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1. Introduction

Since the introduction of random operators to nuclear physics by Eugene

Wigner [24] in 1955, there is an ongoing interest in random quantum systems, the

most famous example probably being the Anderson model [1]. In the last twenty

years also non-self-adjoint random systems were extensively studied, starting with

the work of Hatano and Nelson [14]. Compared to self-adjoint random operators,

non-self-adjoint random operators give rise to many new phenomena like complex

spectra, (non-trivial) pseudospectra, etc. In return, the study of non-self-adjoint

operators requires new techniques as the standard methods from spectral theory

are often not available.

We start with some limit operator and approximation results for numerical

ranges of random operators. We then focus on the physically most relevant case

of tridiagonal operators. In particular, we prove an easy formula for the (closure of

the) numerical range of tridiagonal random operators (�eorem 16). As a corollary

we get that the (closure of the) numerical range is equal to the convex hull of

the spectrum for these operators, just like for self-adjoint or normal operators.

�eorem 16 thus provides the best possible convex upper bound to the spectrum

of a random tridiagonal operator. In particular, it improves the upper bound given

in [4] for a particular class of random tridiagonal operators. �e authors of [4]

considered the following tridiagonal random operator:
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where .cj /j 2Z is a sequence of i.i.d. random variables taking values in ¹˙�º and

� 2 .0; 1�. �e special case � D 1 was already considered earlier (e.g. in [2], [3],

[9], and [15]) and is called the Feinberg–Zee random hopping matrix. It is also the

main topic of [11] and [12], where the symmetries of the spectrum and the connec-

tions to the spectra of �nite sections of this operator are studied, respectively.
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�eorem 16 also determines the spectrum completely in some cases. Consider

for example the Hatano-Nelson operator
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where .vj /j 2Z is a sequence of i.i.d. random variables taking values in some

bounded set V � R and g > 0 is a constant, and assume that V is an interval

of length at least 4 cosh.g/. �en �eorem 16 implies that the spectrum of A is

equal to the numerical range, which is given by the union of the ellipses

Ev WD ¹egCi# C v C e�.gCi#/ W # 2 Œ0; 2�/º; v 2 V:

In Section 2.3 we introduce a method to compute numerical ranges of arbi-

trary (not necessarily random) tridiagonal operators that is based on the Schur

test. For the (generalized) Feinberg–Zee random hopping matrix as studied in [4]

and mentioned above, we use this method to compute the numerical range of the

square of the random operator, which will provide an improved upper bound to

the spectrum. �is is related to the concept of higher order numerical ranges as

used in [7] and [21] for example.

In the last part we provide explicit formulas for the numerical range and the

numerical range of the square in the case of the (generalized) Feinberg–Zee ran-

dom hopping matrix in order to show that this new upper bound is indeed a tighter

bound to the spectrum than the numerical range. In particular, we con�rm and im-

prove the numerical results obtained in [3] concerning the question whether the

spectrum is equal to the (closure of the) numerical range in the case � D 1. More

precisely, we show that the spectrum is a proper subset of the (closure of the)

numerical range and not convex.

1.1. Notation. �roughout this paper we consider the Hilbert space

X WD `2.Z/

and its closed subspace `2.N/. �e set of all bounded linear operators X ! X

will be denoted by L.X/. �e set of all compact operators X ! X will be denoted

by K.X/.
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We want to think of L.X/ as a space of in�nite matrices. Operators in L.X/

are identi�ed with in�nite matrices in the following way. Let h�; �i be a scalar

product de�ned on X and let ¹eiºi2Z be a corresponding orthonormal basis, i.e.

hei ; ej i D ıi;j for all i; j 2 Z. We will keep this orthonormal basis �xed for the

rest of the paper. �e subsequent notions may depend on the chosen basis.

Let A 2 L.X/. �en the entry Ai;j is given by hAej ; eii. �e matrix .Ai;j /i;j 2Z,

in the following again denoted by A, acts on a vector v 2 X in the usual way.

If vj is the j -th component of v, then the i-th component of Av is given by
P

j 2Z
Ai;j vj . �is identi�cation of operators and matrices on X is an isomorphism

(see e.g. [17, Section 1.3.5]). �erefore we do not distinguish between operators

and matrices. As usual, the vector .Ai;j /j 2Z 2 X is called the i-th row

and .Ai;j /i2Z 2 X is called the j -th column of A. For k 2 Z the vector

.AiCk;i /i2Z 2 X is called the k-th diagonal of A or the diagonal with index k.

A is called a band operator if only a �nite number of diagonals are non-zero.

�e set of all band operators will be denoted by BO.X/. Furthermore, we call A

tridiagonal if all diagonals with index k … ¹�1; 0; 1º vanish.

