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Abstract. In this note we study properties of partially ample line bundles on
simplicial projective toric varieties. We prove that the cone of q-ample line bundles is
a union of rational polyhedral cones, and calculate these cones in examples. We prove
a restriction theorem for big q-ample line bundles, and deduce that q-ampleness of
the anticanonical bundle is not invariant under flips. Finally we prove a Kodaira-type
vanishing theorem for q-ample line bundles.

2010 Mathematics Subject Classification. 14M25, 14C20

1. Introduction. Ample line bundles are a fundamental concept in algebraic
geometry, encapsulating the central notion of positivity. A natural extension of the
notion of ampleness is that of q-ampleness, for nonnegative integers q. Roughly
speaking, q-ample line bundles on a variety are those which “kill cohomology in
degrees above q.” Line bundles of this kind have been studied by a number of authors,
including Andreotti–Grauert [1], Sommese [13], Demailly–Peternell–Schneider [6], and
Totaro [14].

In this note, we verify some basic properties of q-ample line bundles on toric
varieties. We begin by reviewing basic facts about q-ampleness. Then in Section 3, we
study the structure of the set of all q-ample line bundles on a simplicial toric variety. We
show that the cone of q-ample line bundles is the interior of a finite union of rational
polyhedral cones, and that it is defined by the vanishing of asymptotic cohomological
functions. As an illustration, in Section 4 we give examples of explicit calculations of
q-ample cones of two families of toric varieties.

In Sections 5 and 6, we prove that q-ampleness of big line bundles on toric
varieties is detected by restriction to torus-invariant divisors, and use this fact to
study q-ampleness of the anticanonical bundle: in particular, we give an example
showing that 1-ampleness of −K is not preserved by flips, answering a question of
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588 NATHAN BROOMHEAD ET AL.

Demailly–Peternell–Schneider. We finish in Section 7 by proving a Kodaira-type
vanishing theorem for q-ample bundles on toric varieties.

2. q-ample line bundles. Throughout the paper, we stick to toric varieties over
algebraically closed fields of characteristic zero. We switch between additive and
multiplicative notation for line bundles wherever convenient, and freely identify line
bundles and the corresponding divisors.

In the 1950s, Serre gave a cohomological characterisation of ample line bundles: a
line bundle is ample if and only if some sufficiently high power of it kills cohomology of
any coherent sheaf in degrees above zero. This characterisation suggests the following
generalisation of ampleness, introduced by Sommese [13]. (Note that Sommese’s
definition requires that some power of the line bundle be globally generated, but
we drop that hypothesis here.)

DEFINITION 2.1. Let X be a projective variety. A line bundle L on X is called
q-ample (for some integer q ≥ 0) if for any coherent sheaf F on X , there exists a natural
number m0 (depending on F) such that

Hi(X, mL ⊗ F) = 0 for all i > q and m ≥ m0. (1)

Any line bundle on a variety of dimension n is n-ample; by Serre, 0-ample is the
same as ample.

At first sight, the q-ample condition seems hard to check, since it involves tensoring
with an arbitrary coherent sheaf. The following result reduces this to a much simpler
condition:

PROPOSITION 2.2 ([12], Lemma 2.1). Let X be a projective variety over a field of
characteristic 0, and fix an ample line bundle O(1) on X. A line bundle L on X is q-ample
if and only if for each r ≥ 0, we have Hi(X, mL ⊗ O(−r)) = 0 for m sufficiently large
and all i > q. In particular, condition (1) need only be checked for locally free sheaves.

In fact, as shown in [14], a much stronger statement is true: L is q-ample provided
it kills higher cohomology of a fixed finite set of line bundles O, . . . ,O(−r).

For q > 0, it remains an open problem to give a simple numerical or geometric
condition, in the spirit of Kleiman’s criterion, for q-ampleness.

