$[Er_{14}(C_2)_2(N)_2]I_{24}$ – ein Iodid mit einem oligomeren, heterointerstitiellen Cluster

 $[Er_{14}(C_2)_2(N)_2]I_{24}$ – an Iodide with an Oligomeric, Heterointerstitial Cluster

Frank Steffen, Gerd Meyer*

Institut für Anorganische Chemie der Universität, Callinstr.9, D-30167 Hannover

Z. Naturforsch. **50b**, 1570–1573 (1995); eingegangen am 7. April 1995

Rare Earth Elements, Halides, Cluster, Erbium Iodide Dicarbide Nitride, Crystal Structure

[Er₁₄(C₂)₂(N)₂]I₂₄ (triclinic, P Ī, a = 966.3(4) pm, b = 1027.6(2) pm, c = 1663.4(4) pm, α = 101.374(9)°, β = 92.853(14)°, γ = 112.83(2)°, Z = 2) is obtained as red-brown single crystals through a conproportionation reaction of ErI₃ and erbium in the presence of carbon and NaN₃ in a sealed niobium container. It contains discrete, tetrameric [Er₁₄(C₂)₂(N)₂] clusters that are built from two octahedra and two tetrahedra connected *via* common edges. The octahedral voids are filled with C₂ units and the tetrahedral voids with N atoms. Each discrete [Er₁₄(C₂)₂(N)₂] cluster is surrounded by 32 iodide ligands which connect six clusters *via* i-a and a-a bridges.

1. Einleitung

Diskrete ("isolierte") Cluster der valenzelektronenarmen Selten-Erd-Elemente müssen durch interstitielle Atome oder Atomgruppen stabilisiert werden. Durch Wahl der interstitiellen Teilchen kann man offenbar die Cluster-Baueinheiten bestimmen: O²⁻ bzw. N³⁻ als "Interstitials" führen zu tetraedrischen, C14- und C2n-Einheiten zu oktaedrischen (z.B. Cs[Er₆(C)]I₁₂ [1]) bzw. trigonal-bipyramidalen (z.B. $Rb[Pr_5(C_2)]Cl_{10}$ [2]) Selten-Erd-Clustern. Neben isolierten Metall-Polyedern sind auch zahlreiche dimere Selten-Erd-Cluster bekannt, Tetraederdoppel (z.B. $[Gd_6(N)_2]Cl_{12}$ [3]) oder Oktaederdoppel (z.B. $[Gd_{10}(C_2)_2]Cl_{18}$ [4]). Mit der Synthese von $[Er_{14}(C_2)_2(N)_2]I_{24}$ gelang nun die Verknüpfung unterschiedlicher Metall-Polyeder zu einem tetrameren Cluster [5]^{a)}.

* Sonderdruckanforderungen an Prof. Dr. G. Meyer.

2. Experimentelles

In einer Glove Box (M. Braun, Garching; Schutzgas: Argon) wurden Erbium-Pulver (Johnson-Matthey, 99,9%), ErI₃ (durch Reaktion von Er mit I₂ (Merck, Darmstadt, p.a.) [6]), bei 1000 °C ausgeheizte Aktivkohle (Merck, Darmstadt) und NaN₃ (Merck, Darmstadt, 99,9%) im molaren Verhältnis von 41:60:34:6 in eine Niobampulle eingewogen. Diese wurde unter Helium im Lichtbogen verschweißt und mit Quarzglas ummantelt. Das Reaktionsgemisch wurde 43 Tage auf 800 °C erhitzt und anschließend innerhalb eines Tages auf RT abgekühlt.

Die kristallographischen Daten wurden mit Hilfe von Schwenk- und Weissenberg-Filmaufnahmen sowie einer anschließenden Vierkreisdiffrak-

Tab. I. Kristallographische Daten und Meßparameter*.

