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Abstract. We study the spectral �ow of Landau–Robin hamiltonians in the exterior of a

compact domain with smooth boundary. This provides a method to study the spectrum

of the exterior Landau–Robin hamiltonian’s dependence on the choice of Robin data, even

explaining the heuristics of how the spectrum of the Robin problem asymptotically tends to

the spectrum of the Dirichlet problem. The main technical result concerns the continuous

dependence of Landau–Robin hamiltonians on the Robin data in the gap topology. The

problem can be localized to the compact boundary where the asymptotic behavior of the

spectral �ow in some special cases can be described.
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Introduction

In this paper we initiate the study of how the spectrum of the exterior Landau–
Robin hamiltonian depends on the choice of Robin data by means of spectral �ow.
Technical issues aside, the spectral �ow counts the number of eigenvalues that
cross a point in the spectrum, taking the direction of the crossing into account.
As such, the spectral �ow measures how the spectrum “moves” under a change
of Robin data. The study of spectral �ow has proven useful in noncommutative



848 M. Go�eng and E. Schrohe

topology, where it describes the odd index pairing relating it to the index theory
of Toeplitz operators. Spectral �ow was used by Atiyah, Patodi, and Singer [5],
in joint work with Lusztig, to describe the variations of the spectral boundary
contributions in the index formula now known as the Atiyah–Patodi–Singer in-
dex theorem. Atiyah-Lusztig’s notion of spectral �ow was developed further by
Phillips [26]. In the spirit of index theory, the paper aims at reducing the problem
of computing spectral �ows to a problem on the compact boundary of the domain
where the exterior problem is de�ned.

An important application of exterior, as well as interior, magnetic hamiltoni-
ans is for instance in the Ginzburg-Landau theory of superconductors, describing
Bose-Einstein condensates, see [2, 9]. Other applications of magnetic edge states
can be found in [15], where the spectrum of Landau hamiltonians in the exterior of
compact domains was studied. The spectral theory of exterior Landau hamiltoni-
ans was to the authors’ knowledge �rst studied in the mathematics literature in [27]
for Dirichlet conditions. Similar results were obtained for the case of Neumann
conditions in [24].

In both the Dirichlet and Neumann case, the spectrum clusters in a super
exponential fashion around the spectrum of the Landau hamiltonian (without any
obstacle). The di�erence between Dirichlet conditions and Neumann conditions
being that in the former case, the clustering takes place to above while in the
latter it clusters to below the spectrum of the Landau hamiltonian. Physically,
Dirichlet conditions correspond to an in�nite potential barrier in the compact
obstacle which pushes up the energy while Neumann conditions correspond to
a perfect insulator lowering the total energy in the system.

Intermediately between Dirichlet and Neumann conditions, there are Robin
conditions – formally, Dirichlet conditions are obtained by letting the Robin data
tend to in�nity. It was proven in [11] that the spectral behavior of exterior Landau–
Robin hamiltonians resembles that of exterior Landau-Neumann hamiltonians.
One of the motivating problems for this paper is the formalizing of the procedure
described above in regards to seeing spectral properties of the Landau–Dirichlet
hamiltonian as a limit case of Landau–Robin operators.

0.1. Setup. The Landau hamiltonian with magnetic �eld strength b 2 R
� as

a di�erential expression is given by the second order elliptic operator on R
2d

de�ned as

Lb WD �.r C ibA0/
2; (1)

where

A0.x1; x2; : : : ; x2d / D
1

2
.�x2; x1; : : : ;�x2d ; x2d�1/:
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Since Lb D L�b it su�ces to consider b > 0. We often suppress the b-
dependence by writing A D bA0. The operator Lb models d uncoupled particles
moving in R2 under the in�uence of a constant perpendicular magnetic �eld of
strength b. The choice of A0 is non-physical, but greatly simpli�es the analysis.
The di�erential expression (1) equipped with the domain C1

c .R2d / de�nes an
essentially self-adjoint operator on L2.R2d /. By an abuse of notation we also let
Lb denote the closure of this operator. The domain of Lb is the magnetic Sobolev
space H 2

A.R
2d /, where

H k
A .R

2d / WD ¹u 2 L2.R2d /W .rCiA/ju 2 L2.R2d /; j D 0; : : : ; kº; for k 2 N:

The spectrum of Lb has been known already since the work of Fock [8], and
rediscovered by Landau [22] a few years later. The spectrum of Lb is �L WD

2bN C bd , each point being an eigenvalue of in�nite multiplicity, for details, see
for instance [31]. The eigenspace corresponding to a point ƒq D 2b.q � 1/C bd ,
for q 2 N>0 in the spectrum of Lb is referred to as the q-th Landau level. We use
the standard convention ƒ0 D �1.

We consider a compact domain K � R
2d with smooth boundary and set

� WD R
2d n K. The operator LbjC 1

c .�/ is not essentially self-adjoint on L2.�/.
We will concern ourselves with di�erent self-adjoint extensions of this operator.
The Dirichlet realization L�

b;D
is the di�erential expression Lb equipped with the

domain
DomL�

b;D WD H 2
A;0.�/ WD

®

u 2 H 2
A.�/Wuj@� D 0

¯

:

The magnetic Sobolev spaces can be de�ned for any domain �, and standard
elliptic regularity estimates show that H k

A .�/ locally coincides with H k.Rd /.
Since � has a smooth boundary, the trace operator @�WH k

A .�/ ! H k�1=2.@�/

is continuous for any k � 1. Letting �� denote the unit outward normal to @�,
we set @N WD �� � .r C ibA0/ – the magnetic Neumann operator. The operator
@N acts continuously H k

A .�/ ! H k�3=2.@�/ for k � 2. For any self-adjoint
pseudo-di�erential operator � 2 ‰0.@�/, we consider the Robin realization L�

b;�

given by equipping Lb acting on H 2
A.�/ with the domain

Dom.L�
b;� / WD ¹u 2 H 2

A.�/W @NuC �@�.u/ D 0º:

The Landau–Robin hamiltonian L�
b;�

can also be realized as the self-adjoint oper-
ator associated with the quadratic form de�ned on H 1

A.�/ by

q�
b;� Œu� D

Z

�

j.r C ibA0/uj2 dV C

Z

@�

�.uj@�/uj@� dS:
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By [27], �ess.L
�
b;D
/ D �.Lb/ D 2bN C bd . The same identity holds in the

Neumann case by [24] and in the Robin case by [18], see also [11] for the Robin
case. Thus, the study of how the Robin-Landau hamiltonian depends on its Robin
data � reduces to studying �nite-dimensional eigenvalues – whose change the
spectral �ow measures.

0.2. Main results. The main results of this paper are concerned with the spectral
dependence ofL�

b;�
on � . The main technical tool in this direction is the following

theorem. Similar to [7], we use the notation CF
s.a..L2.�// for the space of closed

self-adjoint Fredholm operators de�ned in L2.�/. We equip CF
s.a..L2.�// with

the gap-topology – a topology de�ned from the metric

dgap.T1; T2/ WD k.T1 C i/�1 � .T2 C i/�1kB.L2.�//:

For more details, see below in Subsection 2.1 or [7]. We also let‰0.@�/s.a. denote
the real subspace of self-adjoint elements in ‰0.@�/. We will throughout the
paper use the notation

�L WD 2bN C bd:

Theorem 1. When equipping‰0.@�/s.a. with the topology induced from the norm

topology of B.H 3=2.@�/;H 1=2.@�//, any� 2 Rn�L gives a continuous mapping

‰0.@�/s.a. �! CF
s.a..L2.�//; � 7�! L�

b;� � �:

The proof of Theorem 1 will occupy Subsection 2.2. It is based on standard
ideas from boundary value problems presented in Section 1. Some care with the
technical details is needed because � is not compact. Theorem 1 holds also for �
ranging over ‰t .@�/ for any t < 1. The proof for 0 < t < 1 proceeds mutatis
mutandis from the case t D 0 using non-classical pseudo-di�erential operators;
we avoid this case for simplicity.

Remark 2. Already at this point, we emphasize that the smoothing �nite rank
operators on L2.@�/ are dense in ‰0.@�/ in the norm topology of B.H 3=2.@�/,
H 1=2.@�//, making it possible to reduce to the �nite rank case (see Remark 5
below). The precise explanation for the appearance of the topology coming from
B.H 3=2.@�/;H 1=2.@�// is found in Lemma 2.2.

Remark 3. The proof of Theorem 1 only uses the fact that for � 2 C nR, Lb C�

has a fundamental solution E� 2 C1.R2d � R
2d n �R2d / such that the associ-

ated single and double layer potentials on � restrict to pseudo-di�erential opera-
tors of order �1 on @� and give bounded mappings H 1=2.@�/ ! Dom.Lb/ and
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H 3=2.@�/ ! Dom.Lb/, respectively. ForLb, this is the content of Proposition 1.4
and Lemma 1.6, respectively. As such, Theorem 1 holds in full generality for the
exterior of a compact smooth domain in a Riemannian manifold when replacing
Lb with a Bochner-Laplacian having a self-adjoint extension to L2 and a funda-
mental solution satisfying the above properties. In this context, �L D 2bN C bd

is replaced by the essential spectrum of the Bochner-Laplacian at hand.

An immediate consequence of Theorem 1 and the results of [7, 11] is the
following corollary.

Corollary 4. For a path .�t /t2Œ0;1� � ‰0.@�/s.a. continuous in the norm topology

of B.H 3=2.@�/;H 1=2.@�// and a � 2 R n �L, the spectral �ow

sf.L�
b;�t

� �/t2Œ0;1� is well de�ned and depends only on b, �, � and the end-

points �0 and �1 of .�t /t2Œ0;1�. Moreover, if � … �.L�
b;�1

/, for b, �, � and �0 �xed,

the spectral �ow sf.L�
b;�t

� �/t2Œ0;1� is constant in a neighborhood of �1 in the

B.H 3=2.@�/;H 1=2.@�//-topology.

The de�nitions and properties of spectral �ows will be recalled below in
Subsection 2.1.