3. The q-ample cone of a toric variety. In this section, we recall some basic facts
about cohomology of line bundles on toric varieties, together with Hering–Küronya–
Payne’s formula for calculating dimensions of cohomology groups. We then use to
describe the structure of the cone of q-ample line bundles on a toric variety, and to
show that it is characterised by the vanishing of asymptotic cohomological functions.

Let X = X(�) be a simplicial projective n-dimensional toric variety, corresponding
to some complete fan � in a lattice N ∼= Zn. We denote by �(1) the set of rays of �,
and write vi for the primitive generators of the ray i ∈ �(1). There is a one-to-one
correspondence between prime torus-invariant divisors and rays [8, Chapter 3]. We
denote these divisors by {Di | i ∈ �(1)} and the free group generated by them by Z�(1).
The dual space Z�(1) is generated by the dual basis {ei | i ∈ �(1)}.
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PARTIALLY AMPLE LINE BUNDLES ON TORIC VARIETIES 589

Let M := Hom(N, Z) ∼= Zn be the dual lattice to N, with pairing 〈·, ·〉. We have
the following commutative diagram with exact rows:

0 �� M �� DivT (X)� �

��

�� Pic(X)� �

��

�� 0

0 �� M �� Z�(1)
[−] �� Cl(X) �� 0

(2)

where DivT (X) is the group of torus-invariant Cartier divisors, and Cl(X) is the class
group. Applying the functor − ⊗Z R and using the fact that simplicial toric varieties
are Q-factorial, we obtain the following exact sequence

0 �� MR �� R�(1)
[−] �� N1(X) �� 0 (3)

where N1(X) denotes Pic(X) ⊗ R.
For I ⊂ �(1), we define �I to be the subfan of � consisting of cones whose rays

belong to I . For a torus-invariant divisor D = ∑
ρ aρDρ , we define the polyhedral

region

PD,I = {
u ∈ MR | 〈

u, vρ

〉 ≥ −aρ ⇔ ρ ∈ I
}
. (4)

Note that for a positive integer m, we have PmD,I = mPD,I .
Hering–Küronya–Payne [10] gave a description of the cohomology of the divisor

D in terms of local cohomology groups and lattice points in PD,I . For a subfan �I ,
we denote the dimension of the (topological) local cohomology group Hi

|�I |(NR) with
support in the subspace |�I | by hi

|�I |.

PROPOSITION 3.1 (Hering–Küronya–Payne). For a line bundle D on a simplicial
projective toric variety, we have

hi(X, D) =
∑

I⊂�(1)

hi
|�I | · # (PD,I ∩ M)

We also recall Küronya’s definition of asymptotic cohomological functions [11]. For
an n-dimensional projective variety X and a line bundle L on X , we define

ĥi(L) = n! lim
m→∞

hi(X, mL)
mn

Note that ĥ0 is just the usual volume function. Küronya showed that the functions
ĥi give well-defined homogeneous continuous functions on the space N1(X). By Serre
it is clear that for each i > 0 the function hi vanishes identically on the nef cone; de
Fernex–Küronya–Lazarsfeld [7] showed that in fact this characterises the nef cone.

For a bounded polyhedron P ∈ MR, let Vol(P) denote the volume of P, normalised
so that the smallest lattice simplex has unit volume. Then

Vol(P) = n! lim
m→∞

#mP ∩ M
mn

.
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590 NATHAN BROOMHEAD ET AL.

Combining the three displayed equations above then gives

ĥi(D) =
∑

I⊂�(1)

hi
|�I | · Vol(PD,I ). (5)

Finally, we need the following elementary result.

LEMMA 3.2. Let A be a real m × n matrix with m ≤ n, and let b ∈ Rm. If the
inequality Ax ≤ b has a solution, then there exists a vector v ∈ Rm such that for any
ε > 0 the set {x ∈ Rn | Ax ≤ b + εv} is an n-dimensional polyhedron.

Now we can state the main result of this section.