We consider the following subclasses. Let n � m be integers and let

Un; : : : ; Um � C

be non-empty compact sets. �en we de�ne

M.Un; : : : ; Um/ D ¹A 2 L.X/ W AiCk;i 2 Uk if n � k � m and

AiCk;i D 0 otherwiseº;

i.e. the k-th diagonal only contains elements from Uk. Similarly, we denote the

set of all �nite square matrices with this property by

M�n.Un; : : : ; Um/:

If A 2 M.Un; : : : ; Um/ satis�es

Ai;j D AiCp;j Cp for all i; j 2 Z and some p � 1,

then A is called p-periodic and the set of all of these operators will be denoted by

Mper;p.Un; : : : ; Um/:

In the special case p D 1 these operators are usually called Laurent operators and

therefore we additionally de�ne

L.Un; : : : ; Um/ WD Mper;1.Un; : : : ; Um/:
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�e set of all periodic operators will be denoted by

Mper.Un; : : : ; Um/:

A 2 M.Un; : : : ; Um/ is called a random operator if for k 2 ¹n; : : : ; mº the

entries along the k-th diagonal of A are chosen randomly (say i.i.d.) with re-

spect to some probability measure on Uk . Finally, pseudo-ergodic operators are

de�ned as follows. Let Pk;l be the orthogonal projection onto span ¹ek ; : : : ; elº.
�en A 2 M.Un; : : : ; Um/ is called pseudo-ergodic if for all " > 0 and all

B 2 M�n.Un; : : : ; Um/ there exist k and l such that

kPk;lAPk;l � Bk � ":

In other words, every �nite square matrix of this particular kind can be found up to

epsilon when moving along the diagonal of a pseudo-ergodic operator. Note that if

all of the Uk are discrete, one can simply put " D 0 in the de�nition. At �rst sight, it

is not easy to see why one may want to consider operators of this type, but in fact,

pseudo-ergodic operators are closely related to random operators. Under some

reasonable conditions on the probability measure (see e.g. [18, Section 5.5.3]),

one can show that a random operator is pseudo-ergodic almost surely. �erefore

the de�nition of pseudo-ergodic operators is a nice circumvention of probabilistic

arguments when dealing with random operators. We will make use of this fact

for the rest of the paper and just mention here that every statement that holds for

a pseudo-ergodic operator, holds for a random operator almost surely. �e set of

pseudo-ergodic operators is denoted by

‰E.Un; : : : ; Um/:

�e notion of pseudo-ergodic operators goes back to Davies [6].

1.2. Limit operator techniques. Limit operators are an important tool in the

study of band operators. For k 2 Z de�ne the k-th shift operator Vk by

.Vkx/j D xj �k for all x 2 X.

Let A 2 L.X/ and let

h WD .hm/m2N

be a sequence of integers tending to in�nity such that the strong limit1

Ah WD lim
m!1

V�hm
AVhm

1 Sometimes di�erent and more sophisticated notions of convergence are used to de�ne limit

operators. In the case of band operators on `2.Z/ all these notions coincide (see e.g. [17, Section

1.6.3] or [5, Example 4.6]).
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exists. �en Ah is called a limit operator of A. �e set of all limit operators is

called the operator spectrum of A and denoted by

�op.A/:

Here are some basic properties of limit operators that we will need in the following

(see e.g. [17, Proposition 3.4, Corollary 3.24]).

Proposition 1. Let A; B 2 BO.X/ and let h WD .hm/m2N be a sequence of integers

tending to in�nity. �en the following statements hold:

� there exists a subsequence g WD .gm/m2N of h such that Ag and Bg exist;

� if Ah and Bh exist, so does .A C B/h and .A C B/h D Ah C Bh;

� if Ah and Bh exist, so does .AB/h and .AB/h D AhBh;

� if Ah exists, so does .A�/h and .A�/h D .Ah/�;

� if Ah exists, then kAhk � kAk;

� if A 2 K.X/, then Ah D 0.

We call an operator A Fredholm if ker.A/ and im.A/? are both �nite-dimen-

sional. As usual we de�ne the spectrum

sp.A/ WD ¹� 2 C W A � �I is not invertibleº

and the essential spectrum

spess.A/ WD ¹� 2 C W A � �I is not Fredholmº:

After introducing all the notation, we can cite the main theorem of limit oper-

ator theory (which holds in much more generality than stated and needed here).

�eorem 2 (e.g. [18, Corollary 5.26]). Let A 2 BO.X/. �en

spess.A/ D
[

B2�op.A/

sp.B/:

In order to apply this theorem to pseudo-ergodic operators, we use the follow-

ing result that characterizes them in terms of limit operators.
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Proposition 3. Let Un; : : : ; Um be non-empty and compact. �en

A 2 ‰E.Un; : : : ; Um/ () �op.A/ D M.Un; : : : ; Um/:

Proof. For diagonal operators on `2.Z/ this is Corollary 3.70 in [17]. �e proof

easily carries over to the case of band operators.

Using this and A 2 M.Un; : : : ; Um/, we get the following corollary.

Corollary 4. Let Un; : : : ; Um be non-empty and compact and consider and oper-

ator A 2 ‰E.Un; : : : ; Um/. �en

sp.A/ D spess.A/ D
[

B2M.Un;:::;Um/

sp.B/: (1)

In particular, we see that the spectrum of a pseudo-ergodic operator only de-

pends on the sets Un; : : : ; Um. Furthermore, equation (1) provides a somewhat

easy method to obtain lower bounds for the spectrum of A 2 ‰E.Un; : : : ; Um/.

Indeed, we can take any operator B 2 M.Un; : : : ; Um/ with a known spectrum

and get a lower bound for the spectrum of A. For example the spectrum of a peri-

odic operator B can be computed via the Fourier transform.