Remark 5. The fact that sf.L�
b;�t

� �/t2Œ0;1� is constant in a neighborhood of �1

in the B.H 3=2.@�/;H 1=2.@�//-topology if � … �.L�
b;�1

/ can be used as follows.
After picking an L2.@�/-orthonormal eigenbasis .ek/k2N of a positive order self-
adjoint elliptic pseudodi�erential operator D on @� we can approximate any
pseudo-di�erential operator � by the �nite-rank smoothing operator

T.N /.�/ WD

N
X

j;kD0

h�ek; ej iL2.@�/ej ˝ e�
k ;

where ej ˝e�
k

denotes the rank one operator f 7! hf; ekiej . For a constantC > 0,
depending only on D, we have the estimate

k� � T.N /.�/kB.H 3=2.@�/;H 1=2.@�//

� C.k�kB.H 1=2.@�// C k�kB.H 3=2.@�///N
� 1

2d�1 :
(2)

For a proof of the estimate (2) see Proposition 2.6 on page 865. Therefore, for N
large enough, we can de�ne a path Q�t WD �0 C tT.N /.�1 ��0/ and from Corollary 4
deduce

sf.L�
b;�t

� �/t2Œ0;1� D sf.L�
b;Q�t

� �/t2Œ0;1�;



852 M. Go�eng and E. Schrohe

reducing the computation of the spectral �ow to a spectral �ow along a �nite-rank
perturbation. We also note that if � … �.L�

b;�0
/ [ �.L�

b;�1
/, we can for N large

enough write

sf.L�
b;�t

� �/t2Œ0;1� D sf.L�
b;tTN .�0/ � �/t2Œ0;1� � sf.L�

b;tTN .�1/ � �/t2Œ0;1�;

reducing the computation of the spectral �ow even further to the case of �nite rank
perturbations of the Neumann boundary condition.

It is in general quite di�cult to compute the spectral �ow of Corollary 4. To
simplify matters, we localize the problem to the closed boundary @� in Subsec-
tion 2.3. We will equip‰0.@�/ with its usual Fréchet topology unless stated oth-
erwise; this topology is stronger than the B.H 3=2.@�/;H 1=2.@�//-topology. We
say that a continuous function F WX0 ! X1 between two Fréchet spaces X0 and
X1 is holomorphic, if for any �; � 0 2 X0, the function C 3 z 7! F.� C z� 0/ 2 X1

is holomorphic. Equivalently, F is holomorphic if F ı� WU ! X1 is holomorphic
for any open set U � C and any holomorphic � WU ! X0.

Theorem 6. We set �D WD �.L�
b;D
/. There is a geometrically de�ned family,

described below in Remark 1.11:

�WC n �L �‰0.@�/ �! ‰�1.@�/;

which is holomorphic both in � 2 C n �L and � 2 ‰0.@�/, such that for any

� 2 ‰0.@�/s.a.

�.L�
b;� / n �D D ¹� 2 C n �DW 1C �.�; �/ is not invertible on L2.@�/º:

Furthermore, for any � 2 R n �D and any path .�t /t2Œ0;1� � ‰0.@�/s.a. being

holomorphic in a neighborhood of Œ0; 1� � C,

sf.L�
b;�t

� �/t2Œ0;1�

D
X

t2Z�.�/

lim
"�!0

sign
trL2.@�/.@t�.�; �tC"/ � �.�; �tC"/

d�1.1C �.�; �tC"//
�1/

trL2.@�/.@��.�; �tC"/ � �.�; �tC"/d�1.1C �.�; �tC"//�1/
;

(3)

where Z�.�/ � ¹t 2 Œ0; 1�W �1 … �.�.�; �t //º is a �nite set de�ned below in

Remark 2.13.

Remark 7. Each term on the right hand side of equation (3) is shown below to
be well de�ned for " in a small neighborhood of 0 with 0 removed. The appear-
ance of the spectrum of the Landau–Dirichlet hamiltonian is to guarantee that the
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boundary value problem the Landau–Robin hamiltonian de�nes corresponds to
an elliptic problem on the boundary, see Lemma 1.8. Since the spectrum of the
Landau–Dirichlet hamiltonian accumulates at the Landau levels from above, and
the spectrum of the Landau–Robin hamiltonian accumulates at the Landau levels
from below, one can expect the interesting phenomena of Landau–Robin hamil-
tonians to occur away from the spectrum of the Landau–Dirichlet hamiltonian.

We prove monotonicity results for the spectral �ow in Subsection 3.1. In The-
orem 3.1 we prove that under a positive change of Robin data, positive in the sense
of operators on L2.@�/, the spectral �ow is non-negative. We also prove a strict
monotonicity result assuming a strictly positive change of Robin data and a fur-
ther spectral condition that can be veri�ed using the Kato-Temple inequality. The
above Theorem 6 can be combined with the monotonicity property of eigenval-
ues under a change of Robin data leading us to the following asymptotics for the
spectral �ow.

Theorem 8. For any � 2 ‰0.@�/s.a. and � 2 R n �L,

sf.L�
b;�Ct � �/t2Œ0;� D

vol.S�@�/

.2�/2d�1
2d�1 CO.2d�2/ as  ! 1:

The resemblance between Theorem 8 and the Weyl law is no coincidence – its
proof consists of a computation using Theorem 6 reducing sf.L�

b;�Ct
C �/t2Œ0;�

to the counting function for the Dirichlet–Robin operator on @�. This Weyl law of
the spectral �ow follows from the slightly more general statement of Corollary 3.3
on page 872. It is discussed in the speci�c example of the exterior of the disc in
R

2 in Subsection 3.2.

Remark 9. The fact that the spectral �ow sf.L�
b;�Ct

� �/t2Œ0;� coincides with
the spectral counting function of an elliptic pseudo-di�erential operator on
@� constructed from � implies that there can be no general formula for the
spectral �ow only depending on the formal symbol of the path .�t /t2Œ0;1� in
C1.Œ0; 1�; ‰0.@�/=‰�1.@�//. This observation can also be seen from Re-
mark 5.

Remark 10. Theorem 8 asymptotically describes how eigenvalues cross points
outside the Landau levels. The heuristics of letting  ! C1 is that it tends to the
Dirichlet condition, a heuristics that can be given meaning to through Theorem 8.
The latter Theorem formalizes how the clustering of the Landau–Robin operators
eigenvalues below the Landau levels move up to above the Landau level where the
clusters of the Landau–Dirichlet operator reside.
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1. Operators associated with the fundamental solution

In this section we will study the properties of a number of operators associated
with the fundamental solution of Lb � �, for � outside the spectrum of Lb. The
operators introduced in this section will play a crucial role in understanding the
spectral properties of the Robin operators and the gap continuous dependence on
the Robin data.

1.1. The fundamental solution. Let h be the positive number solving the equa-
tion coth.h/ D 4. The purpose of h is explained later. For a positive natu-
ral number d and � 2 C with Re.�/ < d we de�ne the smooth functions
I0.�; �/; I1.�; �/ 2 C1.R>0/ by

I0.�; s/ WD

Z h

0

e�s coth.t/C�t

sinhd .t /
d t and I1.�; s/ WD

Z 1

h

e�s coth.t/C�t

sinhd .t /
d t:

We also set I WD I0 C I1. It turns out that I0 is entire in �, but singular as s ! 0.
On the other hand I1 has poles � 2 2N C d but is smooth up to s D 0.

Lemma 1.1 (cf. Lemma A.1 of [11]). The functions I0 and I1 can be holomor-

phically extended in � to functions in C1.C n .2N C d/ � R>0/ satisfying

(1) I1 extends to a smooth function on C n .2N C d/ � R�0 satisfying

I1.�; s/ D O.sN e�s/; as s ! 1;

locally uniformly in � for some N D N.�/ 2 N that grows at most linearly

in j�j.

(2) I0 extends to a smooth function on C � R>0 satisfying

I0.�; s/ D O.e�s/; as s ! 1;

locally uniformly in �

(3) There are entire functions cj ; dj 2 O.C/ (depending on d ) such that as s ! 0,

I0.�; s/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

.d � 2/Š s1�d C

C1
X

j D2�d

cj .�/ s
j C

C1
X

j D0

dj .�/ s
j log.s/ for d > 1;

log.s/C

C1
X

j D1

cj .�/ s
j C

C1
X

j D1

dj .�/ s
j log.s/ for d D 1:

In particular, I.�; s/ D O.sN e�s/ as s ! 1 locally uniformly in � and admits

a polyhomogeneous expansion, holomorphically in �, at s D 0.
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Proof. To prove .1/, we use the change of variables � D coth.t /� 1 showing that

I1.�; s/ D e�s

Z 3

0

e�s�.� C 2/.d�2C�/=2�.d�2��/=2 d �:

De�ne the distribution valued function f.�; �/ WD �.d�2��/=2 � �Œ0;3�.�/. It is clear
that f.�; �/ is compactly supported and that we can extend f to a holomorphic
compactly supported distribution valued f 2 O.C n .2NC d/;E0.R// whose order
is bounded by a linear expression in j�j. We can �nd a function �s 2 C1.R/

such that �s.�/ D e�s� .� C 2/.d�2C�/=2 near Œ0; 3� where it satis�es the estimate
j@

j

�
�s.�/j � Cj .1 C jsj/j uniformly in s for some constant Cj > 0. Therefore,

I1 extends by analyticity to a smooth function on C n .2N C d/ � R�0 and
I1.�; s/ D O.sN e�s/ where N is the order of f.�; �/.

As for .2/, I0 extends by analyticity to C � R>0. For s large, by di�erenti-
ating under the absolutely convergent integral de�ning I0, I0.�; s/ D O.e�s/ as
s ! 1. In proving .3/, the precise form of h plays a role. After changing variables
� D coth.t /, so that et D .1C 2.� � 1/�1/1=2, we see that

I0.�; s/ D

Z 1

4

e�s� .�2 � 1/.d�2/=2
�

1C
2

� � 1

��=2

d �:

For � � coth.h/ D 4, we can expand ��d .�2 � 1/.d�2/=2.1 C 2.� � 1/�1/�=2 in
an absolutely convergent Taylor series in powers of ��1. Using this, a lengthier
computation shows the identity

Z 1

4

e�s�.�2 � 1/.d�2/=2
�

1C
2

� � 1

��=2

d �

D

1
X

k;l;mD0

.�1/kCm2l

�

d�2
2

k

�� �
2

l

��

�l

m

�

s2kClCmC1�dgd�2k�2�l�m.4s/;

where

gn.v/ D

Z 1

v

e���n d �

and
�

x

j

�

D
x.x � 1/ � � � .x � j C 1/

j Š

denotes the binomial coe�cient. The desired expansion follows from the expan-
sion of gn proven in [11, Lemma A.1]. �

We often identify R
2d with C

d , under which Nx D .x1;�x2; : : : ; x2d�1;�x2d /.
We let � � R

2d � R
2d denote the diagonal, the associated distribution

C1
c .Cd � C

d / 3 ' 7!
R

� '.z; z/ dV.z/ we denote by Œ��. The following propo-
sition follows from [32], see also [11].
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Proposition 1.2. For b > 0 and � 2 C n �L, the function

E�;b 2 C1.R2d � R
2d n�/

de�ned by

E�;b.x; y/ D
2bd�1

.4�/d
ei Im.b Nx�y/=2I

��

b
;
bjx � yj2

4

�

solves the equation

.Lb;x � �/E�;b D .Lb;y � �/E�;b D Œ��:

Remark 1.3. The reader can verify that, for q 2 N, the smooth kernel

KqC1.x; y/ D res�D2bqCbd E�;b.x; y/

D
2bd�1

.4�/d
ei Im.b Nx�y/=2 � res�D2bqCbd I1

��

b
;
bjx � yj2

4

�

;

de�nes the orthogonal projection onto the .qC1/-st Landau level ker.Lb �2bqC

bd/ � L2.R2d /, compare to [10, equation (1)].

