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Two-phase flow in rotating Hele-Shaw cells with Coriolis effects
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1. Introduction

The motion of one or two fluids confined to a narrow gap between two parallel plates is an interesting

problem with a long history. It is the classical set up of the so-called Hele-Shaw problem [12]. It is

well-known that instability driven pattern formation such as fingering can occur under appropriate

assumptions on the viscosity of the fluids [14] and on the surface tension at their interface. There

is a vast empirical and theoretical literature concerning this classical problem. From the purely

mathematical point of view the problem has been extensively studied in its original formulation as

a one [5, 6, 8, 9] and as a two-phase [18] problem and, more recently, also for one fluid in the case

of rotating plates [7]. The focus is here on the two-phase problem with rotating plates and including

the effects of Coriolis forces. This setting has recently been considered in the physical literature by

a variety of authors [1, 10, 17]. It first appeared in [15] where the effects of rotation were introduced

in a ad-hoc fashion into Darcy’s law for the one-phase problem

rp D �
12�

b2
Ev C %!2 Ex C 2%!Ez � Ev ;

where Ez is the axis of rotation, b is the plate spacing, Ex is the two-dimensional position vector, ! is

the (constant) angular velocity of the plates, whereas Ev, p, �, and % are the fluid’s velocity, pressure,

viscosity, and density, respectively. The last term accounts for Coriolis’ force. While most of the

c European Mathematical Society 2013

mailto:escher@ifam.uni-hannover.de
mailto:gpatrick@math.uci.edu
mailto:walker@ifam.uni-hannover.de


240 J. ESCHER, P. GUIDOTTI AND C. WALKER

literature hitherto neglected this force, recent studies performed a model derivation for a one-phase

Hele-Shaw type model with Coriolis force by means of a standard gap averaging technique starting

from Navier-Stokes’ equations, cf. [16, 17]. The authors of [17] observe that the effects due to the

Coriolis term in their equations can be larger than the inertial terms typically neglected in small

Reynolds number type reductions. They also point out the fact that simpler ad-hoc models used

earlier, while qualitatively similar, do eventually lead to a different and inaccurate prediction of the

growth rate of the unstable modes involved in the fingering phenomenon.

More recently, the effects of a Coriolis term on the fingering patterns in the rotating two-phase

Hele-Shaw problem have been studied in [1, 10] where the formal linear stability analyses of [15,

17] for the one-phase problem are extended to the weakly nonlinear case by the use of formal

expansions and to the fully nonlinear regime by means of numerical simulations. Previous numerical

and experimental results included [4, 16], whereas the practical relevance of the problem is attested

by a number of publications cited in [1] for that very purpose.

In this paper local existence of a unique classical solution for nearly circular initial interfaces

is established for the general rotating two-phase Hele-Shaw problem with Coriolis effects in the

formulation proposed in [1, 10], which is, in turn, based on a derivation similar to that of [17] for

the single phase case. It leads to the following generalized Darcy’s law

rPj D � j̨ Evj C ǰ Ez � Evj ;

for the velocities of the inner and outer fluids (j D i; o), for constants j̨ and ǰ defined below and

for the pressure Pj related to the hydrostatic pressure pj via

Pj D pj �
%j !2

2
jxj2 :

The use of the unusual pressure Pj yields some useful simplifications as will soon become apparent.

Rigorous stability results are also obtained on near circularity assumptions for the initial data by

resorting to a general principle of linearized stability. While the circular steady state is exponentially

asymptotically stable2 when the outer fluid is denser, it becomes unstable if this relation is reversed.

We shall also see that the equilibrium problems for two phases and one phase are essentially equal.

The main techniques used are a transformation of the original free boundary problem to a fixed

domain one, a decoupling of the system and a reduction to a single nonlinear and nonlocal evolution

for the interface separating the two fluids, and parabolic optimal regularity results in little Hölder

spaces.

Related previous mathematical results include the existence, stability, and bifurcation analysis

of [7] in the rotating one-phase problem and the global existence and stability of smooth solutions

obtained by [18] for nearly circular initial interfaces in the non-rotating two-phase case.

2. Governing equations and main results

We first give a short justification for the mathematical formulation of the physical problem of a

rotating Hele-Shaw cell including Coriolis effects. Further details regarding the modeling can be

found in [1, 10]. We then end this section with the main results on existence of solutions to the

corresponding governing equations and stability properties of the trivial solution.

2 Our analytical approach reveals a precise description of the exponential decay in terms of the physical parameters, in

particular of the Coriolis terms, see Section 4.
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2.1 Governing equations

Consider a circular Hele-Shaw cell of radius R > 2 and very small gap width b > 0, rotating

clockwise around the z-axis with a constant angular velocity ! > 0. The cell is assumed to contain

two immiscible, incompressible, viscous fluids with densities %j > 0 and viscosities �j > 0, where

j D i labels the inner and j D o the outer fluid, respectively. The surface tension between the two

fluids is given by � > 0. The rotating coordinate system is defined in such a way that its origin is

located at the cell center and that rotation is perpendicular to the vector Ez D .0; 0; 1/. Let ˝j .t/

denote the region of space occupied by fluid j 2 fi,og at time t , and let � .t/ denote the sharp

interface separating the two fluids. The unit normal vector �� .t/ to � .t/ is assumed to point from

˝ i.t/ to ˝o.t/.

The basic hydrodynamic equation of the system is a generalized Darcy’s law relating the

pressure fields Pj D Pj .t/ to the two-dimensional gap-averaged flow velocities Evj D Evj .t/ through

rPj D � j̨ Evj C ǰ .Ez � Evj / in ˝j .t/ : (2.1)

The numbers

j̨ WD
12�j

b2
Ej ; ǰ WD

12�j

b2
Fj

depend linearly on the Coriolis force terms Ej > 0 and Fj > 0, respectively. The latter, in turn,

depend on the rotational Reynolds number Rej D %j !b2=12�j (see [1]). If Coriolis effects are

neglected, then Ej D 1 and Fj D 0, so (2.1) reduces to the usual Darcy’s law. Throughout this

paper we shall assume that j̨ > 0 and ǰ > 0. Incompressibility of the fluids is expressed by

divEvj D 0 in ˝j .t/ ; (2.2)

while the interface dynamics is governed by the normal stress balance

Pi � Po D ��� .t/ C .o � i/jxj2 on � .t/ ; (2.3)

and the kinematic boundary condition

V D Evi � �� D Evo � �� on � .t/ : (2.4)

Here, j WD %j !2=2 whereas �� .t/ denotes the curvature of � .t/ which is taken to be positive if

˝ i.t/ is convex. The normal velocity of the interface is given by V D V.t/. On the outer boundary

of the cell a no-slip condition

Evo � x D 0 on
�

jxj D R
�

(2.5)

is imposed.

Observe that the inner and outer fluids’ masses are conserved since, by Reynold’s transport

theorem, one has that

d

dt

Z

˝o.t/

dx D �

Z

� .t/

Evo � �� d� C

Z

ŒjxjDR�

Evo �
x

R
d�

and
d

dt

Z

˝ i.t/

dx D

Z

� .t/

Evi � �� d� ;

which are both zero in view of Gauss’ Theorem and (2.2). Since rot.Ez � Evj / D .0; 0; div Evj / we also

note that the flows are irrotational in the bulk, i.e., rotEvj D 0 in ˝j .t/, due to (2.1) and (2.2).
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2.2 The system in terms of Pj

The governing equations in terms of Pj are obtained by taking the divergence on both sides of (2.1)

which yields

�Pj D 0 in ˝j .t/ ;

making use of (2.2) and observing that rotEvj D 0 implies div.Ez � Evj / D 0. As for the kinematic

boundary condition (2.4), we solve (2.1) for Evj to get

Evj D
1

j�j j2
�

� j̨ rPj � ǰ .Ez � rPj /
�

with complex numbers �j WD j̨ C i ǰ . Then, defining the tangent vector �� WD �.Ez � �� / to � ,

we obtain

Evj � �� D
1

j�j j2
�

� j̨ @��
Pj � ǰ @��

Pj

�

:

Whence (2.4) and (2.5) become

�V D
1

j�ij2
�

˛i@��
Pi C ˇi@��

Pi

�

D
1

j�oj2
�

˛o@��
Po C ˇo@��

Po

�

on � .t/ ;

and

˛o@�Po C ˇo@� Po D 0 on Œjxj D R� ;

respectively, where � denotes the unit outer normal vector and � the corresponding tangential vector

on the cell boundary Œjxj D R�. Therefore, we arrive at the following free boundary problem for the

pressures Pj

�Pj D 0 in ˝j .t/ ; j D i,o ; (2.6)

Pi � Po D ��� .t/ C .o � i/jxj2 on � .t/ ; (2.7)

�V D
1

j�ij2
�

˛i@��
Pi C ˇi@��

Pi

�

D
1

j�oj2
�

˛o@��
Po C ˇo@��

Po

�

on � .t/ ; (2.8)

˛o@�Po C ˇo@� Po D 0 on
�

jxj D R
�

; (2.9)

for t > 0, complemented with an initial surface � .0/ D � 0. Since only derivatives and the

difference of the two pressures enter the system, uniqueness can only be expected up to additive

constants for them. As we shall later see, this is one of the obstacles that need to be overcome from

a mathematical viewpoint.