�eorem 5 (e.g. [8, �eorem 4.4.9]). Let Un; : : : ; Um be non-empty and compact,

p 2 N, B 2 Mper;p.Un; : : : ; Um/ and let Bk 2 L.Cp/ be de�ned by

.Bk/i;j D BiCkp;j for all i; j 2 ¹1; : : : ; pº and k 2 Z.

�en

sp.B/ D
[

#2Œ0;2�/

sp
�

X

k2Z
Bke�ik#

�

: (2)

�is brief summary of limit operator theory is su�cient for the rest of this

paper. We recommend [17] and [22] for more details and further reading.

2. �e numerical range

For the reader’s convenience we start with the de�nition and some basic properties

of the numerical range.

De�nition 6. Let A 2 L.X/. �en the numerical range is de�ned as

N.A/ WD clos¹hAx; xi W x 2 X; kxk D 1º:
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For ' 2 Œ0; 2�/ the (rotated) numerical abscissa is de�ned as

r'.A/ WD max¹Re z W z 2 N.ei'A/º:

Note that the numerical range is usually de�ned without the closure (and de-

noted by W.A/), but we prefer to consider the numerical range as a compact set

here. �e following results are well-known and also hold in arbitrary Hilbert

spaces.

�eorem 7 (Hausdor�–Toeplitz). Let A 2 L.X/. �en N.A/ is convex.

�eorem 8. Let A 2 L.X/. It holds

conv.sp.A// � N.A/

with equality if A is normal. Moreover,

sup
kxkD1

jhAx; xij � kAk

with equality if A is normal.

To determine the numerical range of an operator A, one usually applies the fol-

lowing method by Johnson [16]. Since the numerical range is convex by �eorem

7, it su�ces to compute the numerical abscissae r'.A/ for every angle ' 2 Œ0; 2�/.

Fix ' 2 Œ0; 2�/ and let

B WD 1

2
.ei'A C e�i'A�/:

�en

r'.A/ D sup
kxkD1

Re
˝

ei'Ax; x
˛

D sup
kxkD1

1

2

˝

.ei'A C e�i'A�/x; x
˛

D sup
kxkD1

hBx; xi

D r0.B/:

Since B is self-adjoint, r'.A/ is exactly equal to the rightmost point of the spec-

trum of B . �is observation is the starting point for almost every result we prove

in this paper.

We will also �nd it useful to talk about convergence of set sequences.
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De�nition 9. Let .Mn/n2N be a sequence of compact subsets of C. �en we

de�ne

lim sup
n!1

Mn WD ¹m 2 C W m is an accumulation point

of a sequence .mn/n2N; mn 2 Mnº;

lim inf
n!1

Mn WD ¹m 2 C W m is the limit of a sequence .mn/n2N; mn 2 Mnº:

�e Hausdor� metric for compact sets A; B � C is de�ned as

h.A; B/ WD max¹max
a2A

min
b2B

ja � bj ; max
b2B

min
a2A

ja � bjº:

Moreover, we de�ne lim
n!1

Mn as the limit of the sequence .Mn/n2N with respect

to the Hausdor� metric.

�ese notions are compatible with each other in the sense that they satisfy the

same relations as they do for ordinary sequences:

Proposition 10 ([10, Proposition 3.6]). Let .Mn/n2N be a sequence of compact

subsets of C. �en the limit lim
n!1

Mn exists if and only if lim sup
n!1

Mn D lim inf
n!1

Mn

and in this case we have

lim
n!1

Mn D lim sup
n!1

Mn D lim inf
n!1

Mn:

2.1. Limit operator and approximation results. We will �rst prove the fol-

lowing limit operator result, which can be proven (without further e�ort) in much

more generality than we state it here.

�eorem 11. Let A 2 BO.X/. �en

\

K2K.X/

N.A C K/ D conv
�

[

B2�op.A/

N.B/
�

: (3)

To prove this, we need the following lemma that we will then apply to se-

quences .V�hn
.A C K/Vhn

/n2N, where K 2 K.X/ and .hn/n2N is a sequence of

integers tending to in�nity.
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Lemma 12. Let A 2 L.X/ and let .An/n2N be a sequence in L.X/ that converges

to A in weak operator topology. �en N.A/ � lim inf
n!1

N.An/.

Proof. An ! A in the weak operator topology implies h.An � A/x; xi ! 0 for

all x 2 X as n ! 1. Let z 2 N.A/. Choose x1 2 X with kx1k D 1 such

that jz � hAx1; x1ij < 1 and n1 such that jh.An � A/x1; x1ij < 1 for all n � n1.

For j 2 N choose xj C1 2 X with kxj C1k D 1 such that jz�hAxj C1; xj C1ij < 1
j C1

and nj C1 > nj such that jh.An�A/xj C1; xj C1ij < 1
j C1

for all n � nj C1. Of course

this implies jz � hAnxj ; xj ij < 2
j

for all n � nj . Now de�ne a sequence .zn/n2N
of complex numbers as follows. For n < n1 choose zn 2 N.An/ arbitrarily.

For j 2 N and nj � n < nj C1 choose zn 2 N.An/ such that jz � znj < 2
j
.

We get jz � znj ! 0 as n ! 1. �us N.A/ � lim inf
n!1

N.An/.

Proof of �eorem 11. Let B 2 �op.A/ and K 2 K.X/. To prove “�” it su�ces to

show N.B/ � N.A C K/ because the intersection of convex sets is again con-

vex. So let h be a sequence of integers tending to in�nity such that Ah D B .

