebundenem AsF₅ bei 740 cm⁻¹ erscheinen die Banden von ClN₃ im Addukt bei 2190, 1096, 670, 517, 478 cm⁻¹; die entsprechenden Banden des ClN₃ im festen Zustand liegen bei 2072, 1130, 716, 536, 518 cm⁻¹. Auffällig im IR-Spektrum des Addukts [ClN₃··· AsF₅] ist die Verschiebung der (NCl)-Valenzschwingung zu niedrigeren Wellenzahlen im Vergleich zu ClN_3 (s). Die (NCl)-Bindung wird also durch die Adduktbildung geschwächt. Dies ist damit zu erklären, daß beim Übergang von isoliertem ClN_3 zum Addukt [ClN_3 ····AsF₅] die im Gegensatz zum N₃F

mögliche Grenzstruktur nicht mehr zur Stabilität des ClN₃ beitragen kann.

Abschließend kann festgehalten werden, daß vermutlich die überraschend hohe Basizität des N_{α} -Atoms im N_3F für die nicht gelungene Abspaltung des Fluoridions verantwortlich ist. Es müssen daher andere Wege zur Synthese von N_3^+ -Salzen eingeschlagen werden. Aber auch die Oxidation von HN_3 mit $S_2O_6F_2$ in HSO_3F -Lösung bei -80 °C führte nur zur quantitativen Bildung von N_2 .

Somit bleibt die Synthese von N_3^+ -Salzen weiterhin eine Herausforderung für den präparativ arbeitenden Chemiker.

Experimentelles

Alle flüchtigen Verbindungen wurden in einer Vakuumapparatur aus Duranglas mit Teflonventilen (Young, London) quantitativ gasvolumetrisch abgemessen und umgesetzt. Die Druckmessung erfolgte mit Kapazitätsmanometern mit Meßbereichen von 0 bis 1,7 bar (Modell SETRA, USA; Auflösung: 0,1 mbar) und von 0 bis 17 mbar (Modell 221 A-10, MKS Baratron, USA; Auflösung: 0,01 mbar). Über ein Glasrohr wurde die Vakuumapparatur mit einer IR-Gasküvette ($\emptyset =$ 40 mm, 1 = 220 mm) aus Duranglas verbunden. Als Fenster dienten aus Si-Einkristallen geschnittene polierte Scheiben in einer Stärke von 0,5 mm (Wacker-Chemie, Burghausen).

Für die IR-spektroskopische Analyse der Gasphasenreaktionen zwischen N_3F und den Lewis-Säuren (AsF₅, BF₃) wurde eine IR-Gasküvette bei 25 °C mit einem Partialdruck zwischen 5 und 10 mbar mit N_3F gefüllt und danach die jeweilige Lewis-Säure (BF₃, AsF₅) so zudosiert, daß das molare Mischungsverhältnis N_3F /Lewis-Säure im Bereich von 1:1 bis 1:3 lag.

Die für die Untersuchung des Verhaltens von N₂F gegenüber Lewis-Säuren bei tiefen Temperaturen verwendete Tieftemperatur-IR-Meßzelle ist in [25] näher beschrieben. In Vorratsgefäße aus Duranglas mit Schiffschem Hahn (V = 500 ml) werden die für eine Messung erforderlichen Substanzmengen (0,02 bis 0,2 mmol) abgefüllt, auf -78 °C temperiert und über zwei konzentrische Rohre auf den auf -196 °C gekühlten Substratträger geleitet. Als Substratträger dienen Si- (d = $0,5\cdots 1 \text{ mm}; \emptyset = 30 \text{ mm}) \text{ oder CsI-Scheiben (d = }$ 2,5 mm, $\emptyset = 30$ mm). Anschließend wird das Cokondensat langsam erwärmt (Aufheizrate: 3 °C/ min) und sein Verhalten IR-spektroskopisch verfolgt. Durch das langsame Erwärmen des Substratträgers verdampft ein Teil der anhaftenden Substanz und noch vorhandene Ausgangssubstanzen mit höherem Dampfdruck als das Produkt ließen sich abtrennen. Die durchschnittliche Schichtdicke des Cokondensats liegt je nach gewählten Stoffmengen bei ca. 0,1 mm.

Die Registrierung der IR-Spektren erfolgte mit einem FT-IR-Spektrometer (MX-1, Nicolet, Meßbereich: 4400 bis 380 cm⁻¹, Auflösung: 2 bzw. 1 cm⁻¹, Strahlteiler: KBr/Ge, Detektor: DTGS).