THEOREM 3.3. Let X be a simplicial projective toric variety and let D = ∑
ρ aρDρ

be a torus-invariant divisor on X. Then, the following are equivalent:
(a) D is q-ample;
(b) For every ample divisor A, we have Hi(X, mD − A) = 0 for i > q and m � 0;
(c) There exists an open neighbourhood U of [D] ∈ N1(X) such that ĥi(x) = 0 for all

i > q and all x ∈ U.

Proof. The equivalence (a) ⇔ (b) is Proposition 2.2.
Next, if D is q-ample, then immediately from the definition we get ĥi(D) = 0 for

all i > q. Moreover, for each q, the q-ample cone is open in N1(X) [14, Theorem 8.3].
This proves the implication (a) ⇒ (c).

So it suffices to prove the implication (c) ⇒ (b). Fix i > q. Let I ⊂ �(1) be a
subset such that hi

|�I | > 0: that is, a subset which could contribute nonzero terms to
ĥi. Then for any D′ ∈ U , the polyhedron PD′,I must be the empty set: if it were not, by
Lemma 3.2 we could choose a class E such that for all 0 < ε � 1, the perturbed class
D′ + εE ∈ U has the property that PD′+εE,J has positive volume. But then formula (5)
implies that ĥi(X, D′ + εE) is nonzero, contradicting our choice. Since for large m we
know that D − 1

m A lies in U , we must have that PD− 1
m A,I = ∅. By our earlier remark,

this implies that PmD−A,I = ∅ too. Since this is true for all I which could contribute to
Hi, we get that Hi(X, mD − A) = 0 as required. �

The theorem allows us to describe the q-ample cone of a toric variety. By definition,
an R-divisor D is q-ample if it is numerically equivalent to a sum cL + A where L is
a q-ample divisor, c a positive real number, and A is an ample R-divisor. The set of
all q-ample R-divisors defines an open cone in N1(X) whose integer points are exactly
the q-ample divisors [14, Theorem 8.3]. Chen–Lazarsfeld asked if, for Fano varieties,
these cone are always the interior of a finite union of rational polyhedral cones. (This
is the simplest possible generalisation of the Cone Theorem in this context, since these
cones are known not to be convex in general.) Here, we give a positive answer to the
analogue of Chen–Lazarsfeld’s question for toric varieties.

COROLLARY 3.4. If X is a simplicial projective toric variety, then the closure of the
q-ample cone Ampq(X) is a union of rational polyhedral cones, for each q ≥ 0.

Proof. Theorem 3.3 says that Ampq(X) ⊂ N1(X) is the common vanishing locus of
the functions ĥi for i > q. Formula (5) shows that ĥi(D) = 0 for all i > q if and only if:

Vol PD,I = 0 for all I ⊂ �(1) such that hi
|�|I > 0 for some i > q.
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PARTIALLY AMPLE LINE BUNDLES ON TORIC VARIETIES 591

The basic point is that for each appropriate I , the subset in R�(1) of D satisfying the
above condition is cut out by a collection of rational hyperplanes, and the images of
these hyperplanes in N1(X) then define the cone Ampq(X).

In more detail, let I be any subset of �(1), and consider a divisor D = ∑
dρDρ .

First, if dρ > 0 for ρ ∈ I and dρ < 0 for ρ /∈ I , then clearly PD,I contains a small
ball around the origin: in particular, Vol PD,I > 0. Note that if we replace D with a
linearly equivalent divisor D′ = D + div(u) (for some rational function u ∈ M), the
new polytope PD′,I is just the translate PD,I − U , so it also has positive volume.

Conversely, if PD,I contains a ball around the origin, it is clear we must have dρ > 0
for ρ ∈ I and dρ < 0 for ρ /∈ I . Now if D is any divisor such that Vol PD,I > 0, then
(perhaps after scaling D) there exists a rational function u such that for the divisor
D′ = D + div(u), the polytope PD′,I contains a small ball around the origin, and so D′

has the property stated.
To summarise, we have shown that Vol PD,I > 0 if and only if D is linearly

equivalent to a divisor D′ = ∑
dρDρ with dρ > 0 if and only if ρ ∈ I . The set of

such divisors D′ forms an (open) orthant OI in R�(1), and so the closure of its image
[OI ] in N1(X) is a rational polyhedral cone. Theorem 3.3 shows that Ampq(X) is the
complement of the union (over a finite set of I) of the cones [OI ], and hence is the
interior of a union of rational polyhedral cones. �

4. Examples. In this section, we illustrate Theorem 3.3 by calculating the q-ample
cones of two families of examples: projective bundles over P1, and toric P1-bundles
over projective spaces.