By Proposition 1, B is also a limit operator of A C K:

.A C K/h D Ah C Kh D Ah C 0 D Ah D B:

Applying Lemma 12 to the sequence .V�hn
.A C K/Vhn

/n2N and using that the

numerical range is invariant under unitary transformations, we get

N.B/ � lim inf
n!1

N.V�hn
.A C K/Vhn

/ D lim inf
n!1

N.A C K/ D N.A C K/:

To prove the other inclusion, recall that it su�ces to compare numerical ab-

scissae, i.e. to show

inf
K2K.X/

r'.A C K/ � max
®

r'.B/ W B 2 �op.A/
¯

:

for all ' 2 Œ0; 2�/. Since r'.A/ D r0.ei'A/ for all A 2 L.X/ and ' 2 Œ0; 2�/,

it even su�ces to consider ' D 0. Set z0 WD kAk. �en

r0.A C K/ D sup
kxkD1

Re h.A C K/x; xi

D sup
kxkD1

Re h.A C K C z0I /x; xi � z0

� sup
kxkD1

jRe h.A C K C z0I /x; xij � z0

D sup
kxkD1

ˇ

ˇ

ˇ

ˇ

1

2
h.A C K C .A C K/� C 2z0I /x; xi

ˇ

ˇ

ˇ

ˇ

� z0

D 1

2
kA C K C .A C K/� C 2z0Ik � z0;
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where we applied �eorem 8 to the self-adjoint (hence normal) operator

A C K C .A C K/� C 2z0I:

Taking the in�mum, we arrive at

inf
K2K.X/

r0.A C K/ � 1

2
inf

K2K.X/
kA C K C .A C K/� C 2z0Ik � z0

D 1

2
inf

K2K.X/
KDK�

kA C A� C K C 2z0Ik � z0:

For a self-adjoint operator C 2 L.X/, the norm kC C Kk is minimized by a self-

adjoint operator K 2 K.X/. �is can be seen as follows:

kC C Kk � sup
kxkD1

jh.C C K/x; xij

D sup
kxkD1

ˇ

ˇ

ˇ

ˇ

D�

C C K C K�

2

�

x; x
E

C
D�

C C K � K�

2

�

x; x
E

ˇ

ˇ

ˇ

ˇ

� sup
kxkD1

ˇ

ˇ

ˇ

ˇ

D�

C C K C K�

2

�

x; x
E

ˇ

ˇ

ˇ

ˇ

D








C C K C K�

2









;

where we used �eorem 8 and the fact that

D�

C C K C K�

2

�

x; x
E

2 R and
D�

C C K � K�

2

�

x; x
E

2 iR

for all x 2 X. Moreover, we have

inf
K2K.X/

kA C Kk D max
B2�op.A/

kBk

for all A 2 BO.X/ by [13, �eorem 3.2]. Combining these results and using Propo-

sition 1, we get

inf
K2K.X/

r0.A C K/ � 1

2
inf

K2K.X/
kA C A� C K C 2z0Ik � z0

D 1

2
max ¹kBk W B 2 �op.A C A� C 2z0I /º � z0

D 1

2
max ¹kB C B� C 2z0Ik W B 2 �op.A/º � z0:
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Since r'.B/ � kBk � kAk for all ' 2 Œ0; 2�/ by �eorem 8 and Proposition 1,

N.B Cz0I / is contained in the right half plane for every B 2 �op.A/. �is implies

r0.B/ D sup
kxkD1

Re hBx; xi

D sup
kxkD1

Re h.B C z0I /x; xi � z0

D sup
kxkD1

jRe h.B C z0I /x; xij � z0

D sup
kxkD1

ˇ

ˇ

ˇ

ˇ

1

2
h.B C B� C 2z0I /x; xi

ˇ

ˇ

ˇ

ˇ

� z0

D 1

2
kB C B� C 2z0Ik � z0:

We conclude

inf
K2K.X/

r0.A C K/ � max ¹r0.B/ W B 2 �op.A/º :

If we apply this result to pseudo-ergodic operators, we get the following corol-

lary:

Corollary 13. Let Un; : : : ; Um be non-empty and compact. It holds

N.A/ D
[

B2M.Un;:::;Um/

N.B/

for all A 2 ‰E.Un; : : : ; Um/.

Note that taking the convex hull is obviously not necessary here. In fact, it

su�ces to consider periodic operators on the right-hand side:

Corollary 14. Let Un; : : : ; Um be non-empty and compact. It holds

N.A/ D clos
�

[

B2Mper.Un;:::;Um/

N.B/
�

for all A 2 ‰E.Un; : : : ; Um/.
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Proof. Let A 2 ‰E.Un; : : : ; Um/. It is not di�cult to �nd a sequence

.Ak/k2N � Mper.Un; : : : ; Um/

that converges weakly to A (even strongly). �us by Lemma 12 and Corollary 13,

we have

N.A/ � lim inf
k!1

N.Ak/ � clos
�

[

B2Mper.Un;:::;Um/

N.B/
�

� N.A/:

In the next section we will see that in the case of a tridiagonal pseudo-ergodic

operator A, it even su�ces to consider the Laurent operators contained in �op.A/.