Die für die Charakterisierung der [N₃F···HF]-Komplexe verwendete Matrixanlage und ihre Kopplung an das FT-IR-Spektrometer 113v (BRUKER, Karlsruhe) ist in [26] beschrieben. Zur Präparation der Matrices werden N₃F/Ar und HF/Ar im molaren Verhältnis 1:250 in Hochvakuumapparaturen aus Duranglas und Edelstahl vermischt. Anschließend werden beide Mischungen über Nadelventile durch eine Quarzglaskapillare (N_3F/Ar) bzw. eine Edelstahlkapillare (HF/ Ar) auf den auf 15 K gekühlten Matrixträger cokondensiert. Bei einer Aufdampfgeschwindigkeit von ca. 2 mmol/h variierten die jeweils aufkondensierten Probenmengen für N₃F/Ar zwischen 0,5 und 0,7 mmol und für HF/Ar lagen sie bei 0,9 mmol. Zur Erhöhung der Konzentration des N₃F/HF-Addukts werden die Matrices drei Minuten auf 20 K getempert und anschließend wieder auf 15 K abgekühlt.

Die Darstellung der Ausgangsverbindungen HN_3 , N_3F [2], AsF_5 , SbF_5 [25], $S_2O_6F_2$ [26] erfolgte nach Literaturvorschriften.

Die kommerziell erhältlichen Substanzen BF₃, HSO₃F, Ar (6,0), F₂ wurden mit Ausnahme von BF₃ ohne weitere Reinigung direkt verwendet. BF₃ wurde zuvor durch fraktionierende Kondensation gereinigt.

Wasserfreies HF (Kali Chemie, Bad Wimpfen, FRG) wurde in einem Edelstahlzylinder über BiF₅

aufbewahrt. Die leichtflüchtigen Verunreinigungen (CO_2 , SiF₄) wurden bei -78 °C einige Minuten im Hochvakuum abgepumpt.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die gewährte finanzielle Unterstützung.

- J. H. Haller, Ph. D. Dissertation Cornell Univ. Ithaca, N. Y. USA (1942).
- [2] K. Gholivand, G. Schatte und H. Willner, Inorg. Chem. 26, 2137 (1987).
- [3] D. Christen, H. G. Mack, G. Schatte und H. Willner, J. Am. Chem. Soc. 110, 707 (1988).
- [4] P. Rademacher, A. J. Bittner, G. Schatte und H. Willner, Chem. Ber. 121, 555 (1988).
- [5] D. J. Bernard und R. H. Cohn, "Model Studies of CBES Decomposition"; Technical Report 87-071; Air Force Astronautics Laboratory: Edwards AFB, CA, Februar 1988.
- [6] D. J. Bernard, B. K. Winker, T. A. Seder und R. H. Cohn, J. Phys. Chem. 93, 4790 (1989).
 [7] H. Baumgärtel, H.-W. Jochims, G. Schatte und
- [7] H. Baumgärtel, H.-W. Jochims, G. Schatte und H. Willner, unveröffentlicht.
- [8] T. W. Archibald und J. R. Sabin, J. Chem. Phys. 55, 1821 (1971).
- [9] R. T. J. C. Facelli und J. Michl, J. Phys. Chem. 92, 4073 (1988).
- [10] R. Breslow, Pure Appl. Chem. 28, 11 (1971).
- [11] J. S. Wright, J. Am. Chem. Soc. 96, 4753 (1974).
- [12] J. M. Dyke, N. B. H. Jonathan und A. E. Lewis, Mol. Phys. 47, 1231 (1982).
- [13] H. Siebert: Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer Verlag, Berlin (1966).

- [14] A. S. Quist, J. B. Bates und G. E. Boyd, J. Chem. Phys. 54, 4896 (1971).
- [15] C. Naulin und R. Bougon, J. Chem. Phys. 64, 4155 (1976).
- [16] K. O. Christe, R. D. Wilson und W. Sawodny, J. Mol. Struct. 8, 245 (1971).
- [17] D. M. Byler und D. F. Shriver, Inorg. Chem. 13, 2697 (1974).
- [18] A. Müller, O. Glemser und K. Scherf, Chem. Ber. 99, 3568 (1966).
- [19] D. E. Milligan und M. E. Jacox, J. Chem. Phys. 40, 2461 (1964).
- [20] L. Andrews, J. Mol. Struct. 100, 281 (1983).
- [21] L. Andrews und G. L. Johnson, J. Phys. Chem. 88, 425 (1984).
- [22] L. C. Allen, J. Am. Chem. Soc. 97, 6921 (1975).
- [23] K. Dehnicke, Angew. Chem. 79, 253 (1967).
- [24] K. Dehnicke, Adv. Inorg. Chem. Radiochem. 26, 169 (1983).
- [25] H. G. Schnöckel und H. Willner, Z. Anorg. Allg. Chem. 408, 247 (1974).
- [26] D. Hoge, E. Knözinger, O. Schrems, G. Schatte und H. Willner, J. Phys. Chem. 93, 6025 (1989).
- [27] G. Brauer: Handbuch der Präparativen Anorganischen Chemie, 3. Aufl., S. 463, Enke Verlag, Stuttgart (1975).
- [28] G. H. Cady und J. M. Shreeve, Inorg. Synth. 7, 124 (1963).