2.3 Main theorems

To give a precise formulation of our mathematical results on (2.6)–(2.9), we parametrize the

boundary � .t/ over the unit sphere S1 WD fx 2 R2 I jxj D 1g. To this end we introduce, for s > 0,

so-called little Hölder spaces hs.U / over an open subset U of Rn as the closure of BUC 1.U / in

BUC s.U /. Here BUC s.U / consists of all functions f W U ! R with bounded and uniformly

continuous derivatives up to order Œs� and with uniformly .s � Œs�/-Hölder continuous derivatives

of order Œs�. If M is a (sufficiently smooth) submanifold of Rn, we define hs.M / by means of an



TWO-PHASE FLOW IN ROTATING HELE-SHAW CELLS 243

atlas for M in the canonical way. In the following we shall identify a function h W S1 ! R with the

function Nh W Œ0; 2�� ! R given by Nh.�/ WD h
�

ei�
�

for 0 6 � 6 2� . The bar will often be dropped

as no confusion seems likely.

Fix a 2 .0; 1=4/ and ı 2 .0; 1/ and set

V WD
˚

� 2 h4Cı.S1/ I k�k1 < a
	

;

and, for � 2 V,

˝ i
� WD

�

x 2 R
2 n f0g I jxj < 1 C �

�

x

jxj

��

[ f0g ; ˝o
� WD ˝ n ˝ i

�

with ˝ WD B.0; R/ where, we recall, R > 2. Then

�� WD

�

x 2 R
2 I jxj D 1 C �

�

x

jxj

��

D
n

�

1 C �.y/
�

y I y 2 S
1
o

separates the domains ˝ i
� and ˝o

�. Since �� can be described as the zero level set of

N�.x/ WD jxj � 1 � �

�

x

jxj

�

; 3=4 < jxj < 5=4 ;

with N� < 0 in ˝ i
� \ Œ3=4 < jxj < 5=4�, the unit normal ��.x/ at x 2 �� pointing from ˝ i

� to ˝o
�

is given by

��.x/ D
rN�.x/

jrN�.x/j
: (2.10)

In the following, we let �� D �.Ez � ��/ denote the corresponding tangential vector. Next, suppose

that � 2 C
�

Œ0; T �; V
�

\ C 1
�

Œ0; T �; h1Cı .S1/
�

for some T > 0 and set

N�.t; x/ WD N�.t/.x/ D jxj � 1 � �

�

t;
x

jxj

�

; t 2 Œ0; T � ; 3=4 < jxj < 5=4 :

Observe that the normal velocity V� of the moving boundary �� equals �@t N�=jrN�j.
Consequently, if � 2 C

�

Œ0; T �; V
�

\ C 1
�

Œ0; T �; h1Cı .S1/
�

describes the evolution of the boundary,

then (2.6)–(2.9) read as

�Pj D 0 in ˝
j

�.t/
; j D i,o ; (2.11)

Pi � Po D ����.t/
C .o � i/

h

1 C �
�

t;
x

jxj

�

i2

on ��.t/ ; (2.12)

@t �
�

t;
x

jxj

�

D
�1

j�j j2
�

j̨ rPj C ǰ .Ez � rPj /
�

� rN�.t/ on ��.t/ ; j D i,o ; (2.13)

˛o@�Po C ˇo@� Po D 0 on @˝ D R S
1 ; (2.14)

for t > 0 and with ��.0/ D � 0. We call a triple .�; Pi; Po/ a (classical Hölder) solution to (2.11)–

(2.14) provided

� 2 C
�

Œ0; T �; V
�

\ C 1
�

Œ0; T �; h1Cı .S1/
�
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for some T > 0 and

Pj .t; �/ 2 h2Cı
�

˝
j

�.t/

�

; t 2 Œ0; T � ; j D i; o ;

satisfy (2.11)–(2.14) pointwise. The main existence result is stated in the following theorem, a proof

of which is given in Section 3:

THEOREM 2.1 Let ı 2 .0; 1/. There is an open zero neighborhood O in h4Cı.S1/ such that for each

initial geometry �0 2 O, there exists a time T D T .�0/ such that a classical solution .�; Pi ; Po/ to

(2.11)–(2.14) exists on the interval Œ0; T � with �.0/ D �0. This solution is unique up to a common

additive constant in the pressures Pi and Po.

We also investigate stability properties of the trivial solution corresponding to the geometry

� D 0, that is, to the unit circle S
1, and constant pressures Pi D c C � C o � i and Po D c with

arbitrary c 2 R. The stability properties of the trivial solution are determined by the relative density

of the fluids.

THEOREM 2.2 If %o > %i then the trivial solution .�; Pi; Po/ D
�

0; c C � C o � i; c
�

is locally

asymptotically stable. However, if %i > %o, then the trivial solution .�; Pi; Po/ D
�

0; c C � C o �

i; c
�

is unstable.

We refer to Section 4 for more precise statements of the stability results and their proofs. Note

that Theorem 2.2 implies that there are no nontrivial equilibrium solutions near the sphere if %o > %i.

Equilibria in general are characterized by the following result:

PROPOSITION 2.3 If .�; Pi; Po/ is any equilibrium for (2.6)-(2.9) with � 2 C 2Cı and Pj 2
h2Cı

�

˝j
�

for j D i; o, then Pj is constant for j D i; o. Moreover, if � D �� for some � 2 V and

c WD Pi � Po 2 R, then � 2 C 1.S1/ satisfies

c D 
.1 C �/2 C 2 P�2 � .1 C �/ R�

�

.1 C �/2 C P�2
�3=2

C .�o � �i/.1 C �/2 on S
1: (2.15)

This statement is proved in Section 5. Equation (2.15) for the geometry determines equilibria

completely. Moreover, the fact that equilibria occur only if the pressures are both constant has

a number of implications. In particular, equilibria for the two-phase problem coincide with

the equilibria for the one-phase problem (with the fluid inside). More precisely, the one-phase

equilibrium problem (as treated, e.g., in [7]) may be regarded as a two-phase equilibrium problem

by taking Po D 0 and %o D 0. Conversely, the two-phase equilibrium problem is equal to the

one-phase equilibrium problem by taking Po D const . Furthermore, as the pressures at equilibria

are necessarily constant, Coriolis force has no influence on the existence of equilibria. Therefore,

there are no equilibria for (2.6)–(2.9) if %o > %i as noted above (the case %o D %i corresponds to

considering just one fluid of density zero) while the case %o < %i has been investigated in [7]. The

unstable nontrivial equilibria constructed therein3 by means of bifurcation theory are also equilibria

for (2.6)–(2.9).

3 In [7] the fluid is assumed to have density % D 1. So to compare it with our results one has to replace !2 by !2%
therein.
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3. Proof of Theorem 2.1

The proof of Theorem 2.1 is best carried out in a coordinate system in which the moving

interface between the liquids is fixed. We therefore begin with the transformation to a fixed domain

formulation.

3.1 An equivalent problem on fixed domains

We transform the free boundary problem to fixed domains using the standard Hanzawa-transform.