To make the calculations easier, we find it convenient to reformulate our earlier
conditions on cohomology vanishing in terms of the polytope of our toric variety X .
Recall that the polytope PX of X is defined exactly as in formula (4) in Section 3,
where D is chosen to be any ample divisor on X , and J = �(1). Broomhead [3] showed
how to calculate cohomology of line bundles on X in terms of the topology of certain
subspaces of PX . For this statement, given a subset I ⊂ �(1), let PI

X denote the subset
of PX consisting of the union of all top-dimensional faces corresponding to rays in I .
The statement we need is the following:

PROPOSITION 4.1. Let X be a simplicial projective toric variety and D = ∑
aρDρ a

torus-invariant divisor. Then, ĥi(D) �= 0 if and only if the following is true: there exists
I ⊂ �(1) such that H̃i−1(PI

X ) �= 0, and a divisor D′ = ∑
dρDρ , linearly equivalent to D,

such that dρ < 0 if and only if ρ ∈ I.

Proof. According to formula (5), ĥi(D) �= 0 if and only if there exists a subset J ⊆
�(1) such that Hi

|�J | �= 0 and Vol PD,J �= 0. Fix any such subset J and let I = �(1) \ J.
In the proof of Corollary 3.4, we saw that Vol PD,J > 0 if and only if there exists

D′ linearly equivalent to D satisfying the stated condition. So it remains to prove that
Hi

|�J | ∼= H̃i−1(PI
X ).

For this, denote by S the unit sphere in the vector space NR. Then, there is an
isomorphism

Hi
|�J | ∼= H̃i−1(S \ S ∩ |�J |).

The fan of X induces the structure of a simplicial complex on S, and the polytope PX

can be viewed as the dual complex. Then, S \ S ∩ |�J | retracts onto PI
X . Combining
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592 NATHAN BROOMHEAD ET AL.

with the previous displayed isomorphism, this gives an isomorphism

Hi
|�J | ∼= H̃i−1(PI

X ).

�
We emphasise that this gives a method for computing q-ample cones in practice.

Given X , we take its polytope PX . For each i, we enumerate the subsets I ⊂ �(1) such
that H̃i(PI

X ) is nontrivial. Each such subset I defines an orthant OI in R�(1) consisting
of line bundles whose i-th asymptotic cohomology has a nonzero contribution from I .
Let [OI ] denote the image of this orthant in N1(X). Then, the proposition shows that
Ampq(X) is the complement of

⋃
I [OI ], where the union is over all I ⊂ �(1) such that

H̃i(PI
X ) �= 0 for some i ≥ q. The next two subsections will illustrate this algorithm.

4.1. Bundles over P1. We follow the notation for projective bundles from
[5, Chapter 7]. Let X = P(V), where V is a vector bundle over P1 of rank n + 1. By the
Birkhoff theoremV is a direct sum of line bundles; after twisting, we can assume without
loss of generality that V = OP1 ⊕ OP1 (a1) ⊕ · · · ⊕ OP1 (an), where 0 ≤ a1 ≤ · · · ≤ an.

The fan of X is described as follows. Let R × Rn have basis v1, e1, . . . , en, and set

e0 = −
n∑

i=1

ei ; v0 = −v1 +
n∑

i=1

aiei.