1.2. Single and double layer potentials. Let � � R
2d be a domain with

smooth compact boundary, �� the outward pointing normal and @N WH k
A .�/ !

H k�3=2.@�/ the associated magnetic normal derivative (see Introduction, p. 849).
We de�ne the single layer potential

A�WC1.@�/ �! C1.�/; A�f .x/ WD

Z

@�

E�.x; y/f .y/ dS.y/;

and the double layer potential

B�WC1.@�/ �! C1.�/; B�f .x/ WD

Z

@�

@N;yE�.x; y/f .y/ dS.y/:

Proposition 1.4. The operators

A� WD @� ı A�;

zB� WD @N ı A� � 1=2

as well as

B� WD @� ı B� � 1=2

de�ne elliptic pseudodi�erential operators of order �1 on @� depending holo-

morphically on �.
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Remark 1.5. In fact, B�f has a natural de�nition on R
2d n@� and makes a jump

of size f when crossing @�, see more in for instance [4, Chapter 3, Section 12].
This is the reason for subtracting 1=2 from the exterior limit.

Proof. The operator @� ı A� is a pseudo-di�erential operator of order �1 on
@� by Lemma 1.1. The operators @N ı A� and @� ı B� are pseudo-di�erential

operators by a similar argument after verifying that @N;yI
�

�
b
; jx�yj2

2

�

still admits
a polyhomogeneous expansion starting at order 2 � 2d on @�. Ellipticity of
the involved operators follows from Lemma 1.1 which implies that the principal
symbols are constant functions on S�@�. Holomorphicity is another immediate
consequence of Lemma 1.1. �

Lemma 1.6. The single and double layer potential extend to bounded operators

A�WH 1=2.@�/ �! H 2
A.�/ and B�WH 3=2.@�/ �! H 2

A.�/:

Proof. We can �nd disjoint domains �0; �00 � � with C1-boundaries, with �0

being pre-compact, satisfying @�0 D @�00 P[@� and � D �0 P[@�00 P[�00. Let
r D dist.@�; @�00/ > 0. It follows from Lemma 1.1 that for some N 2 Z and
some constant C > 0

kA�f kH 2
A

.�00/ � CrN e�rkf kL2.@�/:

Similarly,

kB�f kH 2
A

.�00/ � CrN e�rkf kL2.@�/:

By elliptic regularity on the pre-compact�0, we deduce the estimates

kA�f kH 2
A

.�0/ � C�0.kA�f kH 3=2.@�/ C k@�0A�f kH 3=2.@�00/ C kA�f kL2.�0//

� C�0.kA�kH 1=2�!H 3=2kf kH 1=2.@�/ C zCrN e�rkf kL2.@�/

C kA�f kL2.�0//;

kB�f kH 2
A

.�0/ � C�0

�





�1

2
C B�

�

f






H 3=2.@�/
C k@�0B�f kH 3=2.@�00/

C kB�f kL2.�0/

�

� C�0.kf kH 3=2.@�/ C zCrN e�rkf kL2.@�/ C kB�f kL2.�0//:

The second terms in both expressions, that is the terms k@�0A�f kH 3=2.@�00/ and
k@�0B�f kH 3=2.@�00/, respectively, are estimated similarly as kA�f kH 2

A
.�00/

was estimated above. Compactness of �0 and Lemma 1.1 guarantee that
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A�;B�WL2.@�/ ! L2.�0/ are bounded, hence kA�f kL2.�0/ . kf kL2.@�/ .

kf kH 1=2.@�/ and similarly kB�f kL2.�0/ . kf kH 3=2.@�/. We conclude

kA�f kH 2
A

.�/ D
q

kA�f k2

H 2
A

.�0/
C kA�f k2

H 2
A

.�00/
. kf kH 1=2.@�/;

kB�f kH 2
A

.�/ D
q

kB�f k2

H 2
A

.�0/
C kB�f k2

H 2
A

.�00/
. kf kH 3=2.@�/: �

1.3. Dirichlet–to–Robin operators and similar constructions. Green’s for-
mula implies that if u 2 H 2

A.�/ solves .Lb � �/u D 0 in �, then

u D B�.@�u/ � A�.@Nu/: (4)

For details, see [16, Chapter XX].

Lemma 1.7. If � 2 C n �L, � belongs to �.L�
b;D
/ if and only if A� is non-

invertible. Moreover, the single layer potential de�nes an isomorphism

A�jW kerA� �! ker.L�
b;D � �/: (5)

In particular, if � … �.L�
b;D
/, the operator

K�;D WD A� ı A
�1
� WH 3=2.@�/ �! H 2

A.�/

is continuous and for f 2 H 3=2.@�/, u WD K�;Df is the unique solution to the

boundary value problem
´

.Lb � �/u D 0; in �;

@�u D f on @�:
(6)

Proof. It follows from Lemma 1.1 that the principal symbol of A� is a con-
stant function on S�@�, hence the Fredholm index of A� as an operator act-
ing H s.@�/ ! H sC1.@�/ vanishes for any s. As such, invertibility of A�

is equivalent to kerA� D 0. We claim that the mapping of equation (5) is
not only well de�ned but an isomorphism with inverse mapping de�ned from
�@N jW ker.L�

b;D
� �/ ! kerA�. This follows from the fact that whenever

f 2 kerA� � C1.@�/, u WD A�f 2 H 2
A.�/ solves .Lb � �/u D 0 in �

and @�u D A�f D 0; we conclude that u 2 Dom.L�
b;D
/ and .L�

b;D
� �/u D 0.

Conversely, if u 2 ker.L�
b;D

� �/ then by Green’s formula (4), u D �A�.@Nu/

and since u 2 Dom.L�
b;D
/, A�.�@Nu/ D @�u D 0.

By the argument above, A�1
� is a well de�ned pseudo-di�erential operator

of order 1 if � … �.L�
b;D
/. Hence, the operator K�;D is indeed continuous by

Lemma 1.6 with u WD K�;Df satisfying (6). Uniqueness of the solution to (6)

follows from � … �.L�
b;D
/. �
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We will make use of the shortened notation �D WD �.L�
b;D
/.

Lemma 1.8. Let � 2 C n �D and � 2 ‰0.@�/s.a.. The number � belongs to

�.L�
b;�
/ if and only if �1=2C B� C A�� is non-invertible. Moreover, there is an

isomorphism

.B� C A� ı �/jW ker.�1=2C B� C A��/ �! ker.L�
b;� � �/: (7)

In particular, if � … �.L�
b;�
/ [ �D , the operator

K�;� WD A� ı A
�1
� .�1=2C B� C A��/

�1
A�WH 1=2.@�/ �! H 2

A.�/

is continuous and for f 2 H 1=2.@�/, u WD K�;�f is the unique solution to the

boundary value problem

´

.Lb � �/u D 0 in �;

.@N C �@�/u D f on @�:
(8)

Proof. The zero order operator �1=2 C B� C A�� is elliptic with constant
symbol �1=2, because A�� and B� are of order �1. Hence invertiblity of
�1=2 C B� C A�� is equivalent to injectivity. We claim that for � … �D not
only is the mapping (7) well de�ned, but it is an isomorphism with inverse being
the trace operator

@�jW ker.L�
b;� � �/ �! ker.�1=2C B� C A��/: (9)

In fact, for any � … �L, if u 2 ker.L�
b;�

� �/ Green’s formula implies u D

.B� C A��/@�u hence @�u 2 ker.�1=2 C B� C A��/. Hence the mapping
in (9) is always well de�ned. To prove that the mapping in (7) is well de�ned,
we note that for f 2 ker.�1=2 C B� C A��/ � H 3=2.@�/, Green’s formula
applied to u D .B� C A� ı �/f implies that A�.@N C �@�/u D 0 hence
A�.@N C �@�/u D 0. If � … �D, Lemma 1.7 implies that .@N C �@�/u D 0

hence u 2 Dom.L�
b;�
/ and u 2 ker.L�

b�
� �/ follows from the construction. The

veri�cation that the mappings in (7) and (9) are each others inverses follows from
a simple exercise in linear algebra.

To prove that K�;� WD A� ı A
�1
� .�1=2 C B� C A��/

�1
A� is the solution

operator to (8) for � … �.L�
b;�
/ [ �D, we make the ansatz u D A�g for some

g 2 H 1=2.@�/. Green’s formula implies

A�f D .�1=2C B� C A��/A�g:

It follows that g D A
�1
� .�1=2CB� CA��/

�1
A�f and u D K�;�f . Uniqueness

of the solution to (8) follows because � … �.L�
b;�
/. �
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De�nition 1.9. Let �; � 0 2 ‰0.@�/s:a and � 2 C. We de�ne the following
operators on C1.@�/.

Dirichlet–to–Robin operator. For � … �D;

ƒD�!R
� .�/ WD .@N C �@�/ ı K�;D:

Robin–to–Dirichlet operator. For � … �.L�
b;�
/ [ �D;

ƒR�!D
� .�/ WD @� ı K�;� :

Robin–to–Robin operator. For � … �.L�
b;�
/ [ �D;

ƒR�!R
��!� 0 .�/ WD .@N C � 0@�/ ı K�;� :

Proposition 1.10. Let � 2 C n �D and �; � 0 2 ‰0.@�/s:a. The operators of

De�nition 1.9 possess the following properties.

(1) Whenever the operators

ƒD�!R
� .�/ 2 ‰1.@�/;

ƒR�!D
� .�/ 2 ‰�1.@�/;

and

ƒR�!R
��!� 0 .�/ 2 ‰0.@�/

are de�ned, they are elliptic with constant principal symbol. They are self-

adjoint and bounded from below whenever � is real.