Let ' W R ! Œ0; 1� be a smooth function with '.r/ D 1 for jr j 6 a and '.r/ D 0 for jr j > 3a and

k' 0k1 < 1=a. We introduce a family of C 4Cı -diffeomorphisms

�� 2 Diff4Cı
�

R
2;R2

�

\ Diff4Cı
�

B i; ˝ i
�

�

\ Diff4Cı
�

Bo; ˝o
�

�

; � 2 V ;

where

B i WD B.0; 1/ ; Bo WD ˝ n B i ;

by setting

��.x/ WD

(

h

jxj C '
�

jxj � 1
�

�
�

x
jxj

�

i

x
jxj

if 0 < jxj < 2 ;

x else.

Note that �� maps S1 onto ��. Given � 2 V, let

��
� W BUC.˝j

� / ! BUC.Bj / ; p 7! p ı ��

denote the push-forward operator and

��
� W BUC.Bj / ! BUC.˝j

� / ; q 7! q ı ��1
�

the pull-back operator induced by ��. Given � 2 V, the transformed differential and boundary

operators acting on Qj WD ��
� Pj , j D i; o are given by

Aj .�/Qj WD ��
�

�

�.��
�Qj /

�

and by

Bj .�/Qj WD
�1

j�j j2

h

j̨

�

��
� r.��

�Qj /
�

C ǰ

�

Ez �
�

��
� r.��

�Qj /
�

�i

�
�

��
� rN�

�

:

Defining

K.�/ WD ���
� ���

C .o � i/j1 C �j2

for � 2 V and

Bo WD ˛o@� C ˇo@� on @˝ D RS
1 ;

the free boundary problem (2.11)–(2.14) is transformed to the following problem on fixed domains:

Aj .�/Qj D 0 in Bj ; j D i,o ; (3.1)

Qi � Qo D K.�/ on S
1 ; (3.2)

@t � D Bj .�/Qj on S
1 ; j D i,o ; (3.3)

BoQo D 0 on RS
1 : (3.4)
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We call a triple .�; Qi; Qo/ a (classical Hölder) solution to (3.1)–(3.4) provided

� 2 C
�

Œ0; T �; V
�

\ C 1
�

Œ0; T �; h1Cı .S1/
�

for some T > 0 and

Qj .t; �/ 2 h2Cı
�

Bj
�

; t 2 Œ0; T � ; j D i; o ;

satisfy (3.1)–(3.4) pointwise. With this definition, problems (2.11)–(2.14) and (3.1)–(3.4) are

equivalent as follows from the next proposition.

PROPOSITION 3.1 Let Qj D ��
� Pj and Pj D �

�
�Qj . Then .�; Pi; Po/ is a solution to (2.11)–(2.14)

if and only if .�; Qi; Qo/ is a solution to (3.1)–(3.4).

Proof. Due to the above definitions of the differential operators, we merely need to ascertain that no

regularity loss occurs in the process, i.e., that Pj 2 h2Cı .˝
j
� / implies Qj D ��

� Pj 2 h2Cı.Bj / for

� 2 V and vice versa. This, however, easily follows from the fact that ��
� Pj 2 BUC 4.Bj / when

Pj 2 BUC 1.˝
j
� / and � 2 V � h4Cı.S1/ and the observation that h2Cı.Bj / coincides with the

closure of BUC 4.Bj / in BUC 2Cı.Bj /.

Next we collect some regularity properties of the operators defined above.

LEMMA 3.2 (i) The operator Aj .�/ 2 L
�

h2Cı.Bj /; hı.Bj /
�

is uniformly elliptic and analytic in

� 2 V for j D i; o.

(ii) The operator Bj .�/ 2 L
�

h2Cı .Bj /; h1Cı.S1/
�

is analytic in � 2 V for j D i; o.

Proof. (i) Given � 2 V, uniform ellipticity of Aj .�/ is a consequence of its symbol being

a.�/.�/ D ��
�

�

jJ.��1
� /�j2 C ���1

� � �
�

; � 2 R
2 ;

where the Jacobian J.��1
� / of ��1

� satisfies jJ.��1
� /�j2 > �j�j2 for some � > 0. Analyticity in �

follows from the analyticity of �� and of J.˚�1
� / D ˚

�
� J.˚�/�1. For details we refer to [7, ÷ 3.2].

(ii) Note that

r�

�

x

jxj

�

D �0

�

x

jxj

�

1

jxj2

�

�x2

x1

�

; x D .x1; x2/ 2 R
2 n f0g ; � 2 C 1.S1/ : (3.5)

Hence, for � 2 V and �� D .�1
� ; �2

� /,

�

��
� rN�

�

.y/ D
��.y/
ˇ

ˇ��.y/
ˇ

ˇ

� �0

�

��.y/

j��.y/j

�

1
ˇ

ˇ��.y/
ˇ

ˇ

2

�

��2
�.y/

�1
�.y/

�

; y 2 S
1 ;

showing that
�

� 7! ��
� rN�

�

W V ! h3Cı.S1/ is analytic. The definition of Bj .�/ entails its

analytic dependence on � since

��
� r.��

�Qj / D rQj ��
� J.��1

� / :

The curvature operator K can easily be computed explicitly.
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LEMMA 3.3 The operator K W V ! h2Cı.S1/ is analytic and given by

K.�/ D �
.1 C �/2 C 2 P�2 � .1 C �/ R�

�

.1 C �/2 C P�2
�3=2

C .o � i/.1 C �/2 ; � 2 V ;

and

@K.0/Œh� D �.�h � Rh/ C 2.o � i/h ; h 2 h4Cı .S1/ :

Proof. If � 2 V, a parametrization of �� is given by

.1 C �.�//ei� DW x.�/ C iy.�/ ; � 2 Œ0; 2�� :

Hence the claim is a consequence of the curvature formula

���
D

Px Ry � Rx Py
�

Px2 C Py2
�3=2

and the definition of K.�/.

3.2 Local well-posedness

In order to establish local existence and uniqueness of solutions, we split (3.1)–(3.4) in three

subproblems: two elliptic problems for the transformed pressures and an evolution equation for

the geometry. More precisely, given � 2 V and a function h defined on S1, we shall first look

for solutions Qi D S.�; h/ to the following elliptic problem on B i with Neumann type boundary

condition

Ai.�/Qi D 0 in B i ; (3.6)

Bi.�/Qi D h �

ˇ

ˇ��
� .rN�/

ˇ

ˇ

j��j

Z

��

�
�
�h

jrN�j
d� on S

1 ; (3.7)

Z

S1

Qi d� D

Z

S1

h d� ; (3.8)

where j��j stands for the length of the closed curve ��. In the second step, we shall study the elliptic

problem on the annulus Bo with Dirichlet-Neumann boundary conditions

Ao.�/Qo D 0 in Bo ; (3.9)

Qo D g on S
1 ; (3.10)

BoQo D 0 on R S
1 ; (3.11)

with solution Qo D T .�; g/ depending on � 2 V and g on S
1. Finally we use the solution operators

S and T to derive the evolution equation

@t � D Bo.�/T
�

�; S.�; @t �/ � K.�/
�

(3.12)

for �. Note that @t � appears on both sides of (3.12). As (3.6)–(3.7) is a Neumann-type problem, an

additional integral term is introduced on the right hand of side (3.7) which makes the mean zero and
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thus ensures solvability of the problem. The third equation (3.8) guarantees uniqueness. Let us point

out that, provided we can solve (3.12) for � D �.t/, the particular form of the boundary operator

Bo.�/ and the properties of T .�; g/ yield (see (3.44) below)

Z

��

�
�
�@t �

jrN�j
d� D 0 :

Thus the integral term in (3.7) vanishes for h D @t � and we may take

Qi.t/ D S
�

�.t/; @t �.t/
�

; Qo.t/ D T
�

�.t/; Qi.t/ � K
�

�.t/
�

�

to obtain a solution for the original equations (3.1)–(3.4). We shall be more specific at the end of

this section.

In the following two propositions we study the solvability of the elliptic problems.

PROPOSITION 3.4 Given � 2 V and h 2 h1Cı.S1/, (3.6)–(3.8) possesses a unique solution

Qi D S.�; h/ 2 h2Cı.B i/ ;

and the map

Œ� 7! S.�; �/� W V ! L
�

h1Cı.S1/; h2Cı.B i/
�

is analytic.