Then, the vectors e0, . . . , en, v0, v1 span the rays of the fan of X , and the top-
dimensional cones are of the following form:〈

vi, e0, . . . , êj, . . . , en
〉

i ∈ {0, 1}, j ∈ {0, . . . , n}.
All of these cones are simplicial, so the codimension-1 cones in the fan, corresponding
to the torus-invariant curves on X , are obtained by omitting one spanning vector from
one of the cones above. Using the intersection formulas from [8, Section 5.1], it is
straightforward to calculate intersections between torus-invariant curves and divisors.
This allows us to identify ample divisors on X : in particular, we find that the divisor

A :=
n∑

i=0

Ei +
(

n∑
i=1

ai + 1

)
(V0 + V1)

is ample. (Here, the Ei and Vj are the torus-invariant divisors corresponding to the
vectors ei and vj generating rays of the fan: geometrically, Ei is the sub-bundle of X
obtained by quotienting V by the summand O(ai), and Vj is the fibre over one of the
torus-invariant points of P1.)

Given the ample divisor A, we have the corresponding polytope PX as described
above:

PX =
{

u ∈ MR : 〈u, ei〉 ≥ −1,
〈
u, vj

〉 ≥ −
∑

ai − 1
}

.

The inequalities involving the ei cut out a polyhedron of the form R × �n; the
inequalities with v0 and v1 then bound this in the direction of the R-factor. It is
straightforward to check that the faces of the polytope corresponding to v0 and v1 are
disjoint, irrespective of the values of the ai, so that PX is combintorially equivalent to
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PARTIALLY AMPLE LINE BUNDLES ON TORIC VARIETIES 593

the polytope [0, 1] × �n. The homology groups of unions of faces of this polytope are
described in the following lemma.

LEMMA 4.2. Label the faces of the polytope PX so that the unique pair of disjoint
faces are labelled Fn+2 and Fn+3. Let Y be a union of closed top-dimensional faces of PX .
Then, its reduced homology groups are

H̃k(Y ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k if Y = ∂PX , k = n
k if Y = ∂PX \ {Fn+2 ∪ Fn+3} , k = n − 1

k if Y = Fn+2 ∪ Fn+3, k = 0

k if Y = ∅, k = −1

0 otherwise.

Proof. The proof comes from the long exact sequence of reduced homology groups
associated to a sequence A ↪→ B → B/A, where A is a (reasonable) closed subspace
of a topological space B. Applying this with B = Y , a union of top-dimensional faces
of PX , and A = Y ∩ Fn+2 we reduce the problem to calculating the reduced homology
of either a union of faces of a simplex or the disjoint union of a point with a union
of faces of a simplex. Using the fact that the union of any proper subset of faces of a
simplex has no reduced homology, the result follows. �

This lemma immediately identifies the index sets Iα which give nonzero
contributions to cohomology of a line bundle, as described above. We have

I0 = {
α ⊆ �(1) = {1, . . . , n + 3} | H̃0(Zα, k) �= 0

} = {{n + 2, n + 3}}
I1 = · · · = In−2 = ∅

In−1 = {
α ⊆ �(1) | H̃n−1(Zα, k) �= 0

} = {{1, . . . , n + 1}}
In = {

α ⊆ �(1) | H̃n(Zα, k) �= 0
} = {{1, . . . , n + 3}} .

The corresponding orthants in R�(1) ∼= Rn+3 are then

OI0 = {
(d1, . . . , dn+3) ∈ Rn+3 | dn+2 < 0, dn+3 < 0, di ≥ 0 for all i = 1, . . . , n + 1

}
OI1 = · · · = OIn−2 = ∅

OIn−1 = {
(d1, . . . , dn+3) ∈ Rn+3 | dn+2 ≥ 0, dn+3 ≥ 0, di < 0 for all i = 1, . . . , n + 1

}
OIn = {

(d1, . . . , dn+3) ∈ Rn+3 | di < 0 for all i = 1, . . . , n + 3
}

Now we can calculate the q-ample cones Ampq(X). Proposition 4.1 says that
Ampq(X) is the complement in Pic(X) of the union of the images of all the closed
orthants OIi for i ≥ q. The map Rn+3 → Pic(X) has kernel equal to the column space
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594 NATHAN BROOMHEAD ET AL.