(2) Whenever the expressions make sense,

ƒD�!R
� .�/ D ƒR�!D

� .�/�1;

ƒR�!R
��!� 0 .�/ D ƒR�!R

� 0�!� .�/
�1

and

ƒD�!R
� 0 .�/ ıƒR�!D

� .�/ D ƒR�!R
��!� 0 .�/:

(3) In terms of the pseudo-di�erential operators A�, B� and � ,

ƒD�!R
� .�/ D A

�1
� .�1=2C B� C A��/

and

ƒR�!R
��!� 0 .�/ D A

�1
� .�1=2C B� C A��

0/.�1=2C B� C A��/
�1

A�;

whenever the expressions make sense.
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With Lemma 1.7 and 1.8 at hand, Proposition 1.10 follows from standard tech-
niques and we refrain from proving it here. The reader can �nd details in [34, Ap-
pendix C of Chapter 12]. The operators of Proposition 1.10 can be de�ned modulo
�nite rank smoothing operators for any � 2 C n �L.

Remark 1.11. Lemma 1.8 and Proposition 1.10 prove the �rst part of Theorem 6
(on page 852). To reconcile with the notation of Theorem 6, we de�ne

�.�; �/ WD �2.B� C A��/:

From the results of this subsection we conclude the following Theorem that
forms the main technical ingredient needed to prove gap continuity in the next
section.

Theorem 1.12. Let � 2 ‰0.@�/s.a.. For any � 2 Cn .�.L�
b;�
/[�D/ the boundary

value problem
´

.Lb � �/u D u0 in �;

.@N C �@�/u D f on @�;
(10)

admits a unique solution u 2 H 2
A.�/ for u0 2 L2.�/ and f 2 H 1=2.@�/.

Furthermore, letting R�;� WL2.�/ ! H 2
A.�/ denote the inverse of L�

b;�
� � and

K�;� the operator of Lemma 1.8, the solution operator to (10) takes the form

�

R�;� K�;�

�

W

L2.�/

˚

H 1=2.@�/

�! H 2
A.�/;

and depends holomorphically on � 2 C n .�.L�
b;�
/ [ �D/.

Remark 1.13. The analog of Theorem 1.12 for Dirichlet conditions of course also
holds for any � 2 C n �D .

2. Gap continuity and spectral �ows

In this section we will brie�y recall some notions and results on spectral �ow.
Our main reference for these results is [7]. We will proceed by proving that
the Landau–Robin hamiltonians parametrized by their Robin data satisfy the
necessary continuity condition from [7] for de�ning their spectral �ow.
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2.1. Spectral �ow and gap continuity. We will use H to denote a separable
Hilbert space, e.g. L2.�/. Recall the notation CF

s.a..H/ for the set of closed
Fredholm operators de�ned in H with the additional property of being self-
adjoint. The topology of CF

s.a..H/ that behaves well with spectral �ow is the
gap-topology; it is de�ned from the metric

dgap.T1; T2/ WD k.T1 C i/�1 � .T2 C i/�1kB.H/:

In particular, for a topological space X , a function f WX ! CF
s.a..H/ is continu-

ous in the gap topology if and only if .f C i/�1WX ! B.H/ is continuous in norm
topology. The set of invertible elements in CF

s.a..H/ is open in the gap topology
by [7, Proposition 1.7]. By [7, Section 1.1], the metric dgap is equivalent to the
metric de�ned from the norm distance between the graph projections and also to
the metric de�ned from norm distance for the Cayley transform

�WCFs.a..H/ �! U.H/; T 7�! .T � i/.T C i/�1:

The image of the Cayley transform is characterized in [7, Theorem 1.10] as the set
of unitaries U 2 U.H/ such that 1 C U is Fredholm and 1 � U is injective. Re-
markably, by [7, Proposition 1.6], the subspace Fs.a..H/ � CF

s.a..H/ of bounded
self-adjoint Fredholm operators is dense in the gap topology. Another surprising
property is that while the subspaceFs.a..H/ has three path-components, CFs.a..H/

is path-connected by [7, Theorem 1.10].
Let us brie�y recall a construction of the spectral �ow of a gap continuous

path f W Œ0; 1� ! CF
s.a..H/ from [7]. Following [21], there is a winding number

construction
windWC.Œ0; 1�; FU.H// �! Z;

where FU.H/ is the set of all unitaries U such that 1C U is Fredholm – a space
containing �.CFs.a..H// as a dense subset. One de�nes

sf.f / D wind.� ı f /:

Two main properties of the spectral �ow are its additivity and homotopy invari-
ance.

(1) Additivity. If f W Œ0; 2� ! CF
s.a..H/ is gap continuous,

sf.f / D sf.f jŒ0;1�/C sf.f jŒ1;2�/:

(2) Homotopy invariance. If F W Œ0; 1�� Œ0; 1� ! CF
s.a..H/ is gap continuous and

dim kerF.0; s/ and dim kerF.1; s/ are constant, then sf.F.�; s// is indepen-
dent of s 2 Œ0; 1�.
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We refer the reader to [7, Section 2.1] for proofs of these two properties. To
compute spectral �ows, we will as a rule use the next proposition.

Proposition 2.1 (Proposition 2.1 of [7], cf. Proposition 2.17 of [7]). Given a gap

continuous path f W Œ0; 1� ! CF
s.a..H/, there is a partition 0 D t0 < t1 < � � � <

tn D 1 and�j > 0 for j D 1; : : : ; n such that ker.f .t/��j / D 0 for all t 2 Œtj �1; tj �

and

sf.f / D

n
X

j D1

X

�2Œ0;�j /

dim ker.f .tj / � �/ � dim ker.f .tj �1/ � �/:

2.2. Gap continuity of L
�
b;�

and Theorem 1. Motivated by the recollection of
results in the previous subsection, we now turn to proving Theorem 1 (see page
850). It follows directly from the following lemma.

Lemma 2.2. Let �0; �1 2 ‰0.@�/s.a. and � 2 R. The resolvent di�erence of

Robin-Landau operators is given by

.L�
b;�1

� � � i/�1 � .L�
b;�0

� � � i/�1

D �K�Ci;�0
ƒR�!R

�1�!�0
.�C i/.�1 � �0/@�.L

�
b;�0

� � � i/�1;

whereK�Ci;�0
is the Poisson operator of Lemma 1.8 at� D �Ci andƒR!R

�1!�0
.�Ci/

is the Robin–to–Robin operator (see De�nition 1.9) at � D �C i . In particular,

k.L�
b;�1

� � � i/�1 � .L�
b;�0

� � � i/�1kB.L2.�//

� C.�; �0; �1; �/k�1 � �0kB.H 3=2.@�/;H 1=2.@�//;

where C.�; �0; �1; �/ is the locally bounded number

kK�Ci;�0
k
B.H 1=2.@�/;H 2

A
.�//kƒ

R�!R
�1�!�0

.�C i/kB.H 1=2.@�//

k@�k
B.H 2

A
.�/;H 3=2.@�//k.L

�
b;�0

� � � i/�1k
B.L2.�/;H 2

A
.�//:

In particular, for � 2 R n �L the mapping

‰0.@�/s.a. 3 � 7�! L�
b;� � � 2 CF

s.a..L2.�//;

is well de�ned and gap continuous when equipping ‰0.@�/s.a. with the topology

induced from the norm in B.H 3=2.@�/;H 1=2.@�//.
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Proof. The operators occurring in the theorem are all well de�ned by Lemma 1.8
and Theorem 1.12 because we are considering � D � C i . In the notation of
Theorem 1.12, we have the following identity of operators on L2.�/˚H 1=2.@�/

�

Lb � � � i

@N C �1@�

�

�

R�Ci;�0
K�Ci;�0

�

D

�

1 0

.@N C �1@�/R�Ci;�0
.@N C �1@�/K�Ci;�0

�

D

�

1 0

.�1 � �0/@�R�Ci;�0
ƒR�!R

�0�!�1
.�C i/

�

:

It follows from these computations and Proposition 1.10 that
�

R�Ci;�1
K�Ci;�1

�

D
�

R�Ci;�0
K�Ci;�0

�

�

1 0

�ƒR�!R
�1�!�0

.�C i/.�1 � �0/@�R�Ci;�0
ƒR�!R

�1�!�0
.�C i/

�

D
�

R�Ci;�0
� K�Ci;�0

ƒR�!R
�1�!�0

.�C i/.�1 � �0/@�R�Ci;�0

K�Ci;�0
ƒR�!R

�1�!�0
.�C i/

�

:

�

Remark 2.3. The norm estimate on k.L�
b;�1

� i/�1 � .L�
b;�0

� i/�1kB.L2.�// in
Lemma 2.2 still holds true for �0; �1 2 ‰t .@�/s.a. for any t < 1.

Remark 2.4. By similar computations as in Lemma 2.2, for � … �.L�
b;�1

/ [

�.L�
b;�2

/, the operator .L�
b;�1

� �/�1 � .L�
b;�0

� �/�1 factors over the inclusion

H 3=2.@�/ ,! H 1=2.@�/. This recovers the wellknown result, in the style of
Birman [6], that .L�

b;�1
� �/�1 � .L�

b;�0
� �/�1 2 L2d�1;1.L2.�// – the weak

Schatten class of exponent 2d � 1. The asymptotics of the singular numbers of
the resolvent di�erence was computed in [12, Theorem 3.4].