So far we only considered numerical ranges of operators A 2 BO.`2.Z//.

However, it is sometimes more convenient to work with operators A 2 L.`2.N//.

We will thus �nd the following well-known proposition useful.

Proposition 15. Let A 2 BO.`2.Z// and let AC WD PNAPNjim PN 2 L.`2.N//,

where PN denotes the projection onto span ¹e1; e2; : : :º. If there exists a sequence

.hm/m2N of integers tending C1 such that Ah exists and is equal to A, then

N.A/ D N.AC/.

Proof. Clearly, hACx; xi D hAx; xi for all x 2 im PN and thus N.AC/ � N.A/.

Conversely, let c 2 N.AC/, QN WD I � PN and consider

zA WD PNAPNjim PN C cQNjim QN :

�en

h zAx; xi D hACPNx; PNxi C c hQNx; QNxi

D
�

AC
PNx

kPNxk ;
PNx

kPNxk

�

kPNxk2 C c kQNxk2 :

Since kPNxk2 C kQNxk2 D kxk2 and N.AC/ is convex, we get N. zA/ � N.AC/.

Moreover, A is a limit operator of zA and thus N.A/ � N. zA/ by �eorem 11.

We conclude N.A/ D N.AC/.
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2.2. Tridiagonal pseudo-ergodic operators. In this section we focus on the

case of tridiagonal pseudo-ergodic operators. Here the following simpli�cation

of Corollary 14 can be achieved:

�eorem 16. Let U�1, U0 and U1 be non-empty and compact. �en, given an

operator A 2 ‰E.U�1; U0; U1/, the following formula holds:

N.A/
(i)D conv

�

[

B2L.U�1;U0;U1/

sp.B/
�

(ii)D conv
�

[

uk2Uk ;
kD�1;0;1

¹u�1ei# C u0 C u1e�i# W # 2 Œ0; 2�/º
�

:

In particular, sp.A/ D N.A/ if
S

B2L.U�1;U0;U1/

sp.B/ is convex.

Proof. �e last assertion follows from (i) since

[

B2L.U�1;U0;U1/

sp.B/ � sp.A/ � N.A/

by Corollary 4 and �eorem 8. Moreover, (ii) follows immediately from �eo-

rem 5. We thus focus on the proof of (i).

“�”. �eorem 8 and Corollary 4 imply

N.A/ � sp.A/ �
[

B2L.U�1;U0;U1/

sp.B/

as above. Taking the convex hull on both sides yields

N.A/ � conv
�

[

B2L.U�1;U0;U1/

sp.B/
�

:

by �eorem 7.

“�”. As in the proof of �eorem 11, it su�ces to compare max
B2L.U�1;U0;U1/

r0.B/

with r0.A/. �is then implies

N.A/ � conv
�

[

B2L.U�1;U0;U1/

N.B/
�

and hence

N.A/ � conv
�

[

B2L.U�1;U0;U1/

conv.sp.B//
�

D conv
�

[

B2L.U�1;U0;U1/

sp.B/
�
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because Laurent operators are normal. We also set z0 D kAk again, which implies

N.B C z0I / � CRe�0 for all B 2 M.U�1; U0; U1/. It follows

r0.A/ D sup
kxkD1

Re hAx; xi

D sup
kxkD1

Re h.A C z0I /x; xi � z0

D sup
kxkD1

jRe h.A C z0I /x; xij � z0

D 1

2
sup

kxkD1

jh.A C A� C 2z0I /x; xij � z0

D 1

2
kA C A� C 2z0Ik � z0;

where we used �eorem 8 in the last line. Using that the norm of an operator is

bounded by the sum of the maximal elements of its diagonals (also called Wiener

estimate, see e.g. [17, p. 25]), we arrive at

r0.A/ D 1

2
kA C A� C 2z0Ik � z0

� max
u�12U�1

u12U1

ju1 C u�1j C 1

2
max

u02U0

ju0 C u0 C 2z0j � z0: (4)

Fix w�1 2 U�1, w0 2 U0 and w1 2 U1 such that the maximum in (4) is attained,

i.e.

max
u�12U�1

u12U1

jei'u1 C e�i'u�1j D jei'w1 C e�i'w�1j

and

max
u02U0

jei'u0 C e�i'u0 C 2z0j D jei'w0 C e�i'w0 C 2z0j:

It is not hard to see that the spectrum of a tridiagonal Laurent operator

L.v�1; v0; v1/ (to simplify the notation we identify the set

L.v�1; v0; v1/ WD L.¹v�1º; ¹v0º; ¹v1º/

with its only element) is given by an ellipse with center v0 and half-axes

j jv�1j ˙ jv1j j (see e.g. [20]). If in addition

C WD L.v�1; v0; v1/
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is self-adjoint, then its spectrum is given by the interval

sp.C / D Œv0 � jv�1j � jv1j ; v0 C jv�1j C jv1j�

and thus kC k D jv0j C jv�1j C jv1j. In our case, if we put

B WD L.w�1; w0; w1/;

we get

kB C B� C 2z0Ik D 2jw1 C w�1j C jw0 C w0 C 2z0j

and therefore

r0.A/ � 1

2
kB C B� C 2z0Ik � z0:

From here we can go all the way back to �nish the proof:

r0.A/ � 1

2
kB C B� C 2z0Ik � z0

D 1

2
sup

kxkD1

jh.B C B� C 2z0I /x; xij � z0

D sup
kxkD1

jRe h.B C z0I /x; xij � z0

D sup
kxkD1

Re h.B C z0I /x; xi � z0

D r0.B/:

Combining Corollary 4, �eorem 8 and �eorem 16 we also get the following

corollary.