of the matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

−1 −1 · · · −1 0

0 0 · · · 0 1

a1 a2 · · · an −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
whose rows are the primitive vectors of the rays of the fan of X , expressed in the basis
〈e1, . . . , en, v1〉. So in Pic(X) we have Ei = E0 − aiV0 and V0 = V1. Let us denote the
latter linear equivalence class by V . The images of the closed orthants OIi above are
then

OI0 �→ 〈E0, E0 − a1V, . . . , E0 − anV,−V,−V〉 = 〈E0,−V〉

OIn−1 �→ 〈−E0,−E0 + a1V, . . . ,−E0 + anV, V, V〉 = 〈−E0, V〉

OIn �→ 〈−E0,−E0 + a1V, . . . ,−E0 + anV,−V,−V〉 = 〈−E0 + anV,−V〉

where the last equality uses the fact that ai ≤ an for all i.
Putting these regions together as described in Theorem 3.3, we get the following

result:

Amp0(X) = 〈E0, V〉

Ampq(X) = 〈V,−V〉 , 0 < q < n

Ampn(X) = Pic(X)R \ 〈−E0 + anV,−V〉 .

4.2. P1-bundles over projective space. In a similar way, we can calculate the q-
ample cones of a toric P1-bundle over any projective space. Let X = P(OPn ⊕ OPn (a)).
Then, the fan of X is the following: Let Rn × R have basis v1, . . . , vn, e1 and set

e0 = −e1 ; v0 = −
n∑

i=1

vi + ae1.

Then, the maximal cones in the fan are of the form〈
v0, . . . , v̂i, . . . , vn, ej

〉
i ∈ {0, . . . , n}, j ∈ {0, 1}.

Computing intersection numbers with torus-invariant curves shows that the divisor

A := (a + 1) (V0 + · · · + Vn) + E0 + E1

is ample; as before, one finds that the polytope PA is combinatorially equivalent to
�n × [0, 1]. Repeating the process above, we obtain the following result for the q-ample
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PARTIALLY AMPLE LINE BUNDLES ON TORIC VARIETIES 595

cones:

Amp0(X) = 〈E0, V〉

Ampq(X) = 〈V,−V〉

Ampn(X) = Pic(X)R \ 〈−E0 + aV,−V〉 .

The orthants of cohomology nonvanishing and the q-ample cones in this example are
shown in the figure below.

E0

V

[OI0 ]

E0

V

[OIn−1 ]

−E0 + aV

E0

V

[OIn ]

(a) Orthants of cohomology nonvanishing

E0

V

Amp0

V

Ampq (0 < q < n)

−E0 + aV

E0

V

Ampn

(b) The q-ample cones for P(O ⊕O(a))

As a remark, it is well-known ([6, General Properties 1.5], [14, Theorem 9.1]) that, for
any projective variety of dimension d, the (d − 1)-ample cone is the complement in
N1(X) of the negative of the pseudo-effective cone. This gives an easier way to calculate
the cones Ampn in the examples above. Similarly, the toric version of Kleiman’s criterion
gives the ample cone Amp0.

5. Big q-ample line bundles. In this section, we show that for big line bundles on
toric varieties, q-ampleness can be detected by restriction to torus-invariant divisors.
This can be deduced from a theorem of Brown [4], who proved that for big line bundles
on arbitrary projective varieties, q-ampleness can be detected by restriction to the
augmented base locus. We give the proof in the toric case here since it is simple and
self-contained.

THEOREM 5.1. Let X be a simplicial toric variety and L a big line bundle. Then, L is
q-ample if and only if L|E is q−ample on each torus invariant divisor E.

Proof. In one direction, if L is q-ample, then so is its restriction to each subvariety
of X from the definition of q-ampleness.

For the other direction, by Proposition 2.2 it is enough to show that for a locally
free sheaf E on X there exists m0 > 0 such that for all m ≥ m0 and all i > q, the
cohomology groups Hi(X, E(mL)) are zero.