Remark 2.5. Corollary 4 (on page 851) follows directly from Theorem 1 and
homotopy invariance of the spectral �ow (see [7, Proposition 2.3]), using that
‰0.@�/s.a. is a linear space, hence contractible in any topology de�ned from a
semi-norm. That sf.L�

b;�t
� �/t2Œ0;1� only depends on a neighborhood of �1 in

the B.H 3=2.@�/;H 1=2.@�//-topology on ‰0.@�/s.a., assuming � … �.L�
b;�1

/,
follows from the fact that the set of invertible elements in CF

s.a..L2.@�// is open
(see [7, Proposition 1.7]) and the homotopy invariance of the spectral �ow (see [7,
Proposition 2.3]).
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Proposition 2.6. Recall the notation of Remark 5, on page 851. For � 2 ‰t .@�/

the following estimate holds

k� � T.N /.�/kB.H 3=2.@�/;H 1=2.@�//

� C.k�k
B.H 3=2.@�/;H 3=2�t .@�// C k�k

B.H 1=2Ct .@�/;H 1=2.@�///N
� 1�t

2d�1 :

Proof. We can without loss of generality assume D to be of order 1 with
Dek D k

1
2d�1 ek. Take an f 2 H 3=2.@�/ and write f D

P1
kD1 fkek with

fk D hf; ekiL2.@�/. For any g 2 H s.@�/, .k
s
2gk/k2NC

2 `2.NC/ and we can
in fact assume that kgkH s.@�/ D k.k

s
2gk/k2NC

k`2.NC/. We write

Œ� � T.N /.�/�f D
X

max.j;k/>N

h�ek; ej iL2.@�/hf; ekiL2.@�/ej

De�ne the pseudodi�erential projection PN WD
P1

kDN C1 ek ˝ e�
k

2 ‰0.@�/.
It follows that

kŒ� � T.N /.�/�f k2
H 1=2.@�/

D

N
X

j D1

ˇ

ˇ

ˇ

ˇ

1
X

kDN C1

j
1

4d�2 h�ek ; ej iL2.@�/hf; ekiL2.@�/

ˇ

ˇ

ˇ

ˇ

2

C

1
X

j DN C1

ˇ

ˇ

ˇ

ˇ

1
X

kD1

j
1

4d�2 h�ek ; ej iL2.@�/hf; ekiL2.@�/

ˇ

ˇ

ˇ

ˇ

2

� N�2 1�t
2d�1

� N
X

j D1

ˇ

ˇ

ˇ

ˇ

1
X

kDN C1

j
1

4d�2 h�ek; ej iL2.@�/hD
1�tf; ekiL2.@�/

ˇ

ˇ

ˇ

ˇ

2

C

1
X

j DN C1

ˇ

ˇ

ˇ

ˇ

1
X

kD1

j
3�2t
4d�2 h�ek; ej iL2.@�/hf; ekiL2.@�/

ˇ

ˇ

ˇ

ˇ

2�

� N�2 1�t
2d�1

� 1
X

j D1

ˇ

ˇ

ˇ

ˇ

1
X

kDN C1

j
1

4d�2 h�ek; ej iL2.@�/hD
1�tf; ekiL2.@�/

ˇ

ˇ

ˇ

ˇ

2

C

1
X

j D1

ˇ

ˇ

ˇ

ˇ

1
X

kD1

j
3�2t
4d�2 h�ek ; ej iL2.@�/hf; ekiL2.@�/

ˇ

ˇ

ˇ

ˇ

2�

� N�2 1�t
2d�1 .k�D1�tPNf k2

H 1=2.@�/
C k�f k2

H 3=2�t.@�/
/

� N�2 1�t
2d�1 .k�k2

B.H 1=2Ct.@�/;H 1=2.@�//

C k�k2
B.H 3=2.@�/;H 3=2�t .@�//

/kf k2
H 3=2.@�/

: �
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2.3. Holomorphic families and reduction to the boundary. A path

.�t /t2Œ0;1� � ‰0.@�/s.a.

is holomorphic if it is the restriction of a holomorphic function � WU ! ‰0.@�/,
where C � U � Œ0; 1� is an open neighborhood. In this section we will give a
direct proof of the fact that whenever .�t /t2Œ0;1� � ‰0.@�/s.a. is a holomorphic
path, we can parametrize eigenvalues locally as functions with a holomorphic
extension. By Lemma 2.2, the family .L�

b;�t
��0/t2U is an analytic family in the

sense of Kato for any �0 (for the de�nition of this notion, see [29, Chapter XII.2,
Page 14]). The following theorem describes the �ow of speci�c eigenvalues as the
Robin data vary. The theorem could also be deduced from [29, Theorem XII.13]
using Lemma 2.2, see also [20, Theorem VII.1.8].

Theorem 2.7. Suppose that �0 2 R n �D and .�t /t2Œ0;1� � ‰0.@�/s.a. is a

holomorphic path. There is a partition 0 D t0 < t1 < � � � < tM �1 < tM D 1

such that, for k D 1; : : : ;M , the interval Œtk�1; tk� admits an open neighborhood

Vk in C on which there is a �nite collection of bounded holomorphic functions

.�jk/
Nk

j D1 � O.Vk/ and an open neighborhood Wk � C of �0 such that (taking

multiplicities into account)

�.L�
b;�t
/ \Wk D

Nk
[

j D1

�jk.t / \Wk for all t 2 Œtk�1; tk�:

Moreover, there is a collection .ujk/
Nk

j D1 � O.Vk ; H
2

A.�// such that for t 2

Œtk�1; tk�,

ujk.t / 2 Dom.L�
b;�t
/ n ¹0º and L�

b;�t
ujk.t / D �jk.t /ujk.t /:

Proof. We start by proving the �rst part of the theorem concerning the parametriza-
tion of the spectrum. Let W0 be an open neighborhood of �0 such that W0 does
not intersect �D . By Lemma 1.8, it holds for any t 2 Œ0; 1� that

�.L�
b;�t
/ \W0 D ¹� 2 W0W 1 � 2B� � 2A��t non-invertibleº:

Since B�;A� 2 ‰�1.@�/ depend holomorphically on �, we can de�ne the
holomorphic function

fff 2 O.U �W0/; fff .t; �/ WD det2d .1� 2B� � 2A��.t//:
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Here det2d denotes the regularized determinant (see [33, Chapter 9]). The regu-
larized determinant det2d de�nes a holomorphic function 1CL2d .L2.@�// ! C

such that det2d .1 C K/ D 0 if and only if 1 C K is non-invertible. Hence,
�.L�

b;�t
/ \W0 D ¹� 2 W0Wfff .t; �/ D 0º.

Fix a point s0 2 Œ0; 1�. We can by [28, Subsection 3.3 and 3.4] �nd a
holomorphic uuu which non-zero in a neighborhood of .s0; �0/ and irreducible
holomorphic functions fff 1; : : : ; fff m such that near .s0; �0/,

fff .t; �/ D uuu.t; �/fff 1.t; �/fff 2.t; �/ � � �fff m.t; �/:

We will construct the functions �j , for j D 1; : : : ; N , as the holomorphic
parametrizations � D �.t/ of the analytic sets fff k.t; �/ D 0 near .s0; �0/ as k
ranges from 1 to m. Fix a k and consider a function fff k as above. Near .s0; �0/

we can by Puiseux’ theorem (see [36, Theorem 2.2.6]) parametrize the zero set
fff k.t; �/ D 0 as a multi-valued function �.t/ D m.t � s0/ for a multivalued
holomorphic function m with m0.z/ ¤ 0 for z near 0 (in all its branches). More-
over, all branches of m are holomorphic outside s0 and holomorphic near s0 af-
ter a suitable singular coordinate change. Following the proof of [29, Theorem
XII.3], we can by Puiseux’ theorem Taylor expand the branch �.t/ at t D s0 as
�.t/ D �0 C

P1
j D1 ǰ .t � s0/

j=p, for some p 2 N>0 and coe�cients ǰ . Since
�.t/ is real whenever t is real, both the numbers

e�i=pˇ1 D lim
t"s0

�.t/� �0

.t � s0/1=p
and ˇ1 D lim

t#s0

�.t/� �0

.t � s0/1=p
;

are real. We deduce that ˇ1 D 0. By induction one can show that ǰ D 0

unless pjj . Hence, �.t/ is holomorphic at t D s0. This construction gives rise to
potentially several parametrizations of fff k.t; �/ D 0 holomorphic near s0. Since
Œ0; 1� is compact, the �rst part of the theorem follows.

Let us turn to the second part of the theorem, concerning the eigenfunctions.
To simplify notation, we drop the k in the notation throughout the rest of the proof.
To prove existence of .uj /

N
j D1 � O.V;H 2

A.�//, we will for simplicity reduce the

problem to the boundary; we need to prove existence of .gj / � O.V;H 3=2.@�//,
for some open neighborhood V of s0 2

SN0

lD1
.wl�1; wl/, such that gj .t / 2

ker.�1=2 C B�j .t/ C A�j .t/�t / n ¹0º for all t 2 V \ Œ0; 1�. For a small enough
neighborhoodV , Lemma 1.8 implies that the collection .uj /

N
j D1 can be constructed

from .gj /
N
j D1 by means of the formula uj .t / WD .B�j .t/CA�j .t/�t /gj .t /. It follows

from Lemma 1.8 and the construction of .�j /
N
j D1 � O.V / that, for a small enough

" > 0, the operator

Pj .t / WD

Z

jzjD"

.z � 1=2C B�j .t/ C A�j .t/�t /
�1 d z;
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is the Riesz projection onto ker.�1=2C B�j .t/ C A�j .t/�t /. We take a non-zero
element gj .s0/ 2 ker.�1=2 C B�j .s0/ C A�j .s0/�s0

/ and extend to a function
gj D gj .t / by

gj .t / WD Pj .t /gj .s0/ 2 ker.�1=2C B�j .t/ C A�j .t/�t /:

Since gj .s0/ ¤ 0, gj .t / ¤ 0 in a neighborhood of s0. �

Remark 2.8. It follows from self-adjointness of L�
b;�t

that �jk.Vk \ Œ0; 1�/ � R.

We let signWR n ¹0º ! ¹�1; 1º denote the sign function. For a holomorphic
function h and a t in its domain of de�nition, we let

ordt .h/ WD inf¹kW h.k/.t / ¤ 0º 2 N [ ¹1º

denote the order of h at t . Note that ordt .h/ D 1 if and only if h � 0.
If h is holomorphic at s0 and vanishes there to odd order, we say that h is odd

at s0. The following proposition is an immediate consequence of Theorem 2.7
and Proposition 2.1.