Summenformel	$Er_{14}C_4N_2I_{24}$
Molmasse	5463,30 g·mol ⁻¹
Kristallsystem	triklin
Raumgruppe	P1 (Nr. 2)
Gitterkonstanten	$a = 966,3(4) \text{ pm}, \alpha = 101,374(9)^{\circ}$
	$b = 1027,6(2) \text{ pm}, \beta = 92,853(14)^{\circ}$
	$c = 1663,4(4) \text{ pm}, \gamma = 112,83(2)^{\circ}$
Elementarzellen-Volumen	$1477,8(7)\cdot 10^{6} \text{ pm}^{3}$
Ζ	2
Datensammlung	Vierkreisdiffraktometer
0	Siemens-Stoe AED2
Meßtemperatur	293 K
Strahlung	$Mo-K\alpha$ (Graphit-Mono-
5	chromator, $\lambda = 71.07$ pm)
Meßmethode	ω -2 θ -Scan, background-
	peak-background
Meßbereich	$2.52^{\circ} \le 2\theta \le 50.10^{\circ}$
nie boereren	$-11 \le h \le 6$ $-12 \le k \le 12$
	$-19 \le l \le 19$
F(000)	2262
1(000)	30.560 mm^{-1}
Datenkorrekturen	Untergrund Polarisations-
Dutenkonekturen	und Lorentzfaktoren
Absorptionskorrektur	empirisch Ψ -Scan für 20 Reflexe
Zohl der gemessenen Defleve	8807
davon symmetrieunabhängig	5217 [R(int) = 0.0406]
Datan/restraints/Paramatar	5217 [R(mt) = 0,0400]
G_{aad} and G_{aad} and G_{aad} G_{aad	1 055
P_1, \dots, P_2 [I > 2 σ (I)]	0.0340.0.0842
$R_1, WR_2 [1>20(1)]$ $R_1, WR_2 (allo Datan)$	0.0407: 0.0042
Cräßta Differenz Book/Senko	1,0.497,0.0920 1,755,10-6/ 2,567,10-6e ⁻ ,pm ⁻³
Groble Differenz Peak/Senke	1,755.10 7-2,567.10 8 911

* Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe GmbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 401–810 angefordert werden.

^a Über das strukturell analoge [Y₁₄(C₂)₂(N)₂]I₂₄ berichten Simon *et al.* in dieser Zeitschrift (**50b**, 931 (1995)).

D

0932-0776/95/1000-1570 \$06.00 © 1995 Verlag der Zeitschrift für Naturforschung. All rights reserved.

Abb. 1. Die $[Er_{14}(C_2)_2(N)_2]I_{32}$ -Einheit besitzt die Punktsymmetrie $C_i(\overline{1})$.

Tab. II. Atomkoordinaten	und	äquivalente	Temperatur-
faktoren [10 · pm ²].			

Atom	x	у	z	U(eq)
Er1	0,5499(1)	0,2505(1)	0,1902(1)	18(1)
Er2	0,5193(1)	0,4310(1)	0,6802(1)	18(1)
Er3	0,9389(1)	0,5677(1)	0,7358(1)	19(1)
Er4	0,8686(1)	0,8855(1)	0,8566(1)	17(1)
Er5	0,3380(1)	0,4575(1)	0,1132(1)	17(1)
Er6	0,2803(1)	0,2397(1)	0,3494(1)	18(1)
Er7	0,6426(1)	0,4508(1)	0,4804(1)	24(1)
I1	0,8227(1)	0,1509(1)	0,1629(1)	26(1)
12	0,7914(1)	0,5335(1)	0,3120(1)	24(1)
13	0,5653(1)	0,7531(1)	0,1968(1)	27(1)
I4	0,6108(1)	0,3991(1)	0,0488(1)	26(1)
15	0,8759(1)	0,8019(1)	0,0202(1)	26(1)
16	0,9544(1)	0,0611(1)	0,7309(1)	29(1)
17	0,7055(1)	0,8244(1)	0,4696(1)	30(1)
18	0,6598(1)	0,0306(1)	0,9131(1)	27(1)
19	0,7297(1)	0,2873(1)	0,6095(1)	26(1)
I10	0,0249(1)	0,3189(1)	0,4253(1)	26(1)
I11	0,5444(1)	0,1402(1)	0,3503(1)	25(1)
I12	0,9084(1)	0,4273(1)	0,8756(1)	27(1)
N1	0,5579(11)	0,5475(11)	0,5849(6)	14(2)
C1	0.7546(13)	0.6343(13)	0.7650(7)	13(2)
C2	0,6361(14)	0,6823(13)	0,7850(7)	14(2)