To prove this statement on the fixed domain B i we shall first prove an auxiliary result on the

domain ˝ i
�:

LEMMA 3.5 Let � 2 V and let � D ���
and � D ���

denote the corresponding outer unit normal

and unit tangential vectors to ��, respectively. Set

� WD
�1

j�ij2
�

˛i� C ˇi�
�

and define

A W h2Cı.˝ i
�/ ! hı .˝ i

�/ � h1Cı.��/ ; u 7!
�

� �u; @�u
�

:

Then ker.A/ D R � 1 and

im.A/ D

(

.f; g/ 2 hı.˝ i
�/ � h1Cı.��/ I

Z

˝ i
�

f dx D
j�ij

2

˛i

Z

��

g d�

)

:

Proof. Note that � is nowhere tangential and that 1 is an eigenfunction of A. Thus, ker.A/ D R � 1

follows from [2, Thm.12.1] since .��; @�/ is regular elliptic. To determine the range of A, fix

p > n=.1 � ı/ and suppose first that Au D .f; g/, that is,

��u D f in ˝ i
� ; @�u D g on �� : (3.13)

Since @� w D .Ez � rw/ � � and div.Ez � rw/ D 0, we have by Gauss’ Theorem

Z

��

@� w d� D

Z

˝ i
�

div.Ez � rw/ dx D 0 ; w 2 W 2
p .˝ i

�/ : (3.14)
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Therefore,

Z

˝ i
�

f dx D
j�ij

2

˛i

Z

��

�

�
˛i

j�ij2
@�u �

ˇi

j�ij2
@�u

�

d� D
j�ij

2

˛i

Z

��

g d� :

For the reverse inclusion we use a Fredholm argument. By [2, Lem.5.1] there is a coretraction

M 2 L
�

W 1�1=p
p .��/; W 2

p .˝ i
�/
�

for the boundary operator such that @�Mg D g for g 2 W
1�1=p

p .��/. Then

R WD �M 2 L
�

W 1�1=p
p .��/; Lp.˝ i

�/
�

;

and finding a solution u 2 W 2
p .˝ i

�/ to problem (3.13) for a given .f; g/ 2 Lp.˝ i
�/ � W

1�1=p
p .��/

is equivalent to finding a solution v 2 W 2
p .˝ i

�/ to

��v D f C Rg in ˝ i
� ; @�v D 0 on �� ; (3.15)

and setting u WD v C Mg. Let

W 2
p;�

�

˝ i
�

�

WD
˚

v 2 W 2
p .˝ i

�/ I @�v D 0 on ��

	

and consider the closed linear operator T on Lp.˝ i
�/ given by T v WD ��v for v 2 W 2

p;�.˝ i
�/.

Then, as above, ker.T / D R � 1, and T has compact resolvent. Hence T is a Fredholm operator

on Lp.˝ i
�/ with index zero. Since obviously W 2

p;�.˝ i
�/ is dense in Lp.˝ i

�/, we also obtain for its

dual T 0 that ker.T 0/ D R � f 0 for some f 0 2 Lp0.˝ i
�/, where p0 denotes the dual exponent of p.

Moreover, T v D h with h 2 Lp.˝ i
�/ is solvable for v 2 W 2

p;�.˝ i
�/ if and only if hf 0; hi D 0.

However, since (3.14) ensures that

Z

˝ i
�

�v dx D �
j�ij

2

˛i

Z

��

@�v d� D 0 ; v 2 W 2
p;�.˝ i

�/ ;

we may take f 0 D 1, that is, ker.T 0/ D R � 1, and T v D f C Rg is solvable for v 2 W 2
p;�.˝ i

�/

with

.f; g/ 2 Lp.˝ i
�/ � W 1�1=p

p .��/

if and only if

0 D

Z

˝ i
�

.f C Rg/ dx D

Z

˝ i
�

f dx �
j�ij

2

˛i

Z

��

@�g d� ; (3.16)

the last equality being again due to (3.14). Finally, if u is the solution to (3.13) for a given

.f; g/ 2 hı.˝ i
�/ � h1Cı.��/ � Lp.˝ i

�/ � W 1�1=p
p .��/

satisfying (3.16), then u 2 W 2
p .˝ i

�/ ,! C 1Cı.˝ i
�/ by the choice of p. Using Schauder regularity

theory [11, Thm.6.15] for

�� Nu D f in ˝ i
� ; Nu C @� Nu D g C u on �� ;

then easily gives u D Nu 2 h2Cı.˝ i
�/. This proves the claimed characterization of im.A/.
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Proof of Proposition 3.4. For � 2 V fixed, set

P.�/h WD
j��

� .rN�/j

j��j

Z

��

�
�
�h

jrN�j
d� ; h 2 h1Cı.S1/ ;

and define an operator Ai.�/ W h2Cı.B i/ ! hı.B i/ � h1Cı .S1/ by

Ai.�/u WD
�

D.�/Ai.�/u ; d.�/Bi.�/u
�

; u 2 h2Cı.B i/ ;

where D.�/ WD jdet @x��j and d.�/ WD 1 C �. Then, since D.�/ > 0 and d.�/ > 0, we readily

obtain from Lemma 3.5 that ker
�

Ai.�/
�

D R � 1. Moreover, .f; g/ 2 im
�

Ai.�/
�

if and only if

. Of ; Og/ 2 im.A/, where

Of WD ��
�

f

D.�/
2 hı.˝ i

�/ ; Og WD
1

jrN�j
��

�

g

d.�/
2 h1Cı .��/ :

By virtue of (3.5) we have that

jrN�j D

p

P� C .1 C �/2

1 C �
on S

1 ; (3.17)

and we infer from Lemma 3.5 that

im
�

Ai.�/
�

D

�

.f; g/ 2 hı .B i/ � h1Cı.S1/ I

Z

B i

f dx D
j�ij

2

˛i

Z

S1

g d�

�

DW Y

which is independent of �. Consequently, the map

Ai.�/ W h2Cı.B i/
ı

R�1
�! Y

is an isomorphism. Furthermore, v D N.�/.f; g/ WD Ai.�/�1.f; g/ is a unique solution in

h2Cı.B i/
ı

R�1
to

D.�/Ai.�/v D f on B i ; d.�/Bi.�/v D g on S
1

for each � 2 V and .f; g/ 2 Y . As D.�/ and d.�/ are analytic in �, we deduce that

N W V ! L

�

Y; h2Cı .B i/
ı

R�1

�

is analytic. Now, we easily check with the help of (3.17) that

Z

S1

d.�/
�

1 � P.�/
�

h d� D 0 ;

whence
�

0; d.�/.1 � P.�//h
�

2 Y for h 2 h1Cı .S1/. Thus u WD N.�/
�

0; d.�/.1 � P.�//h
�

is the

unique solution in h2Cı.B i/
ı

R�1
to

Ai.�/u D 0 on B i ; Bi.�/u D h � P.�/h on S
1 :
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By (3.17) we have

P.�/h D

p

P� C .1 C �/2

.1 C �/
R 2�

0

p

P� C .1 C �/2 d�

Z 2�

0

h.�/
�

1 C �.�/
�

d� ;

hence P.�/ depends analytically on � and so does u D u.�/. Given � 2 V and h 2 h1Cı.S1/,

problem (3.6)-(3.8) thus admits a unique solution Qi D S.�; h/ and

Œ� 7! S.�; �/� W V ! L
�

h1Cı.S1/; h2Cı.B i/
�

is analytic. This proves Proposition 3.4.

PROPOSITION 3.6 Given � 2 V and g 2 h2Cı.S1/, there is a unique solution Qo D T .�; g/ 2
h2Cı.Bo/ to (3.9)–(3.10). Moreover, the map Œ� 7! T .�; �/� W V ! L

�

h2Cı.S1/; h2Cı.Bo/
�

is

analytic.