Proposition 2.9. Take a � 2 R n �D and suppose that .�t /t2Œ0;1� � ‰0.@�/s.a.

is a holomorphic path. Let 0 D t0 < t1 < � � � < tM �1 < tM D 1 be a partition

of Œ0; 1�, .Vk/
M
kD1

open neighborhoods of Œtk�1; tk� in C and .�jk/
Nk

j D1 � O.Vk/ be

holomorphic functions as in Theorem 2.7. De�ne the sets

Zjk WD ¹t 2 Œtk�1; tk�W�jk � � is odd at tº:

The spectral �ow of .L�
b;�t

� �/t2Œ0;1� can be expressed as

sf.L�
b;�t

� �/ D

M
X

kD1

Nk
X

j D1

X

t2Zjk

lim
"�!0

sign.�0
jk.t C "//:

Remark 2.10. The appearance of the small " takes the possibility of �0
jk
.t / D 0

into account and corrects this problem because with a small enough " the number
�0

jk
.t C "/ is not only non-zero, due to the analyticity of �jk , but carries the same

sign as�.k/

jk
.t /, where k D ordt .�jk ��/ if �0

jk
.t / D 0 and measures the direction

of �ow when �0
jk
.t / blows up.
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We now turn to the proof of Theorem 6 (see page 852). The heart of the
proof lies in the next two propositions and summarized below in Remark 2.13. Let
.�t /t2Œ0;1� � ‰0.@�/s.a. be a holomorphic path. De�ne the holomorphic function
ggg 2 O.U � .C n �L/ � C

�/ by

ggg.t; �; �/ WD det
2d
.1� 2��1

B� � 2��1
A��.t//:

Recall the notation fff .t; �/ D ggg.t; �; 1/ from the proof of Theorem 2.7. By
construction, for any � … �L and t ,

�.B� C A��.t/// n ¹0º D ¹� 2 C
�Wggg.t; �; �=2/ D 0º:

Proposition 2.11. The family .�jk/
Nk

j D1 � O.Vk/ constructed in Theorem 2.7
satis�es that

�0
jk.t / D �

@tfff .t; �jk.t //

@�fff .t; �jk.t //
; for t 2 Vk \ Œ0; 1�:

If @�fff .t; �jk.t // D 0, the right hand side is made sense of through a �nite part

value.

Proof. For notational simplicity we drop k from the notation. We start under the
assumption that @�ggg.t; �j .t /; 1/ ¤ 0. The implicit function theorem allows us to
parametrize ggg.t; �; �/ D 0 locally as � D �.t; �/. Assuming @��.t; �j .t // ¤ 0,
the implicit function theorem allows us to parametrize �.t; �/ D 1 locally as
� D �.t/. For a suitable choice of �, we can do so using �.t/ D �j .t /.
It follows that

�0
j .t / D �

@t�.t; �j .t //

@��.t; �j .t //
D �

@tggg.t; �j .t /; 1/

@�ggg.t; �j .t /; 1/
D �

@tfff .t; �j .t //

@�fff .t; �j .t //
:

If t is such that @�ggg.t; �j .t /; 1/ D 0, analyticity of all functions involved guaran-
tees that we can carry out the same proof once perturbing t by a small " > 0 and
letting " ! 0 – giving the �nite part value of �

@tfff .t;�j .t//

@�fff .t;�j .t//
. �

Proposition 2.12. The partial derivatives of fff are given by

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

@tfff .t; �/ D trL2.@�/.@t�.�t ; �/�.�t ; �/
2d�1.1C �.�t ; �//

�1/

det2d .1C �.�t ; �//;

@�fff .t; �/ D trL2.@�/.@��.�t ; �/�.�t ; �/
2d�1.1C �.�t ; �//

�1/

det2d .1C �.�t ; �//:
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Proof. Let ˛ 7! A.˛/ be a holomorphic function U ! L2d .L2.@�// for an open
neighborhood U � C, e.g. �.�t ; �/ as a function of t or of �. By construction,
see [33, Chapter 9], det2d .1 C A.˛// D det.1 C R2d .A.˛/// where det denotes
the Fredholm determinant and

R2d .A.˛// D .1C A.˛// exp
�

2d�1
X

j D1

.�1/j
A.˛/j

j

�

� 1 2 L
1.L2.@�//:

A direct computation shows

d

d ˛
det.1CR2d .A.˛///

D trL2.@�/

�dR2d .A.˛//

d ˛
.1CR2d .A.˛///

�1
�

det.1CR2d .A.˛///

D trL2.@�/

�dA.˛/

d ˛
A.˛/2d�1.1C A.˛//�1

�

det
2d
.1C A.˛//: �

Remark 2.13. The two Propositions 2.11 and 2.12 together with Proposition 2.9
imply Theorem 6 with

Z�.�/ D
°

t 2 Œ0; 1�W �1 2 �.�.�; �t // and
@tfff .t; �/

@�fff .t; �/
is odd at t

±

3. Some observations on the spectral �ow

In the previous section we showed that the spectral �ow can be de�ned. In
this section we will show that in certain special cases the spectral �ow can be
computed.

3.1. Monotonicity of spectral �ow and asymptotics of �ow

Theorem 3.1. Let� 2 Rn�D. Suppose that .�t /t2Œ0;1� 2 ‰0.@�/s.a. is continuous

in the B.H 3=2.@�/;H 1=2.@�//-norm. If �1 � �0 as operators on L2.@�/ then

sf.L�
b;�t

� �/t2Œ0;1� � 0:

Moreover, sf.L�
b;�t

� �/t2Œ0;1� > 0 if for a q 2 N and a �0 < � such that

ƒq < �0 < � < ƒqC1, the following conditions are satis�ed:
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A) .Œ�0; �/ \ �.L�
b;�0

// n �D is non-empty;

B) �1 � �0 � .� � �0/c
2 idL2.�/ as operators on L2.@�/ where

c WD sup
t2Œ0;1�;�2Œ�0;��

kB� C A��t kL2.@�/�!L2.�/:

We remark that c < 1 by an argument similar to the proof of Lemma 1.6.

Proof. By Corollary 4 (see p. 851), we can assume that .�t /t2Œ0;1� is the holomor-
phic path �t D .1� t /�0 C t�1. Take .Vk/

M
kD1

and .�jk/
Nk

j D1 as in Proposition 2.9.
It follows from Theorem 2.7 that for any k we can �nd

.vjk/
Nk

j D1 � C1.Vk \ Œ0; 1�; H 2
A.�//

such that kvjk.t /kL2.�A/ D 1 and vjk.t / 2 ker.L�
b;�t

��jk.t // for all t 2 Vk\Œ0; 1�.
It follows from � 0

t D �1 � �0 and integration by parts that

�0
jk.t / D 2Re

� Z

�

.r C iA/vjk.t / � .r C iA/v0
jk
.t / dV

C

Z

@�

�tvjk.t / � v0
jk
.t / dS

�

C

Z

@�

� 0
tvjk.t / � vjk.t / dS

D 2RehL�
b;�t
vjk.t /; v

0
jk.t /iL2.�/ C

Z

@�

.�1 � �0/vjk.t / � vjk.t / dS

D Re
�

�jk.t /
d

d t
kvjk.t /k

2
L2.�/

�

C h.�1 � �0/vjk.t /; vjk.t /iL2.@�/

D h.�1 � �0/vjk.t /; vjk.t /iL2.@�/

� 0;

(11)

because �1 � �0 � 0 on L2.@�/. It follows immediately from Proposition 2.9 that
sf.L�

b;�t
� �/t2Œ0;1� � 0.

To prove the second statement of the theorem it su�ces to construct a path
of eigenvalues that crosses the point �. We choose a � 2 Œ�0; �/ \ �.L�

b;�0
/

with � … �D . For " > 0 su�ciently small, Theorem 2.7 shows that we can
�nd a path .�.t//t2Œ0;"� which is holomorphic, starting in �.0/ D �, and a
C 1-path .v.t//t2Œ0;"� such that v.t/ 2 Dom.L�

b;�t
/ satis�es kv.t/kL2.�/ D 1 and

L�
b;�t
v.t/ D �.t/v.t/ for all t 2 Œ0; "�. The computation (11) implies that

�0.t / D h.�1 � �0/v.t/; v.t/iL2.@�/ � .� � �0/c
2k@�v.t/k

2
L2.@�/

: (12)
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It follows from Lemma 1.8 that for those t 2 Œ0; "� such that �.t/ … �D and
� � �.t/ � �,

1 D kv.t/kL2.�/ D k.B�.t/ C A�.t/�t /@�v.t/kL2.�/ � ck@�v.t/kL2.@�/:

Let t0 denote the supremum over all " for which � can be extended to Œ0; "�.
If t0 < 1, �.t/ has a pole at t0 and by equation (12) �.t/ ! C1 as t ! t0. In
this case, sf.L�

b;�t
� �/t2Œ0;1� � 1. Assume therefore that �.t/ can be continued

to Œ0; 1�. The continuation argument, and the assumption � … �D , shows that �
satis�es �0.t / ¤ 0 for t in a dense open set hence the set of t with �.t/ 2 �D has
measure 0. We deduce �0.t / � ���0 for almost all t 2 Œ0; 1� such that �.t/ � �.
In particular, �.1/ � � > � D �.0/. The inequality sf.L�

b;�t
� �/t2Œ0;1� � 1

follows. �

Remark 3.2. The condition A.) in Theorem 3.1 can in practice be veri�ed for
� … �D using for instance the Kato-Temple inequality (see [14, 19, 35]) stating that
.�0; �/\ �.L�

b;�
/ is non-empty if there is a unit vector  2 Dom.L�

b;�
/ such that,

with � WD q�
b;�
Œ � and " WD

q

kL�
b;�
 k2

L2.�/
� �2, "2 < .� � �/.�� �0/.

Corollary 3.3. Take �; � 0 2 ‰0.@�/s.a. where � is elliptic and strictly positive on

L2.@�/. De�ne the elliptic �rst order operator

D�;� 0.�/ WD .A�1
� .1=2� B�/ � � 0/��1;

and the family �.t/ WD � 0 C t� . For � 2 R n �D ,

sf.L�
b;�.t/ � �/t2Œ0;� D #.Œ0; �\ �.D�;� 0.�///:

In particular, if D�;� 0.�/ is self-adjoint in a neighborhood of a �0 2 R n �L,

sf.L�
b;�.t/ � �0/t2Œ0;�

D
2d�1

.2�/2d�1

Z

S�@�

�0.�/
2d�1 dSS�@� CO.2d�2/; as  ! 1:

Proof. Using Lemma 1.8, Proposition 2.9 and the proof of Theorem 3.1, it follows
that for � … �D

sf.L�
b;�.t/ � �/t2Œ0;� D #¹t 2 Œ0; �W 1=2 2 �.B� C A�.�

0 C t�//º

D #¹t 2 Œ0; �W 2t 2 �.A�1
� ��1 � 2A�1

� B��
�1 C 2� 0��1/º

D #.Œ0; �\ �.D�;� 0.�///:
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The operator D�;� 0.�/ has a positive principal symbol, namely �1.D�;� 0.�// D

�0.�/
�1. So, ifD�;� 0.�/ is self-adjoint it is also bounded from below by Gårding’s

inequality. It follows from the Weyl law for the self-adjoint �rst order operator
D�;� 0.�/, see [17, Theorem 29.1.5], that

#
�

Œ0; �\ �.D�;� 0.�//
�

D N.0;  ID�;� 0.�//CO.1/

D
2d�1

.2�/2d�1

Z

S�@�

�1.D�;� 0.�//�2dC1 dSS�� CO.2d�2/; as  ! 1:

The above identities make sense and hold true also when � 2 �D n �L, after
choosing a self-adjoint parametrix of A�. �

3.2. Calculations on the disc. We consider the case where K is the closed unit
disc in R

2, so � WD R
2 n K D ¹z 2 CW jzj > 1º and @� D S1. There is a

U.1/-action on L2.�/ decomposing

L2.�/ Š
M

n2Z

L2..1;1/; r d r/:

The unitary U D ˚n2ZUnWL2.�/ !
L

n2Z L
2..1;1/; r d r/ implementing the

isomorphism is de�ned from Unf .r/ WD
R 2�

0
f .rei�/e�in� d � .