 $\mathbf{U}_{\mathrm{eq}} = 1/3 \ \boldsymbol{\Sigma}_{\mathrm{i}} \boldsymbol{\Sigma}_{\mathrm{j}} \mathbf{U}_{\mathrm{ij}} a_{\mathrm{i}}^* a_{\mathrm{j}}^* a_{\mathrm{i}} a_{\mathrm{j}}.$

tometer-Messung bestimmt, vgl. Tab. I. Die Struktur wurde mit Direkten Methoden (SHELXS-86 [7]) gelöst und mit dem Programm SHELXL-93 [8] verfeinert. Die wichtigsten Ergebnisse der Strukturverfeinerung sind in den Tabellen II und III zusammengestellt.

3. Beschreibung und Diskussion der Kristallstruktur

Strukturmotiv Das hervorstechende in $[Er_{14}(C_2)_2(N)_2]I_{24}$ ist ein diskreter Er_{14} -Cluster. Die Er14-Einheit entsteht formal durch Kantenverknüpfung von zwei Tetraedern mit zwei Oktaedern. In den Tetraedern befindet sich je ein interstitielles N-Atom, in den Oktaedern je eine C₂-Hantel. Beide Deltaeder sind durch Iod-Atome kantenüberbrückt. Jeweils ein I-Atom befindet sich über einer einzelnen Oktaederkante, zwei benachbarten Oktaeder- und Tetraederkanten und über zwei Flächen der Tetraeder (Iⁱ). Zusätzlich sind acht I-Atome in terminaler Position an die Oktaeder gebunden (I^a). Die charakteristische deshalb Baueinheit besitzt die Formel: $[Er_{14}(C_2)_2(N)_2I_{24}]I_{8}^a$. Die acht terminalen I-Liganden gehören nicht zu einer Er₁₄-Einheit allein,

Tab. III. Ausgewählte Bindungslängen [pm].

Er1-Er4 $Er1-Er6$ $Er1-Er5$ $Er1-Er2$ $Er2-Er6$ $Er2-Er5$	371,2(2) 379,40(12) 381,47(11) 385,51(11) 333,35(12) 343,10(12)	Er1-I8 Er1-I4 Er1-I11 Er1-I2 Er1-I1 Er2-I3	292,50(13) 301,22(12) 308,79(12) 315,35(13) 319,84(14) 298,80(12)
Er2-Er7 Er2-Er7 Er2-Er3 Er3-Er5 Er3-Er4 Er3-Er6	360,31(11) 366,01(11) 373,7(2) 373,16(12) 379,97(11) 380,40(11)	Er2-19 Er2-12 Er2-17 Er3-112 Er3-11 Er3-19	309,60(13) 316,8(2) 320,50(14) 293,97(12) 300,53(14) 307,72(13)
Er4-Er6 Er4-Er5 Er6-Er2 Er6-Er4 Er6-Er7 Er6-Er7 Er7-Er7	343,51(12) 346,38(12) 333,35(12) 343,52(12) 361,73(11) 363,3(2) 333,6(2)	Er 3-110 Er 3-12 Er 4-16 Er 4-15 Er 4-18 Er 4-11 Er 4-11 Er 4-12	310,91(12) 323,76(14) 296,99(12) 301,60(12) 302,40(13) 317,2(2) 337,14(14)
N1-Er2 N1-Er6 N1-Er7 N1-Er7 N1-N1 C1-C2 Er6-110 Er6-17 Er7-19 Fr7-111	213.2(10) 215,7(10) 218,1(10) 218,5(10) 282(2) 144(2) 313,19(14) 321,44(13) 323,81(12) 323,88(13)	Er5-15 Er5-112 Er5-14 Er5-14 Er6-16 Er6-111	303,88(13) 304,12(14) 311,70(14) 328,71(12) 301,83(14) 309,62(14)
Er7-I10 Er7-I2 Er7-I7	324,3(2) 332,14(13) 369,0(2)		

sondern verknüpfen jeweils zwei benachbarte Cluster über "inner-outer-Brücken". Das Verknüpfungsmuster lautet: $[Er_{14}(C_2)_2(N)_2I_{16/1}^{i}I_{16/2}^{i-a}]I_{8/2}^{a-i}$.