Proof. Let � 2 V and define an operator Ao.�/ W h2Cı.Bo/ ! hı.Bo/ � h2Cı.S1/ � h1Cı.R S1/

by

Ao.�/u WD
�

Ao.�/u ; ujS1 ; Bou
�

; u 2 h2Cı.Bo/ :

Then Ao.�/ is invertible. Indeed, to check its injectivity, let Ao.�/u D 0. Then, for Nu WD �
�
�u,

� Nu D 0 in ˝o
� ;

Nu D 0 on �� ;

˛o@� Nu C ˇo@� Nu D 0 on R S
1 ;

and Green’s formula yields

0 D

Z

˝o
�

Nu� Nu dx D �

Z

˝o
�

jr Nuj2 dx C

Z

��[RS1

Nu@� Nu d�

D �

Z

˝o
�

jr Nuj2 dx �
ˇo

˛o

Z

��[RS1

1

2
@� Nu2 d�

D �

Z

˝o
�

jr Nuj2 dx �
ˇo

2˛o

Z

˝o
�

div

�

�@2 Nu2

@1 Nu2

�

dx D �

Z

˝o
�

jr Nuj2 dx :

This entails Nu D 0, i.e. u D 0. To determine the range of Ao.�/ consider again the transformed

problem

� Nu D Nf in ˝o
� ; (3.18)

Nu D Ng on �� ; (3.19)

˛o@� Nu C ˇo@� Nu D Nh on R S
1 : (3.20)

By means of a coretraction as in the proof of Lemma 3.5 we may assume Ng D 0 and Nh D 0.

However, by [2],

� � � W
˚

v 2 W 2
2 .˝o

�/ I v D 0 on �� ; .˛o@� C ˇo@� /v D 0 on R S
1
	

�! L2.˝o
�/
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is invertible for � > 0 sufficiently large, and the same argument as used to prove its injectivity

implies that we actually may take � D 0. Thus, (3.18)-(3.20) is uniquely solvable for each Nf 2
L2.˝o

�/, Ng 2 H 3=2.��/, and Nh 2 H 1=2.R S1/. Schauder regularity theory ensures Nu 2 h2Cı.˝o
�/

provided Nf 2 hı.˝o
�/, Ng 2 h2Cı .��/, and Nh 2 h1Cı.R S

1/. Consequently, Ao.�/ is surjective

and thus invertible, and the claim on the analyticity of T .�; �/ D Ao.�/�1.0; �; 0/ follows from

Lemma 3.2.

Next, we state a multiplier result that we shall use later. The proof is a straightforward

modification of the case r D s in [3].

PROPOSITION 3.7 Let r; s 2 .0; 1/ n N and .Mn/n2Z be a sequence in C satisfying

(i) supn2Znf0g jnjr�s jMnj < 1 ;

(ii) supn2Znf0g jnjr�sC1jMnC1 � Mnj < 1 ;

(iii) supn2Znf0g jnjr�sC2jMnC2 � 2MnC1 C Mnj < 1 :

Then the mapping
X

n2Z

Ohnein� 7�!
X

n2Z

OhnMnein�

belongs to L
�

C s.S1/; C r.S1/
�

.

We now focus on the evolution equation (3.12), which we may rewrite, using linearity of the

solution operators S and T , as

�

1 � R.�/
�

@t � D Bo.�/T
�

�; �K.�/
�

(3.21)

with

R.�/z WD Bo.�/T
�

�; S.�; z/
�

; z 2 h1Cı.S1/ ; � 2 V :

To solve (3.21) for @t �, we use the following

LEMMA 3.8 There is an open zero neighborhood W � V in h4Cı.S1/ such that 1 � R.�/ is an

isomorphism on h1Cı .S1/ for each � 2 W.

Proof. By the smooth dependence on � stated in Lemma 3.3, Proposition 3.4, and Proposition 3.6,

it suffices to prove that 1 � R.0/ 2 L
�

h1Cı.S1/
�

is invertible. To do this we derive its Fourier

expansion in polar coordinates .r; �/. To compute Qi D S.0; h/ we first note that, for � D 0,

problem (3.6)-(3.8) becomes

�

1

r
@r .r@r / C

1

r2
@2

�

�

Qi D 0 in Œr < 1� ;

�1

j�ij
.˛i@r � ˇi@� / Qi D h �

1

2�

Z 2�

0

h.�/ d� on Œr D 1� ;

Z 2�

0

Qi.1; �/ d� D

Z 2�

0

h.�/ d� ;

which, for a given h 2 h1Cı.S1/ with expansion

h.�/ D
X

n2Z

Ohnein� ; (3.22)
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has the unique solution

Qi.r; �/ D Oh0 C
X

n2Znf0g

Ohn

j�ij
2

�jnj˛i C inˇi

r jnjein� : (3.23)

Similarly, for � D 0, problem (3.9)-(3.10) reads as

�

1

r
@r .r@r / C

1

r2
@2

�

�

Qo D 0 in Œ1 < r < R� ;

Qo D g on Œr D 1� ;
�

˛o@r �
ˇo

R
@�

�

Qo D 0 on Œr D R� ;

and for g 2 h2Cı.S1/ with expansion

g.�/ D
X

n2Z

Ognein� ;

the unique solution Qo D T .0; g/ is given by

Qo.r; �/ D Og0 C
X

n2Znf0g

Ogn

 

�o

�o C R2n N�o

rn C
N�o

N�o C R�2n�o

r�n

!

ein� : (3.24)

Therefore, given h 2 h1Cı .S1/ with expansion (3.22), we have

R.0/h D
�1

j�oj
.˛o@r � ˇo@� / T

�

0; S.0; h/
�

D
X

n2Znf0g

Ohn lnein� ;

where

ln WD

�

1 � R2n
�

j�ij
2

�

sign.n/˛i � iˇi

��

�o C R2n N�o

� ; n 2 Z n f0g : (3.25)

We next use Proposition 3.7 with Mn WD .1 � ln/�1 to check that 1 � R.0/ is invertible on

C 1Cı.S1/. Note that ln 6D 1 for each n 2 Z n f0g since j̨ > 0, j D i; o. Also,

lim
n!1

ln D �
�i�o

j�oj2
6D 1 ; lim

n!�1
ln D �

N�i
N�o

j�oj2
6D 1; (3.26)

so that

sup
n2Znf0g

jMnj < 1 : (3.27)

Next,

MnC1 � Mn D
lnC1 � ln

.1 � lnC1/.1 � ln/
;

where, for n > 1,

lnC1 � ln D
O.R2nC2/

N�2
o R4nC2 C O.R2nC2/

; n > 1 ; lnC1 � ln D
O.R2n/

N�2
o C O.R2n/

; n 6 �1 :
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Since nR�2n ! 0 as n ! 1 and nR2n ! 0 as n ! �1, it follows from (3.27) that

sup
n2Znf0g

jnj jMnC1 � Mnj < 1 :

Finally, as above, we obtain from (3.26) and (3.27) that

n2
ˇ

ˇMnC2 � 2MnC1 C Mn

ˇ

ˇ D n2

ˇ

ˇ

ˇ

ˇ

lnC2 � 2lnC1 C ln C ln.lnC1 � lnC2/ C lnC2.lnC1 � ln/

.1 � lnC2/.1 � lnC1/.1 � ln/

ˇ

ˇ

ˇ

ˇ

6 .sup jMnj/3
�

.1 C
ˇ

ˇln
ˇ

ˇ/ n2
ˇ

ˇlnC2 � lnC1

ˇ

ˇC .1 C
ˇ

ˇlnC2

ˇ

ˇ/ n2
ˇ

ˇlnC1 � ln
ˇ

ˇ

�

6 c sup
n

�

n2
ˇ

ˇlnC1 � ln
ˇ

ˇ

�

< 1 :

Consequently, Lemma 3.7 implies
�

1 � R.0/
��1

2 L
�

C 1Cı.S1/
�

. But then
�

1 � R.0/
��1

is also a

bounded operator on

H s.S1/ D
n

h 2 L2.S1/ I khkH s WD
X

n2Z

.1 C n2/s j Ohnj2 < 1
o

for each s > 0 due to (3.27). Recalling that H s.S1/ is densely embedded in h1Cı.S1/ provided

s > 5=2, we deduce that
�

1 � R.0/
��1

2 L
�

h1Cı .S1/
�

.