To simplify the discussion of Landau–Robin operators, we assume that the
pseudo-di�erential operator � 2 ‰0.S1/ is U.1/-equivariant. In particular, there
is a sequence .�n/n2Z 2 `1.Z/ such that for g D

P

n2Z gnein� 2 L2.S1/,
�g.�/ D

P

n2Z �ngnein� . Not all sequences in `1.Z/ arise from a U.1/-
equivariant pseudodi�erential operator, for a characterization of such sequences,
see [3, 23, 30]. The algebra of U.1/-equivariant pseudo-di�erential operators
on the circle is commutative. For any m, the norm on the U.1/-equivariant
pseudo-di�erential operators coming from B.H s.S1/;H s�m.S1// does not de-
pend on s 2 R and is given by k�kB.H s.S1/;H s�m.S1// D supn2Z.1C jnj/�mj�nj.
In fact, the arguments in this subsection go through for any operator � with
�g.�/ D

P

n2Z �ngnein� constructed from a sequence .�n/n2Z 2 `1.Z/.
When � is U.1/-equivariant, the unitary transformation U satis�es

UL�
b;�U

� D
M

n2Z

Hn.b; �n/;

where we take a graph closure of the direct sum on the right hand side andHn.b; t /

is the di�erential expression

Hn.b; t / D �
d2

d r2
�
1

r

d

d r
C

�n

r
�
br

2

�2

;
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equipped with the domain

Dom.Hn.b; t // WD ¹wWHn.b; t /w 2 L2..1;1/; r d r/ and w0.1/ � tw.1/ D 0º:

It can be shown that the di�erential equation Hn.b; t /w D �w in .1;1/ has a
one-dimensional space of L2-solutions spanned by the function

w�;n;b.r/ D r�1WnC�b�1

2
; n

2

�br2

2

�

:

Here W�;� denotes the Whittaker functions, see [1, Chapter 13]. It follows that

�.Hn.b; t // D ¹� 2 RWw0
�;n;b.1/ � tw�;n;b.1/ D 0º:

Proposition 3.4. When � is the complement of the closed unit disc in R
2, we

can describe the spectrum of a Landau–Robin operator de�ned from a U.1/-

equivariant pseudo-di�erential operator � as

�.L�
b;�/ D

[

n2Z

¹� 2 RWw0
�;n;b

.1/ � �nw�;n;b.1/ D 0º:

The analysis of the boundary operators A� and B� simpli�es greatly as they
lie in the commutative algebra of U.1/-equivariant pseudo-di�erential operators;
this fact is seen from the de�nition of their integral kernels, see Proposition 1.2.
The Fourier modes of the operators A� and �1=2 C B�, respectively, are given
by

an.�; b/ WD
1

4�

Z 2�

0

Z 1

0

ein�e.t; �; �; b/ d t d �; (13a)

bn.�; b/ WD
1

8�

Z 2�

0

Z 1

0

ein�e.t; �; �; b/ .i sin.�/C .cos.�/ � 1/ coth.t //d t d �;

(13b)

where

e.t; �; �; b/ WD
exp

�

ib sin.�/ � 1�cos.�/
2

coth.t /C �t
b

�

sinh.t /
:

Both integrals are interpreted as principal value integrals. It follows that for
any self-adjoint U.1/-equivariant pseudo-di�erential operators � and � 0 on S1

the operator D�;� 0.�/ of Corollary 3.3 is indeed self-adjoint. Using the explicit
formulas of Proposition 1.2 and the characterization of Lemma 1.8, we infer the
following proposition from equation (13).
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Proposition 3.5. Let � be the complement of the closed unit disc in R
2 and � a

U.1/-equivariant pseudo-di�erential operator on S1 with Fourier modes .�n/n2Z.

We have the equality

�.L�
b;�/ n �D D

[

n2Z

¹� 2 C n �DW bn.�; b/C �nan.�; b/ D 0º:

We conclude this paper with a result concerning the multiplicities of the
Landau level ƒq as an eigenvalue for the exterior of the disc. We can treat the
Landau levels, i.e. the essential spectrum, in this particular case due to the simple
geometry of the circle. At the Landau level ƒq D .2q � 1/b,

wƒq ;n;b.r/ D .q � 1/Š.�1/q�1
�b

2

�
nC1

2

rne�br2=4Ln
q�1

�br2

2

�

;

where Ln
q�1 denotes the Laguerre polynomials. As such, ƒq is an eigenvalue for

L�
b;�

if and only if for an n the following polynomial equation which is linear in
�n and of order q in b holds:

.2n� b � 2�n/L
n
q�1

�b

2

�

C 2bLnC1
q�2

�b

2

�

D 0: (14)

Here we have used the identity LnC1
q�2 D .Ln

q�1/
0. We remark that the zeroes of

the Laguerre polynomials are simple, hence it never holds that Ln
q�1.b=2/ D 0

and LnC1
q�2 .b=2/ D 0 simultaneously. For q D 1, this equation is equivalent to the

linear relation �n D n � b=2. For Ln
q�1.b=2/ ¤ 0 we can solve the equation (14).

We de�ne a sequence giving a solution to equation (14) (whenever it exists) as

Tn.q; b/ WD n �
b

2
C b`n.q; b/; (15)

where

`n.q; b/ WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 for Ln
q�1

�b

2

�

D 0;

LnC1
q�2

�b

2

�

Ln
q�1

�b

2

�

for Ln
q�1

�b

2

�

¤ 0:

Equation (14) shows how the Weyl law from Corollary 3.3 comes into play: as
�n increases, eigenvalues will cross Landau levels in a linear fashion. From the
particular form of Tn from equation (15) we can deduce properties about the
multiplicities of ƒq as an eigenvalue of L�

b;�
.
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Proposition 3.6. Let � be the complement of the closed unit disc in R
2. The

sequence .Tn.q; b//n2Z is the sequence of Fourier modes associated with an

ellipticU.1/-equivariant pseudo-di�erential operatorT D T .q; b/ 2 ‰1.S1/U.1/.

Moreover, if � 2 ‰t .S1/U.1/ for t < 1 and ƒq is an eigenvalue of L�
b;�

, ƒq has at

most �nite multiplicity satisfying the upper estimate

dim.L�
b;� �ƒq/ � C.q; b/#

°

nW �n 2
h

n�
b

2
�
d.q; b/

jnj
; n�

b

2
C
d.q; b/

jnj

i±

; (16)

for some constants C.q; b/; d.q; b/ > 0.

Proof. The expression

Ln
q�1.x/ D

q�1
X

iD0

�

q � 1C n

q � 1 � i

�

.�x/i

i Š
;

for the Laguerre polynomials shows

`n.q; b/ D

Pq�1
iD1 ci�1;q.n/b

i�1

Pq�1
iD0 ci;q.n/bi

where

ci;q.n/ WD

�

q � 1C n

q � 1 � i

�

.�1/i

2i i Š
:

The expression `n.q; b/ being a rational function in n, has an asymptotic expansion
as jnj ! 1 with leading order contribution .q � 1/n�1. Existence of the
asymptotic expansion implies that `n.q; b/ de�nes a pseudo-di�erential operator
of order �1 by [3] or [23]. Therefore T is a pseudo-di�erential operator of order
1 whose principal symbol takes the values ˙1. We deduce ellipticity of T .

If � 2 ‰t .S1/U.1/ for t < 1, then j�nj . jnjt and there is at most a �nite
number of n for which �n D Tn. The number of n for which �n D Tn and
Ln

q�1

�

b
2

�

¤ 0 holds coincides with dim.L�
b;�

�ƒq/ by equation (14) and (15). This
�nite number of solutions is bounded by the right hand side of the estimate (16)

since j`n.q; b/j . jnj�1. �

Acknowledgements. Thanks to Grigori Rozenblum for carefully reading the
manuscript and making several useful suggestions and remarks. Thanks to Mikael
Persson Sundqvist for helpful discussions and sharing the unpublished note [25],
both providing the inspiration for writing Section 3.2.



Spectral �ow of exterior Landau–Robin hamiltonians 877

References

[1] M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions with

formulas, graphs, and mathematical tables. National Bureau of Standards Applied
Mathematics Series, 55. For sale by the Superintendent of Documents, U.S. Govern-
ment Printing O�ce, Washington, D.C. 1964. MR 0167642 Zbl 0171.38503

[2] A. Aftalion and B. Hel�er, On mathematical models for Bose-Einstein condensates
in optical lattices. Rev. Math. Phys. 21 (2009), no. 2, 229–278. MR 2502397
Zbl 1171.82304

[3] M. S. Agranovich, Elliptic pseudodi�erential operators on a closed curve. Trudy

Moskov. Mat. Obshch. 47 (1984), 22–67, 246. In Russian. English translation, Trans.

Mosc. Math. Soc. 1985, 23-74. MR 0774945 Zbl 0573.35071 Zbl 0584.35078 (transl.)

[4] M. S. Agranovich, Sobolev spaces, their generalizations and elliptic problems

in smooth and Lipschitz domains. Revised translation of the 2013 Russian orig-
inal. Springer Monographs in Mathematics. Springer, Cham, 2015. MR 3287270
Zbl 1322.46002

[5] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian ge-
ometry III. Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71–99. MR 0397799
Zbl 0325.58015

[6] M. Š. Birman, Perturbation of the spectrum of a singular elliptic operator under varia-
tion of the boundary and boundary conditions. Dokl. Akad. Nauk SSSR 137 761–763.
In Russian. English translation, Soviet Math. Dokl. 2 (1961) 326–328. MR 0177311
Zbl 0146.34403

[7] B. Booss-Bavnbek, M. Lesch, and J. Phillips, Unbounded Fredholm operators
and spectral �ow. Canad. J. Math. 57 (2005), no. 2, 225–250. MR 2124916
Zbl 1085.58018

[8] V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld.
Z. Phys 47 (1928), 446–448. JFM 54.0966.02

[9] S. Fournais and B. Hel�er, Spectral methods in surface superconductivity., Progress
in Nonlinear Di�erential Equations and their Applications, 77. Birkhäuser Boston,
Boston, MA, 2010. MR 2662319 Zbl 1256.35001

[10] M. Go�eng, Index formulas and charge de�ciencies on the Landau levels. J. Math.