Die kürzesten Er-Er-Abstände treten entlang der verknüpfenden Kanten auf (O-T: 333,4 pm; T-T: 333,6 pm), während die anderen Er-Er-Abstände deutlich länger sind (\bar{d} (O-Basis): 344,3 pm; \bar{d} (O-T-Kante): 362,8 pm; \bar{d} (O-apikal/basal): 378,1 pm). Die N-Atome sind von der gemeinsamen Tetraederkante weg auf die Oktaederkante zugerückt, so daß zwei kurze (\bar{d} : 214,5 pm) und zwei lange (\bar{d} : 218,3 pm) N-Er-Abstände auftreten. Der N1-N1-Abstand beträgt 282 pm und der C1-C2-Bindungsabstand 144 pm. Weitere wichtige interatomare Abstände sind Tab. III zu entnehmen.

Der oligomere Cluster $[M_{14}(C_2)_2(N)_2]$ ist über Kanten zu Ketten verknüpft auch in dem kürzlich aufgefundenen Gd_4I_6CN enthalten [9].

Betrachtet man $[Er_{14}(C_2)_2(N)_2]I_{24}$ als ionische Verbindung, so "besitzt" sie keine "überschüssigen" Elektronen, die an Er-Er-Bindungen teilhaben könnten: $(Er^{3+})_{14}(C_2^{6-})_2(N^{3-})_2(I^{-})_{24}$. Die Transparenz der rot-braunen Kristalle steht damit im Einklang. Bereits bekannt ist das isotype $[Er_{14}(C_2)_2(O)_2]I_{24}$ [5] (vgl. aber auch Fußnote a)). Es unterscheidet sich durch die tiefschwarze Farbe auch sehr kleiner Kristalle, die durch das Vorliegen zweier "überschüssiger" Elektronen verursacht wird, $(Er^{3+})_{14}(C_2^{6-})_2(O^{2-})_2(I^{-})_{24}(e^{-})_2$, und ist kristallographisch durch etwas andere Gitterkonstanten und Lageparameter gekennzeichnet.

Dank

Wir danken der Deutschen Forschungsgemeinschaft für die Unterstützung dieser Arbeit.

- [1] H. M. Artelt, G. Meyer, J. Chem. Soc. Chem. Commun. 1320 (1992).
- [2] G. Meyer, S. Uhrlandt, Angew. Chem. 105, 1379 (1993).
- [3] A. Simon, T. Koehler, J. Less-Comm. Met. 116, 279 (1986).
- [4] E. Warkentin, R. Masse, A. Simon, Z. Anorg. Allg. Chem. 491, 323 (1982).
- [5] Vgl. auch [Er₁₄(C₂)₂(O)₂]I₂₄: F. Steffen, Diplomarbeit, Univ. Hannover 1994; G. Meyer, F. Steffen, Z. *Kristallogr.*, Suppl. 9, 201 (1995).
- [6] J. D. Corbett, Inorg. Synth. 23, 31 (1983); G. Meyer in G. Meyer, L. R. Morss, (eds): Synthesis of Lanthanide and Actinide Compounds, S. 135, Kluwer Acad. Publ., Dordrecht/NL (1991).
- [7] G. M. Sheldrick, *SHELXS-86, Program for Crystal Structure Determination*, Göttingen (1986).
- [8] G. M. Sheldrick, SHELXL-93, Program for Crystal Structure Determination, Göttingen (1993).
- [9] Hj. Mattausch, H. Borrmann, R. Eger, R. K. Kremer, A. Simon, Z. Anorg. Allg. Chem. 620, 1889 (1994).

Nachdruck – auch auszugsweise – nur mit schriftlicher Genehmigung des Verlages gestattet Satz und Druck: Allgäuer Zeitungsverlag GmbH, Kempten