Let E1, . . . , Er be the set of torus invariant divisors on X . If L is big, then there is
a positive integer k such that kL has a section of the form s = xmr

1 · · · xmr
r , where xi is a

section that defines Ei and each mi is strictly positive. Let D ∈ |kL| denote the divisor

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S001708951500035X
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 16 Nov 2017 at 13:09:55, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S001708951500035X
https://www.cambridge.org/core


596 NATHAN BROOMHEAD ET AL.

of s, supported on the union of the Ei: by hypothesis, L is q-ample on each Ei, and
hence on D and Dred = E1 ∪ · · · ∪ Er by [12, Proposition 2.3].

Now, if E is a locally free sheaf on X , we have the exact sequence

0 → E((m − 1)D) → E(mD) → E(mD) ⊗ OD → 0

which, by the q-ampleness of L on D, shows that Hi(X, E((m − 1)L) → Hi(X, E(mL))
is surjective for i > q and m large. It follows that there is an m0 > 0 such that for each
i > q, the canonical map

Hi(X, E(mD)) → lim−→ Hi(X, E(mD)) � Hi(X − D, E)

is an isomorphism for each m ≥ m0. But the complement of D is the torus (�∗)dim X ⊂
X . In particular, X − D is an affine variety, and all higher cohomology groups vanish
here. Hence, Hi(X, E(m0L)) = 0 for each i > q and L is q-ample. �

We remark that the above proof applies unchanged to any Q-factorial Mori dream
space X if we let the Ei denote any set of divisors whose linear equivalence classes
span the effective cone of X . The fact that the complement of the union of the Ei is
still affine follows from the fact that there is an embedding X ↪→ T into a toric variety
such that the Ei are exactly the restriction of the torus-invariant divisors of T : hence,
X − ∪iEi is the intersection of X with a torus in T , and so is affine.

6. q-ampleness of −KX . A natural question is how to describe varieties for which
−KX is q-ample, for different values of q. When q = 0, this means X is a Fano
variety. When q = dim X − 1, as mentioned in Section 4, this means that KX is not
pseduo-effective, which in turn by Boucksom–Demailly–Păun–Peternell [2] means X
is uniruled. The geometric meaning of q-ampleness of −K remains unclear for the
intermediate cases 0 < q < dim X − 1. For instance, if X is a threefold with −KX 1-
ample, then X need not be rationally connected: an example is X = �(�1

S), where S is
a general quartic surface [6, Example 5.6].

For 3-folds, Demailly–Peternell–Schneider [6, Problem 5.9] asked whether 1-
ampleness of −KX is preserved under flips. The following example gives a negative
answer to this question.

We consider two projective toric varieties X = X(�1) and Y = Y (�2) whose fans
have rays spanned by the columns of the matrix⎛⎜⎝ 1 0 0 2 1 −1

0 1 0 −1 0 0

0 0 1 1 −1 0

⎞⎟⎠
and whose maximal cones are the following:

�1 : {〈0, 1, 2〉, 〈0, 2, 3〉, 〈0, 3, 4〉, 〈0, 4, 1〉, 〈5, 1, 2〉, 〈5, 2, 3〉, 〈5, 3, 4〉, 〈5, 4, 1〉}
�2 : {〈0, 1, 3〉, 〈1, 2, 3〉, 〈0, 3, 4〉, 〈0, 4, 1〉, 〈5, 1, 2〉, 〈5, 2, 3〉, 〈5, 3, 4〉, 〈5, 4, 1〉}

(Here, an integer i denotes the ray spanned by the ith column of the matrix.)
The variety X is smooth, while Y has exactly one singular point, which is a Z/2-

quotient singularity. The fans of X and Y are both refinements of the fan �3 obtained
by replacing the first two cones in either fan above by the nonsimplical cone 〈0, 1, 2, 3〉.
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If Z is the toric variety defined by �3, then both X and Y are partial resolutions of Z;
in particular, there is a birational map φ : X ��� Y . The indeterminacy locus of φ is
the rational curve C corresponding to the cone 〈0, 2〉. One calculates that KX · C < 0,
and so φ : X ��� Y is a flip.