Phys. 51 (2010), no. 2, article id. 023509, 18 pp. MR 2605059 Zbl 1309.81353

[11] M. Go�eng, A. Kachmar, M. Persson Sundqvist, Clusters of eigenvalues for the
magnetic Laplacian with Robin condition. J. Math. Phys. 57 (2016), no. 6, article
id. 063510, 19 pp. MR 3516797 Zbl 1355.81073

[12] G. Grubb, Perturbation of essential spectra of exterior elliptic problems. Appl.

Anal. 90 (2011), no. 1, 103–123. MR 2763538 Zbl 1208.35094

[13] R. C. Gunning and H. Rossi, Analytic functions of several complex variables.

Prentice-Hall, Englewood Cli�s, N.J., 1965. MR 0180696 Zbl 0141.08601

http://www.ams.org/mathscinet-getitem?mr=0167642
http://zbmath.org/?q=an:0171.38503
http://www.ams.org/mathscinet-getitem?mr=2502397
http://zbmath.org/?q=an:1171.82304
http://www.ams.org/mathscinet-getitem?mr=0774945
http://zbmath.org/?q=an:0573.35071
http://zbmath.org/?q=an:0584.35078
http://www.ams.org/mathscinet-getitem?mr=3287270
http://zbmath.org/?q=an:1322.46002
http://www.ams.org/mathscinet-getitem?mr=0397799
http://zbmath.org/?q=an:0325.58015
http://www.ams.org/mathscinet-getitem?mr=0177311
http://zbmath.org/?q=an:0146.34403
http://www.ams.org/mathscinet-getitem?mr=2124916
http://zbmath.org/?q=an:1085.58018
http://zbmath.org/?q=an:54.0966.02
http://www.ams.org/mathscinet-getitem?mr=2662319
http://zbmath.org/?q=an:1256.35001
http://www.ams.org/mathscinet-getitem?mr=2605059
http://zbmath.org/?q=an:1309.81353
http://www.ams.org/mathscinet-getitem?mr=3516797
http://zbmath.org/?q=an:1355.81073
http://www.ams.org/mathscinet-getitem?mr=2763538
http://zbmath.org/?q=an:1208.35094
http://www.ams.org/mathscinet-getitem?mr=0180696
http://zbmath.org/?q=an:0141.08601


878 M. Go�eng and E. Schrohe

[14] E. M. Harrell II, Generalizations of Temple’s inequality. Proc. Amer. Math. Soc. 69

(1978), no. 2, 271–276. MR 0487733 Zbl 0345.47007

[15] K. Hornberger and U. Smilansky, Magnetic edge states. Phys. Rep. 367 (2002), no. 4,
249–385. MR 1921565

[16] L. Hörmander, The analysis of linear partial di�erential operators. III. Pseudo-
di�erential operators. Pseudo-di�erential operators. Reprint of the 1994 edition. Clas-
sics in Mathematics. Springer, Berlin, 2007. MR 2304165 Zbl 1115.35005

[17] L. Hörmander, The analysis of linear partial di�erential operators. IV. Fourier inte-
gral operators. Reprint of the 1994 edition. Classics in Mathematics. Springer-Verlag,
Berlin, 2009. MR 2512677 Zbl 1178.35003

[18] A. Kachmar and M. Persson, On the essential spectrum of magnetic Schrödinger oper-
ators in exterior domains. Arab J. Math. Sci. 19 (2013), no. 2, 217–222. MR 3073560
Zbl 1278.81077

[19] T. Kato, On the upper and lower bounds of eigenvalues. J. Phys. Soc. Japan 4 (1949).
334–339. MR 0038738

[20] T. Kato, Perturbation theory for linear operators. Reprint of the 1980 edition. Classics
in Mathematics. Springer-Verlag, Berlin, 1995. MR 1335452 Zbl 0836.47009

[21] P. Kirk and M. Lesch, The �-invariant, Maslov index, and spectral �ow for Dirac-
type operators on manifolds with boundary. Forum Math. 16 (2004), no. 4, 553–629.
MR 2044028 Zbl 1082.58021

[22] L. Landau, Diamagnetismus der Metalle. Z. Phys. 64 (1930), 629–637.
JFM 56.1318.10

[23] S. T. Melo, Characterizations of pseudodi�erential operators on the circle. Proc.

Amer. Math. Soc. 125 (1997), no. 5, 1407–1412. MR 1415353 Zbl 0870.47030

[24] M. Persson, Eigenvalue asymptotics of the even-dimensional exterior Landau–
Neumann Hamiltonian. Adv. Math. Phys. 2009, article id. 873704, 15 pp.
MR 2500946 Zbl 1201.81055

[25] M. Persson Sundqvist, On some parameter-dependent spectral problems. Unpub-
lished overview article.

[26] J. Phillips, Self-adjoint Fredholm operators and spectral �ow. Canad. Math. Bull. 39

(1996), no. 4, 460–467. MR 1426691 Zbl 0878.19001

[27] A. Pushnitski and G. Rozenblum, Eigenvalue clusters of the Landau Hamiltonian
in the exterior of a compact domain. Doc. Math. 12 (2007), 569–586. MR 2377242
Zbl 1132.35424

[28] R. M. Range, Holomorphic functions and integral representations in several complex

variables. Graduate Texts in Mathematics, 108. Springer-Verlag, New York, 1986.
MR 0847923 Zbl 0591.32002

[29] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of op-
erators. Academic Press, New York and London, 1978. MR 0493421 Zbl 0401.47001

http://www.ams.org/mathscinet-getitem?mr=0487733
http://zbmath.org/?q=an:0345.47007
http://www.ams.org/mathscinet-getitem?mr=1921565
http://www.ams.org/mathscinet-getitem?mr=2304165
http://zbmath.org/?q=an:1115.35005
http://www.ams.org/mathscinet-getitem?mr=2512677
http://zbmath.org/?q=an:1178.35003
http://www.ams.org/mathscinet-getitem?mr=3073560
http://zbmath.org/?q=an:1278.81077
http://www.ams.org/mathscinet-getitem?mr=0038738
http://www.ams.org/mathscinet-getitem?mr=1335452
http://zbmath.org/?q=an:0836.47009
http://www.ams.org/mathscinet-getitem?mr=2044028
http://zbmath.org/?q=an:1082.58021
http://zbmath.org/?q=an:56.1318.10
http://www.ams.org/mathscinet-getitem?mr=1415353
http://zbmath.org/?q=an:0870.47030
http://www.ams.org/mathscinet-getitem?mr=2500946
http://zbmath.org/?q=an:1201.81055
http://www.ams.org/mathscinet-getitem?mr=1426691
http://zbmath.org/?q=an:0878.19001
http://www.ams.org/mathscinet-getitem?mr=2377242
http://zbmath.org/?q=an:1132.35424
http://www.ams.org/mathscinet-getitem?mr=0847923
http://zbmath.org/?q=an:0591.32002
http://www.ams.org/mathscinet-getitem?mr=0493421
http://zbmath.org/?q=an:0401.47001


Spectral �ow of exterior Landau–Robin hamiltonians 879

[30] G. Rozenblum, Near-similarity of operators and the spectral asymptotic behavior of
pseudodi�erential operators on the circle. Trudy Moskov. Mat. Obshch. 36 (1978),
59–84, 294. MR 0507568

[31] G. Rozenblum and G. Tashchiyan, On the spectral properties of the perturbed Landau
Hamiltonian. Comm. Partial Di�erential Equations 33 (2008), no. 4-6, 1048–1081.
MR 2424389 Zbl 1158.47029

[32] B. Simon, Functional integration and quantum physics. Pure and Applied Mathemat-
ics, 86. Academic Press, New York and London, 1979. MR 0544188 Zbl 0434.28013

[33] B. Simon, Trace ideals and their applications. Second edition. Mathematical Sur-
veys and Monographs, 120 American Mathematical Society, Providence, R.I., 2005.
MR 2154153 Zbl 0423.47001

[34] M. E. Taylor, Partial di�erential equations. II. Qualitative studies of linear equations.
Applied Mathematical Sciences, 116. Springer-Verlag, New York, 1996. MR 1395149
Zbl 0869.35003

[35] G. Temple, An elementary proof of Kato’s lemma. Mathematika 2 (1955), 39–41.
MR 0072445 Zbl 0064.37101

[36] C. T. C. Wall, Singular points of plane curves. London Mathematical Society
Student Texts, 63. Cambridge University Press, Cambridge, 2004. MR 2107253
Zbl 1057.14001

Received June 10, 2015; revised June 24, 2015

Magnus Go�eng, Department of Mathematical Sciences, Chalmers Tvärgata 3,
412 96 Göteborg, Sweden

e-mail: go�eng@chalmers.se

Elmar Schrohe, Institut für Analysis, Leibniz Universität Hannover, Welfengarten 1,
30167 Hannover, Germany

e-mail: schrohe@math.uni-hannover.de

http://www.ams.org/mathscinet-getitem?mr=0507568
http://www.ams.org/mathscinet-getitem?mr=2424389
http://zbmath.org/?q=an:1158.47029
http://www.ams.org/mathscinet-getitem?mr=0544188
http://zbmath.org/?q=an:0434.28013
http://www.ams.org/mathscinet-getitem?mr=2154153
http://zbmath.org/?q=an:0423.47001
http://www.ams.org/mathscinet-getitem?mr=1395149
http://zbmath.org/?q=an:0869.35003
http://www.ams.org/mathscinet-getitem?mr=0072445
http://zbmath.org/?q=an:0064.37101
http://www.ams.org/mathscinet-getitem?mr=2107253
http://zbmath.org/?q=an:1057.14001
mailto:goffeng@chalmers.se
mailto:schrohe@math.uni-hannover.de

	Introduction
	Operators associated with the fundamental solution
	Gap continuity and spectral flows
	Some observations on the spectral flow
	Acknowledgements
	References