Corollary 17. Let U�1, U0 and U1 be non-empty and compact and consider the

operator A 2 ‰E.U�1; U0; U1/. �en A has the following property:

N.A/ D conv.sp.A//:

�is corollary is quite remarkable because one can usually not expect this prop-

erty from non-normal operators. As a consequence, any tridiagonal random oper-

ator has this property almost surely. We do not know if pseudo-ergodic operators

with more than three diagonals share this property, but we do know that �eo-

rem 16 is wrong if the tridiagonality assumption is dropped.
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Example 18. Let U�2 D ¹1º, U�1 D ¹˙1º, U0 D ¹0º, U1 D ¹1º and U2 D ¹1º.
Consider the 3-periodic operator

A D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

: : :
: : :

: : :

: : : 0 1 1
: : : 1 0 1 1

1 1 0 �1
: : :

1 1 0
: : :

: : :
: : :

: : :

1

C

C

C

C

C

C

C

C

C

C

C

C

A

2 Mper;3.U�2; : : : ; U2/:

�en

B WD 1

2
.A C A�/ D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

: : :
: : :

: : :

: : : 0 1 1
: : : 1 0 1 1

1 1 0 0
: : :

1 0 0
: : :

: : :
: : :

: : :

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

By �eorem 5 we get

sp.B/ D
[

#2Œ0;2�/

sp.b.#//;

where

b.#/ WD

0

@

0 1 C e�i# 1 C e�i#

1 C ei# 0 e�i#

1 C ei# ei# 0

1

A :

�e spectrum of b.0/ is given by
®

1
2

�
p

33
2

; �1; 1
2

C
p

33
2

¯

. So in particular, we get
1
2

�
p

33
2

2 sp.B/ and thus

r�.A/ D r0.�A/ �
p

33

2
� 1

2
>

9

4
:

Let us denote the two operators in L.U�2; : : : ; U2/ by C1 and C2. We get

min
z2sp.C1/

Re z D min
#2Œ0;2�/

Re.e�2i# C e�i# C ei# C e2i#/

D min
#2Œ0;2�/

2.cos.2#/ C cos.#//

D �9

4
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and

min
z2sp.C2/

Re z D min
#2Œ0;2�/

Re.e�2i# C e�i# � ei# C e2i#/

D min
#2Œ0;2�/

2 cos.2#/

D �2

by �eorem 5 again. �is implies that the numerical range of A exceeds the convex

hull of the spectra of Laurent operators in the direction of the negative real axis,

i.e.

N.A/ 6� conv
�

[

B2L.U�1;U0;U1/

sp.B/
�

:

So in particular, in view of Corollary 13, �eorem 16 is not valid for �ve diagonals.

2.3. A method to compute numerical ranges for general tridiagonal oper-

ators. In this section we introduce a method to compute numerical ranges for

tridiagonal operators. As explained at the beginning of Section 2, it su�ces to

compute the numerical abscissae r' for ' 2 Œ0; 2�/. Fix ' 2 Œ0; 2�/ and recall

that we have r'.A/ D r0.B/ for

B WD 1

2
.ei'A C e�i'A�/:

In case A is a tridiagonal in�nite matrix acting on `2.N/ or `2.Z/, the non-zero

entries of B are given by

Bj;j �1 D 1

2
.ei'Aj;j �1 C e�i'Aj �1;j /;

Bj;j D 1

2
.ei'Aj;j C e�i'Aj;j / D Re.ei'Aj;j /;

Bj;j C1 D 1

2
.ei'Aj;j C1 C e�i'Aj C1;j /

for all j in the respective index set. B can now be transformed to a real symmetric

matrix by applying the unitary diagonal transformation that is de�ned recursively

as follows:

T1;1 D 1;

Tj C1;j C1 D sign.Bj;j C1/Tj;j
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for all j in the respective index set, where sign W C ! T is de�ned as

sign.z/ WD

8

ˆ

<

ˆ

:

z

jzj
if z ¤ 0;

1 if z D 0:

�e matrix

C WD TBT �

is then real and symmetric with r0.C / D r0.B/ D r'.A/ and

Cj;j D Re.ei'Aj;j / 2 R;

Cj;j C1 D 1

2

ˇ

ˇei'Aj;j C1 C e�i'Aj C1;j

ˇ

ˇ � 0: (5)

�us the computation of r'.A/ is reduced to the computation of r0.C /, which is

also the rightmost point in the spectrum of C . In the following we can also assume

that Cj;j C1 > 0 for all j because if Cj;j C1 D 0 for some j , then C can be divided

into blocks and the spectrum of C is then given by the closure of the union of the

spectra of these blocks. Moreover, shifting C by �I for some � 2 R only shifts

the spectrum of C by �. �us we can also assume that C only has positive entries

on its main diagonal.

�is matrix C now satis�es the requirements of the following lemma by

Szwarc2 that is basically a reformulation of the Schur test.