According to Lemma 3.8 and (3.21), we are led to look for solutions

� 2 C
�

Œ0; T �; W
�

\ C 1
�

Œ0; T �; h1Cı.S1/
�

to the fully nonlinear equation

@t � D
�

1 � R.�/
��1

Bo.�/T
�

� ; �K.�/
�

DW F.�/ ; t 2 .0; T � : (3.28)

The following proposition is instrumental in the computation of the linearization in zero of this

evolution equation.

PROPOSITION 3.9 F 2 C 1
�

W; h1Cı .S1/
�

and, for h 2 h4Cı .S1/,

@F.0/Œh� D
�

1 � R.0/
��1

Bo.0/T
�

0 ; .2.i � o/ C �/h C � Rh
�

:

In particular, if h 2 h4Cı .S1/ with h.�/ D
P

n2Z
Ohnein� , then

@F.0/Œh�.�/ D
X

n2Znf0g

Ohnqnein�

where, for n 2 Z n f0g,

qn WD
An C i sign.n/B

A2
n C B2

�.n/ (3.29)

with

An WD sign.n/
R2n C 1

R2n � 1
˛o C ˛i ; B WD ˇo � ˇi ; �.n/ WD jnj

�

� � 2.o � i/ � � n2
�

:
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Proof. Smoothness of the map F follows from Lemma 3.3, Proposition 3.4, Proposition 3.6, and

Lemma 3.8. Let h 2 h4Cı.S1/. Then

@F.0/Œh� D @
�

1 � R.�/
��1

.0/Œh� Bo.0/ T
�

0 ; �K.0/
�

C
�

1 � R.0/
��1

@Bo.0/Œh� T
�

0 ; �K.0/
�

C
�

1 � R.0/
��1

Bo.0/ @�T
�

0 ; �K.0/
�

Œh� C
�

1 � R.0/
��1

Bo.0/ T
�

0 ; �@K.0/Œh�
�

:

But �K.0/ D �� � o C i DW c 2 R and T .0; c/ D c by uniqueness, so @Bo.0/Œh� D 0

as this is the derivative of
�

� 7! Bo.�/c D 0
�

and similarly @�T
�

0 ; �K.0/
�

Œh� D 0 as this is

the derivative of
�

� 7! T .�; c/ D c
�

. The formula for @F.0/Œh� now follows from Lemma 3.3. To

compute its Fourier expansion, consider h 2 h4Cı.S1/ with h.�/ D
P

n2Z
Ohnein� . Invoking (3.24)

and recalling that Bo.0/ D �
�

˛o@r � ˇo@� /=j�oj
2 on S1, we obtain

@F.0/Œh�.�/ D
�

1 � R.0/
��1

Bo.0/T
�

0 ; .2.i � o/ C �/h C � Rh
�

.�/

D
X

n2Znf0g

Ohn

n
�

2.i � o/ C � � � n2
�

.R2n � 1/

�o C R2n N�o

1

1 � ln
ein�

with ln given by (3.25). Elementary calculations now lead to the assertion.

Observe that An D A�n for n 2 Z n f0g and that

An & ˛o C ˛i as jnj ! 1 : (3.30)

The next proposition is a consequence of the previous lemma and fundamental for our well-

posedness result.

PROPOSITION 3.10 �@F.0/ 2 H
�

h4Cı.S1/; h1Cı .S1/
�

, that is, @F.0/ 2 L
�

h4Cı .S1/; h1Cı.S1/
�

is the generator of an analytic semigroup on h1Cı.S1/.

Proof. Based on Proposition 3.7, we prove in a first step that
�

� � @F.0/
��1

2

L
�

h1Cı.S1/; h4Cı .S1/
�

, where, according to Proposition 3.9 (with q0 WD 0), we have that

�

� � @F.0/
��1

h D
X

n2Z

Ohn

1

� � qn

ein� ; Re � > �� ;

for h.�/ D
P

n2Z
Ohnein� and, by (3.30),

�� WD 1 C
2jo � ij

˛o C ˛i

> Re qn ; n 2 Z :

Let � 2 C with Re � > �� be fixed and set Q�
n WD .� � qn/�1. Then

sup
n2Znf0g

jnj3
ˇ

ˇ

ˇ
Q�

n

ˇ

ˇ

ˇ
< 1 ; (3.31)

since
qn

n3
�! ˙

˛o C ˛i ˙ iB

.˛o C ˛i/2 C B2
� as n �! ˙1 :
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Next observe that, for each m 2 N,

jnjmjAnC1 � Anj D jnjm
2R2n.R � 1/

.R2n � 1/.R2nC1 � 1/
�! 0 as n �! ˙1 :

Thus, letting zn WD qn=�.n/ we derive from (3.30)

jnjmjznC1 � znj 6
AnC1An

.A2
nC1 C B2/.A2

n C B2/
jnjm jAnC1 � Anj C jnjm jAnC1 � Anj B2 ;

so, for each m 2 N,

jnjmjznC1 � znj �! 0 as jnj �! 1 : (3.32)

Thus, (3.31) gives

jnj4
ˇ

ˇ

ˇ
Q�

nC1 � Q�
n

ˇ

ˇ

ˇ
D
ˇ

ˇ

ˇ
n3Q�

nC1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
n3Q�

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

qnC1 � qn

n2

ˇ

ˇ

ˇ

6 c
jznC1j j�.n C 1/ � �.n/j

n2
C cjznC1 � znj jnj

ˇ

ˇ

ˇ

ˇ

�.n/

n3

ˇ

ˇ

ˇ

ˇ

:

Taking into account that .zn/ is bounded and that j�.n/=n3j ! � as jnj ! 1, we conclude

sup
n2Znf0g

jnj4
ˇ

ˇ

ˇ
Q�

nC1 � Q�
n

ˇ

ˇ

ˇ
< 1 : (3.33)

In particular, we have shown

sup
n2Znf0g

n�2 jqnC1 � qnj < 1 : (3.34)

Observe then that

�.n/
�

�.n C 1/ � �.n C 2/
�

C �.n C 2/
�

�.n C 1/ � �.n/
�

D O.n4/ ;

hence, due to (3.32),

ˇ

ˇ

ˇ

ˇ

1

n4

h

qn .qnC1 � qnC2/ C qnC2 .qnC1 � qn/
i

ˇ

ˇ

ˇ

ˇ

6

ˇ

ˇ

ˇ

ˇ

ˇ

zn znC1

�.n/
�

�.n C 1/ � �.n C 2/
�

C �.n C 2/
�

�.n C 1/ � �.n/
�

n4

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

zn

�.n/

n3

�.n C 1/

n3
.znC1 � znC2/ n2

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

zn

�.n/

n3

�.n C 2/

n3
.znC1 � znC2/ n2

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

znC1

�.n C 2/

n3

�.n C 1/

n3
.znC2 � zn/ n2

ˇ

ˇ

ˇ

ˇ

6 c :

(3.35)
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Writing

jnj5
ˇ

ˇ

ˇ
Q�

nC2 � 2Q�
nC1 C Q�

n

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ
n3Q�

nC2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
n3Q�

nC1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
n3Q�

n

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

�.qnC2 � 2qnC1 C qn/

n4
C

qn.qnC1 � qnC2/ C qnC2.qnC1 � qn/

n4

ˇ

ˇ

ˇ

ˇ

we deduce from (3.31) and (3.34) that

sup
n2Znf0g

jnj5
ˇ

ˇ

ˇ
Q�

nC2 � 2Q�
nC1 C Q�

n

ˇ

ˇ

ˇ
< 1 : (3.36)

Consequently,
�

� � @F.0/
��1

2 L
�

C 1Cı.S1/; C 4Cı.S1/
�

for Re � > �� by Lemma 3.7 and (3.31),

(3.33), and (3.36). Since (3.31) also ensures

�

� � @F.0/
��1

2 L
�

H s.S1/
�

; s > 0 ; (3.37)

we conclude
�

��@F.0/
��1

2 L
�

h1Cı.S1/; h4Cı.S1/
�

for Re � > �� as in the proof of Lemma 3.8.