PROPOSITION 6.1. Let X and Y be as above. Then, −KX is 1-ample, while −KY is
not.

Proof. On any simplicial toric variety, the anticanonical divisor is big, so we
can apply Theorem 5.1 to the divisors −KX and −KY . One checks (e.g., using
the NormalToricVarieties package in Macaulay2) that −KX restricts to a 1-ample line
bundle on each torus-invariant surface in X . (Recall that the 1-ample cone of a surface
is the complement of the negative of the pseudo-effective cone.) On the other hand, it
is straightforward to check using the formulas of [8, Section 5.1] that the (Q-Cartier)
divisor −KY is numerically trivial when restricted to the divisor D0 corresponding to
the vector (1, 0, 0), so it cannot be 1-ample. �

7. A Kodaira–Nakano-type vanishing theorem. One reason for studying partial
positivity comes from the possibility of vanishing theorems. Unfortunately, the
analogue of the Kodaira vanishing theorem does not hold for q-ample line bundles in
general: in fact, it fails already in the case of the three-dimensional flag variety SL3/B.
In this section, we will show that the Kodaira vanishing does hold on a projective toric
variety.

We mention that Greb–Küronya [9] proved a related vanishing theorem for q-
ample line bundles on smooth varieties under the additional assumption that the line
bundle admits a global section with mild singularities (so that the usual proof of
Kodaira’s vanishing theorem using Hodge theory goes through for higher q). In our
case, however, we do not require the line bundle to be effective.

Our vanishing theorem applies also for singular toric varieties. Here, the sheaf
of p-forms �

p
X may fail to be locally free, but there is a good substitute, namely

the sheaf of reflexive p-forms (called Zariski p-forms in [5]). This sheaf is defined by
�̂

p
X = (�p

X )∨∨ = i∗�
p
Xreg

. (Here, i : Xreg → X is the inclusion of the smooth locus.) Note
that this coincides with �

p
X when X is smooth.

The proof of Theorem 7.1 follows the standard proof of the Kodaira vanishing
theorem in the toric case [5, Section 9.3] and uses the “toric Frobenius” map as its
main ingredient. Let X = X(�) be the normal toric variety defined by a fan � in a
lattice N. For each integer m ≥ 1, multiplication by m gives a map Fm : N → N. This
induces a finite, surjective toric morphism f : X → X with the two properties

(i) f ∗L = mL; and
(ii) there is a split injection �̂

p
X → f∗�̂

p
X (see [5, Section 9.3]).

With these properties, we are now ready to prove

THEOREM 7.1. Let L be a q-ample line bundle on a normal projective toric variety
X. Then for all i > q and p ≥ 0, we have

Hi(X, �̂
p
X ⊗ L) = 0. (6)

Moreover, Hi(X,−L) = 0 for all i < n − q.
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Proof. Tensoring the map in (ii) above with L, we obtain a split injection

�̂
p
X ⊗ L → f∗�̂

p
X ⊗ L = f∗(�̂p

X ⊗ mL).

Since f is affine, the Leray spectral sequence shows that there is an injection of
cohomology groups

Hi(X, �̂
p
X ⊗ L) → Hi(X, �̂

p
X ⊗ mL).

However, the right-hand side vanishes for m large and i > q, and so we get (6).
The last statement follows in the same way, by considering the injection

Hi(X,−L) → Hi(X, f∗(−mL)) ∼= Hi(X,−mL) ∼= Hn−i(X, mL ⊗ ωX )∨

Here, ωX denotes the dualising sheaf of X ; the last isomorphism comes from the fact
that Serre duality holds for any normal projective toric variety [5, Section 9.2]. �
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Mathematical Society Lecture Note Series, London, 2015, No. 417).
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