The second step consists of proving the resolvent estimate

j�j






�

� � @F.0/
��1







L.h1Cı.S1//
6 c ; Re � > �� : (3.38)

Since Re qn < 0 for jnj sufficiently large, elementary calculations show that

j� � qnj2 > c0j�j2 ; Re � > �� ; n 2 Z ; (3.39)

for some c0 > 0. Thus, setting S�
n WD �.� � qn/�1it follows

sup
n2Znf0g ; Re �>��

jS�
n j < 1 : (3.40)

Similarly, there is c1 > 0 such that

j� � qnj2 > c1jqnj2 ; Re � > �� ; n 2 Z ; (3.41)

and we thus obtain from

jnj
ˇ

ˇ

ˇ
S�

nC1 � S�
n

ˇ

ˇ

ˇ
D
ˇ

ˇ

ˇ
S�

nC1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n3

� � qn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

qnC1 � qn

n2

ˇ

ˇ

ˇ

together with (3.34), (3.40), and (3.41) combined with (3.31) that

sup
n2Znf0g ; Re �>��

jnj
ˇ

ˇ

ˇ
S�

nC1 � S�
n

ˇ

ˇ

ˇ
< 1 : (3.42)



258 J. ESCHER, P. GUIDOTTI AND C. WALKER

Finally, noticing that the right hand side of

ˇ

ˇ

ˇ

ˇ

qnC2 � 2qnC1 C qn

n

ˇ

ˇ

ˇ

ˇ

6 jznC2j

ˇ

ˇ

ˇ

ˇ

�.n C 2/ � 2�.n C 1/ C �.n/

n

ˇ

ˇ

ˇ

ˇ

C 2

ˇ

ˇ

ˇ

ˇ

�.n C 1/

n3

ˇ

ˇ

ˇ

ˇ

jznC2 � znC1j n2

C

ˇ

ˇ

ˇ

ˇ

�.n/

n3

ˇ

ˇ

ˇ

ˇ

jzn � znC1j n2

is bounded by (3.32) and writing

n2
ˇ

ˇ

ˇ
S�

nC2 � 2S�
nC1 C S�

nC2

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ
S�

nC2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
n3Q�

nC1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n3

� � qn

ˇ

ˇ

ˇ

ˇ

1

n4

�
ˇ

ˇ�.qnC2 � 2qnC1 C qn/ C qn.qnC1 � qnC2/ C qnC2.qnC1 � qn/
ˇ

ˇ

we deduce from (3.31), (3.35), (3.39), and (3.40)

sup
n2Znf0g ; Re �>��

n2
ˇ

ˇ

ˇ
S�

nC2 � 2S�
nC1 C S�

n

ˇ

ˇ

ˇ
< 1 : (3.43)

Therefore, Lemma 3.7 and (3.40), (3.42), and (3.43) imply

j�j






�

� � @F.0/
��1







L.C 1Cı.S1/
6 c ; Re � > �� ;

whence (3.38) due to (3.37). This proves the assertion.

Now we are in a position to establish a well-posedness result regarding equation (3.28).

THEOREM 3.11 There exists an open zero neighborhood O � V in h4Cı .S1/ such that for each

�0 2 O there is T WD T .�0/ > 0 and a unique solution

� 2 C
�

Œ0; T �; V
�

\ C 1
�

Œ0; T �; h1Cı .S1/
�

to

@t � D F.�/ ; t > 0 ; �.0/ D �0 :

Moreover, �
�

Œ0; T �/
�

� O.

Proof. We shall invoke [13, Thm.8.1]. Fix � 2 .0; ı/ and put # WD .ı � �/=3. Set

E WD h1C�.S1/ ; E0 WD h1Cı.S1/ ; E1 WD h4Cı.S1/

in [13, Thm.8.1]. As ı 2 .0; 1/ was arbitrary in Proposition 3.10, it follows that

�@F.0/ 2 H
�

h4C�.S1/; h1C�.S1/
�

:

Thus, since H
�

h4C�.S1/; h1C�.S1/
�

is open in L
�

h4C�.S1/; h1C�.S1/
�

, there is an open zero

neighborhood U� in h4C�.S1/ such that �@F.�/ 2 H
�

h4C�.S1/; h1C�.S1/
�

for each � 2 U� . Then
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O WD U� \ W with W from Lemma 3.8 is an open zero neighborhood in h4Cı.S1/. Furthermore,

@F.�/ W h4Cı .S1/ ! h1Cı.S1/ for � 2 O is the part of �@F.�/ 2 H
�

h4C�.S1/; h1C�.S1/
�

in

h1Cı.S1/
:
D
�

h1C�.S1/; h4C�.S1/
�0

#;1

with continuous interpolation functor .�; �/0
#;1

and

˚

h 2 h4C�.S1/ I @F.�/Œh� 2 h1Cı.S1/
	

D h4Cı.S1/ :

Now the assertion is a consequence of [13, Thm.8.1].

To finish off the proof of Theorem 2.1 let

� 2 C
�

Œ0; T �; V
�

\ C 1
�

Œ0; T �; h1Cı .S1/
�

be the solution to (3.28) for a given initial value �0 2 O. Then

Qi WD S
�

�; @t �
�

2 C
�

Œ0; T �; h2Cı .B i/
�

; Qo WD T
�

�; Qi � K.�/
�

2 C
�

Œ0; T �; h2Cı .Bo/
�

by Lemma 3.3, Proposition 3.4, and Proposition 3.6. Since � solves (3.12), it follows, for � D �.t/

with t 2 Œ0; T � fixed, that

�
�
�@t �

jrN�j
D

�1

j�oj2

�

˛o@��

�

��
�Qo

�

C ˇo@��

�

��
�Qo

�

�

on �� :

Recalling from (3.9) that �
�

�
�
�Qo

�

D 0 and div
�

Ez � r
�

�
�
�Qo

��

D 0 in ˝o
�, we deduce from

Gauss’ Theorem

�1

j�oj2

Z

��

�

˛o@��

�

��
�Qo

�

C ˇo@��

�

��
�Qo

��

d� D
�1

j�oj2

Z

RS1

�

˛o@�

�

��
�Qo

�

C ˇo@�

�

��
�Qo

��

d�

and thus, due to �
�
�Qo D Qo and (3.11) on R S1, that

Z

��

�
�
�@t �

jrN�j
d� D 0 ; t 2 Œ0; T � : (3.44)

Consequently, with

Pi.t/ WD ��.t/
� Qi.t/ 2 h2Cı.˝ i

�.t// ; Po.t/ WD ��.t/
� Qo.t/h2Cı.˝o

�.t//

for t 2 Œ0; T � we obtain a solution .�; Pi; Po/ to (2.11)-(2.14) which is unique up to a common

additive constant in the pressures Pi and Po. This yields Theorem 2.1.

4. Proof of Theorem 2.2

We first prove instability of the trivial solution if %i > %o as claimed in Theorem 2.2. Recall that

j WD %j !2=2.
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THEOREM 4.1 If %i > %o, then

@t � D F.�/ ; t > 0 ; �.0/ D �0 ;

has backward solutions which do exponentially decay to zero. In particular, the trivial solution � D 0

of this flow is unstable.

Proof. The compact embedding h4Cı.S1/ ,! h1Cı.S1/ and Proposition 3.10 imply that @F.0/

has compact resolvent. So the spectrum of @F.0/ consists of eigenvalues only, which, according to

Proposition 3.9, are given by
˚

qn I n 2 Z n f0g
	

and q0 WD 0. Since %i > %o, (3.29) implies that

�.1/ > 0, hence (3.30) shows that Re q1 > 0. Clearly,

inf fRe qn I Re qn > 0g > 0 :

The assertion now follows from [13, Thm.9.1.3].

To prove stability of the trivial solution if %o > %i, we need an auxiliary result.

LEMMA 4.2 Let W be given as in Lemma 3.8. Then

Z

S1

.1 C �/F.�/ d� D 0 ; � 2 W :

Proof. Fix � 2 W and set

h1Cı
0;� .S1/ WD

n

f 2 h1Cı.S1/ I

Z

S1

.1 C �/f d� D 0
o

:

We claim that 1 � R.�/ is an isomorphism on h1Cı
0;� .S1/. To see this, set Tf WD T

�

�; S.�; f /
�

for

f 2 h1Cı.S1/. Then, as in (3.44),

Z

S1

.1 C �/R.�/f d� D

Z

S1

.1 C �/Bo.�/Tf d� D 0

and Lemma 3.8 implies that 1 � R.�/ is indeed an isomorphism on h1Cı
0;� .S1/. But, as above,

Bo.�/T
�

�; �K.�/
�

2 h1Cı
0;� .S1/ :

Therefore,

F.�/ D
�

1 � R.�/
��1

Bo.�/T
�

� ; �K.�/
�

2 h1Cı
0;� .S1/ :

We conclude the proof of Theorem 2.2 by stating the stability result for which we need to define

hs
0.S1/ WD

˚

f 2 hs.S1/ I

Z

S1

f d� D 0
	

;

for s > 0.
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THEOREM 4.3 If %o > %i, the trivial solution � D 0 of

@t � D F.�/ ; t > 0 ;

is stable. More precisely, there are numbers !; r; M > 0 such that for each initial datum

�0 2 h1Cı
0 .S1/ with k�0kh1Cı.S1/ 6 r there is a unique global solution

� 2 C
�

R
C; h4Cı

0 .S1/
�

\ C 1
�

R
C; h1Cı

0 .S1/
�

with �.0/ D �0 and









�.t/

�

1 C
�.t/

2

�








h4Cı.S1/

C k P�.t/ .1 C �.t//kh1Cı.S1/

6 M e�!t





�0

�

1 C
�0

2

�





h4Cı.S1/
; t > 0 :

Proof. Letting � WD � C �2=2 for � 2 W, problem @t � D F.�/, t > 0, is equivalent to

@t � D G.�/ ; t > 0 ; (4.1)

where G 2 C 2
�

Z; h1Cı.S1/
�

with Z WD
˚

� D� C �2=2 I � 2 W
	

is given by

G.�/ WD
p

1 C 2� F
�
p

1 C 2� � 1
�

:

Moreover, Lemma 4.2 implies G 2 C 2
�

Z0; h1Cı
0 .S1/

�

for Z0 WD Z \ h4Cı
0 .S1/. Also,

@G.0/ D @F.0/ 2 L
�

h4Cı
0 .S1/; h1Cı

0 .S1/
�

:

Thus @G.0/ has compact resolvent and its (point) spectrum equals
˚

qn I n 2 Z n f0g
	

. Now, by

(3.29),

Re qn D
An

A2
n C B2

�.n/ ; n 2 Z n f0g ;

while %o > %i implies that

�.n/ D jnj
�

� � 2.o � i/ � � n2
�

6 �2.o � i/ < 0 ; n 2 Z n f0g :

This, combined with (3.30), shows that the spectrum of @G.0/ is contained in a half plane

ŒRe � 6 �!� for some ! > 0. The assertion now follows from [13, Thm.9.1.2] applied to (4.1).

Note that our analysis yields an explicit estimate of the exponential decay rate ! in terms of the

physical parameters through (3.29).

5. Equilibrium solutions

To prove Proposition 2.3 let .�; Pi; Po/ be any equilibrium for (2.6)–(2.9) with � 2 C 2Cı and

Pj 2 h2Cı
�

˝j
�

for j D i; o, that is,

�Pj D 0 in ˝j ; j D i,o ; (5.1)

Pi � Po D ��� C .o � i/jxj2 on � ; (5.2)

j̨ @��
Pj C ǰ @��

Pj D 0 on � ; j D i,o ; (5.3)

˛o@�Po C ˇo@� Po D 0 on Œjxj D R� : (5.4)
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Then

�Pi D 0 in ˝ i ;

˛i@��
Pi C ˇi@��

Pi D 0 on � ;

so that Lemma 3.5 implies that Pi � ci for some constant ci. Moreover, since also

�Po D 0 in ˝o ;

˛o@��
Po C ˇo@��

Po D 0 on � ;

˛o@�Po C ˇo@� Po D 0 on RS
1 ;

a similar Fredholm argument as in Lemma 3.5 shows that Po � co for some constant co. If � D ��

for some � 2 V, then we derive equation (2.15) with c D ci � co from (5.2) and Lemma 3.3. A

bootstrapping argument now shows that � is smooth. This proves Proposition 2.3.
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7. EHRNSTRÖM, M., ESCHER, J. AND MATIOC, B.-V., Well-posedness, instabilities, and bifurcation results

for the flow in a rotating Hele-Shaw cell, J. Math. Fluid Mech. 13 (2011) 271–293. MR2805866

8. ESCHER, J. AND SIMONETT, G., Classical solutions for Hele-Shaw models with surface tension, Adv. in

Diff. Eq. 2 (1997) 619–642. Zbl1023.35527 MR1441859

9. FRIEDMAN, A. AND TAO, Y., Nonlinear stability of the Muskat problem with capillary pressure at the

free boundary, Nonlinear Analysis 53 (2003) 45–80. Zbl1028.35123 MR1992404
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MR1329547

14. SAFFMAN, P. G. AND TAYLOR, G. I., The penetration of a fluid into a porous medium or Hele-Shaw cell

containing a more viscous fluid, Proc. R. Soc. A 245 (1958) 312–329. Zbl0086.41603 MR0097227

15. SCHWARTZ, L. W., Instability and fingering in a rotating Hele-Shaw cell or porous medium, Physics of

Fluids A 1 (1989) 167–69.

MR 2787492
http://www.ams.org/mathscinet-getitem?mr=2787492
Zbl 0535.35017
http://www.emis.de/MATH-item?0535.35017
MR 0719122
http://www.ams.org/mathscinet-getitem?mr=0719122
Zbl 1083.42009
http://www.emis.de/MATH-item?1083.42009
MR 2064734
http://www.ams.org/mathscinet-getitem?mr=2064734
Zbl 0808.35104
http://www.emis.de/MATH-item?0808.35104
MR 1223740
http://www.ams.org/mathscinet-getitem?mr=1223740
Zbl 0572.35051
http://www.emis.de/MATH-item?0572.35051
MR 0779874
http://www.ams.org/mathscinet-getitem?mr=0779874
MR 2805866
http://www.ams.org/mathscinet-getitem?mr=2805866
Zbl 1023.35527
http://www.emis.de/MATH-item?1023.35527
MR 1441859
http://www.ams.org/mathscinet-getitem?mr=1441859
Zbl 1028.35123
http://www.emis.de/MATH-item?1028.35123
MR 1992404
http://www.ams.org/mathscinet-getitem?mr=1992404
Zbl 0562.35001
http://www.emis.de/MATH-item?0562.35001
MR 0737190
http://www.ams.org/mathscinet-getitem?mr=0737190
Zbl 0816.35001
http://www.emis.de/MATH-item?0816.35001
MR 1329547
http://www.ams.org/mathscinet-getitem?mr=1329547
Zbl 0086.41603
http://www.emis.de/MATH-item?0086.41603
MR 0097227
http://www.ams.org/mathscinet-getitem?mr=0097227


TWO-PHASE FLOW IN ROTATING HELE-SHAW CELLS 263

16. SCHWARTZ, L. W. AND ROY, R. V., Theoretical and numerical results for spin coating of viscous liquids,

Physics of Fluids 16 (2004) 569–585. Zbl1186.76466 MR2035460

17. WATERS, S. L. AND CUMMINGS, L. J., Coriolis effects in a rotating Hele-Shaw cell, Physics of Fluids

17 (2005) 048101–048104. Zbl1187.76553 MR2136595

18. YE, J. AND TANVEER, S., Global solutions for two-phase Hele-Shaw bubble for a near-circular initial

shape, Complex Variables and Elliptic Equations 57 (2012), 23–61. Zbl1236.35211 MR2864701

Zbl 1186.76466
http://www.emis.de/MATH-item?1186.76466
MR 2035460
http://www.ams.org/mathscinet-getitem?mr=2035460
Zbl 1187.76553
http://www.emis.de/MATH-item?1187.76553
MR 2136595
http://www.ams.org/mathscinet-getitem?mr=2136595
Zbl 1236.35211
http://www.emis.de/MATH-item?1236.35211
MR 2864701
http://www.ams.org/mathscinet-getitem?mr=2864701

	Introduction
	Governing equations and main results
	Governing equations
	The system in terms of P_j
	Main theorems

	Proof of Theorem 2.1
	An equivalent problem on fixed domains
	Local well-posedness

	Proof of Theorem 2.2
	Equilibrium solutions