Lemma 19 ([23, Proposition 1]). Let C 2 L.`2.N// be real, symmetric and tridi-

agonal with Cj;j ; Cj;j C1 > 0 for all j 2 N and N > sup
j 2N

Cj;j . If there is a

sequence .gj /j 2N that satis�es gj 2 Œ0; 1� and

C 2
j;j C1

.N � Cj;j /.N � Cj C1;j C1/
� gj C1.1 � gj / (6)

for all j 2 N, then r0.C / � N .

2 Szwarc [23] actually proved it for C 2 L.`2.Z//, but the proof is very similar for C 2
L.`2.N//.



234 R. Hagger

In fact, also the converse is true:

Lemma 20 ([23, Proposition 2]). Let C 2 L.`2.N// be real, symmetric and tridi-

agonal with Cj;j ; Cj;j C1 > 0 for all j 2 N. �en there exists a sequence .gj /j 2N
with the following properties:

� gj 2 Œ0; 1/ for all j 2 N;

� gj D 0 if and only if j D 1;

� for all j 2 N,

C 2
j;j C1

.r0.C / � Cj;j /.r0.C / � Cj C1;j C1/
D gj C1.1 � gj /: (7)

To demonstrate the procedure, we prove the following proposition that we need

later on. Note that this proposition can also be shown using �eorem 5 applied to

B WD 1

2
.A C A�/:

�is results in the computation of the eigenvalues of a 2�2 matrix and one obtains

Corollary 22 directly.

Proposition 21. Let I 2 ¹N;Zº, let A 2 L.`2.I// be tridiagonal and 2-periodic

and let N > sup
i2I

Re Ai;i . Further assume that A C A� is not diagonal. De�ne

�1.A/ WD jA1;2 C A2;1j2
4.N � Re A1;1/.N � Re A2;2/

and

�2.A/ WD jA2;3 C A3;2j2
4.N � Re A2;2/.N � Re A3;3/

:

�en
p

�1.A/ C
p

�2.A/ D 1 () N D r0.A/:

Proof. Clearly, A 2 L.`2.Z// and PNAPNjPN 2 L.`2.N// have the same numer-

ical range by Proposition 15. It thus su�ces to consider the case A 2 L.`2.N//.

Let C be as in (5) with ' D 0 so that r0.A/ D r0.C /. We can assume that Cj;j > 0

for all j 2 N (shifting by � 2 R does not change anything).

If A1;2CA2;1 D 0. �en �1.A/ D 0 and an easy computation shows �2.A/ D 1

if and only if N D r0.A/. �e case A2;3 C A3;2 D 0 is similar. So let us assume

Aj;j C1 C Aj C1;j ¤ 0 for all j 2 N for the rest of the proof. Clearly, this implies

�1.A/; �2.A/ > 0 and Cj;j C1 > 0 for all j 2 N.
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Let N D r0.A/. Lemma 20 applied to C yields a sequence .gj /j 2N with the

properties

� gj 2 Œ0; 1/ for all j 2 N,

� gj D 0 if and only if j D 1,

� for all j 2 N,

ˇ

ˇAj;j C1 C Aj C1;j

ˇ

ˇ

2

4.r0.A/ � Re Aj;j /.r0.A/ � Re Aj C1;j C1/
D gj C1.1 � gj /:

Since A is 2-periodic, we have

�1.A/ D
ˇ

ˇA1;2 C A2;1

ˇ

ˇ

2

4.r0.A/ � Re A1;1/.r0.A/ � Re A2;2/
D g2;

�2.A/ D
ˇ

ˇA2;3 C A3;2

ˇ

ˇ

2

4.r0.A/ � Re A2;2/.r0.A/ � Re A1;1/
D g3.1 � g2/;

�1.A/ D
ˇ

ˇA1;2 C A2;1

ˇ

ˇ

2

4.r0.A/ � Re A1;1/.r0.A/ � Re A2;2/
D g4.1 � g3/;

:::

We observe �1.A/ D g2 2 .0; 1/ and �2.A/ D g3.1 � g2/ 2 .0; 1/. If j is odd, we

deduce the following recursion:

gj C2 D �2.A/

1 � gj C1

D �2.A/

1 � �1.A/
1�gj

D .1 � gj /�2.A/

1 � gj � �1.A/
: (8)

�e corresponding iteration function

f W .0; 1 � �1.A// �! R;

x 7�! .1 � x/�2.A/

1 � x � �1.A/
;

(9)

has a positive derivative

d

dx

.1 � x/�2.A/

1 � x � �1.A/
D �1.A/�2.A/

.1 � x � �1.A//2
> 0 (10)

since �1.A/; �2.A/ > 0. �us f is strictly increasing. Since .gj /j 22N�1 is

a sequence in Œ0; 1/, it is in fact a sequence in Œ0; 1 � �1.A//. Indeed, if
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gj � 1 � �1.A/, then by equation (8), gj C2 is either not de�ned or negative, a

contradiction. Moreover, we have

g3 D �2.A/

1 � �1.A/
> 0 D g1

since �1.A/; �2.A/ 2 .0; 1/. We conclude that .gj /j 22N�1 is strictly increasing,

hence convergent. Denote the limit of this sequence by x�. By the �xed-point

theorem, x� has to be a �xed point of the iteration function f . After some rear-

ranging, we get two possible candidates for a �xed point:

.1 � x�/�2.A/

1 � x� � �1.A/
D x�

() .1 � x�/�2.A/ D x�.1 � x� � �1.A//

() .x�/2 � .1 C �2.A/ � �1.A//x� C �2.A/ D 0

() x� D 1 C �2.A/ � �1.A/ ˙
p

.1 C �2.A/ � �1.A//2 � 4�2.A/

2
:

(11)

Of course the �xed point we are looking for has to be real and thus

.1 C �2.A/ � �1.A//2 � 4�2.A/

has to be non-negative. It follows

0 � .1 C �2.A/ � �1.A//2 � 4�2.A/

D 1 C �2.A/2 C �1.A/2 C 2�2.A/ � 2�1.A/ � 2�1.A/�2.A/ � 4�2.A/

D �2.A/2 � 2.1 C �1.A//�2.A/ C .1 � �1.A//2:

Solving for �2.A/ yields

�2.A/ � 1 C �1.A/ �
p

.1 C �1.A//2 � .1 � �1.A//2

D 1 C �1.A/ � 2
p

�1.A/

D .1 �
p

�1.A//2;

since �2.A/ < 1. �is inequality now implies
p

�1.A/ C
p

�2.A/ � 1. As we will

prove later, this inequality is actually an equality.
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Conversely, let
p

�1.A/ C
p

�2.A/ D 1. Of course, we can again assume that

I D N. De�ne the sequence .gj /j 2N as follows:

g1 WD 0;

gj C1 WD �1.A/

1 � gj

if j is odd;

gj C1 WD �2.A/

1 � gj

if j is even:

In order to apply Lemma 19, we have to check gj 2 Œ0; 1� for all j 2 N. Let us

�rst consider .gj /j 22N�1 and its iteration function (9). As seen in (11) the �xed

points of f are given by

x� D 1 C �2.A/ � �1.A/ ˙
p

.1 C �2.A/ � �1.A//2 � 4�2.A/

2
:

Plugging our assumption
p

�1.A/ C
p

�2.A/ D 1 into this equation, we get

x� D
1 C �2.A/ � .1 �

p

�2.A//2 ˙
q

.1 C �2.A/ � .1 �
p

�2.A//2/2 � 4�2.A/

2

D
p

�2.A/ ˙
p

4�2.A/ � 4�2.A/

2

D
p

�2.A/:

�us there is only one �xed point and x� < 1. By (10), the iteration function f is

strictly increasing in .0; 1 � �1.A//, while

1 � �1.A/ D 1 � .1 �
p

�2.A//2 D 2
p

�2.A/ � �2.A/ >
p

�2.A/

since �2.A/ D x� < 1. Furthermore, g1 D 0 and thus 0 � gj � x� < 1

for all j 2 2N � 1. We conclude gj 2 Œ0; 1� for odd j . Similarly (exchanging

�1.A/ and �2.A/ and using the starting point �1.A/ <
p

�1.A/ < 1), we also

get gj 2 Œ0; 1� for even j . Furthermore, Condition (6) is ful�lled by de�nition.

�us .gj /j 2N meets all the requirements and we can apply Lemma 19 to C , which

implies r0.C / D r0.A/ � N . So let us summarize what we have so far. We have

(i)
p

�1.A/ C
p

�2.A/ � 1 if N D r0.A/ and

(ii) N � r0.A/ if
p

�1.A/ C
p

�2.A/ D 1.
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Now let
p

�1.A/ C
p

�2.A/ D 1 and assume r0.A/ < N . �en

�1.A/ <

ˇ

ˇA1;2 C A2;1

ˇ

ˇ

2

4.r0.A/ � Re A1;1/.r0.A/ � Re A2;2/
DW Q�1.A/;

�2.A/ <

ˇ

ˇA2;3 C A3;2

ˇ

ˇ

2

4.r0.A/ � Re A2;2/.r0.A/ � Re A3;3/
DW Q�2.A/

and thus
p

Q�1.A/ C
p

Q�2.A/ > 1. But this is a contradiction to (i). �us

p

�1.A/ C
p

�2.A/ D 1 H) r0.A/ D N:

Conversely, let N D r0.A/ and assume
p

�1.A/ C
p

�2.A/ < 1. �en by

continuity there exists an " > 0 such that

v

u

u

t

ˇ

ˇA1;2 C A2;1

ˇ

ˇ

2

4.N � " � Re A1;1/.N � " � Re A2;2/

C

v

u

u

t

ˇ

ˇA2;3 C A3;2

ˇ

ˇ

2

4.N � " � Re A2;2/.N � " � Re A3;3/
D 1:

�is is a contradiction to (ii) since N � " < r0.A/. �us N D r0.A/ implies
p

�1.A/ C
p

�2.A/ D 1.

Although we will not need this in what follows, it is worth noting that, since

A3;3 D A1;1, the equation
p

�1.A/C
p

�2.A/ D 1 can be solved for r0.A/. Clearly,

this formula is also valid if A C A� is diagonal.

Corollary 22. Let I 2 ¹N;Zº and let A 2 L.`2.I// be tridiagonal and 2-periodic.

�en

r0.A/ D 1

2
.a C b C

p

.a � b/2 C .c C d/2 � max ¹a; bº (12)

with equality if and only if c D d D 0, where

a D Re A1;1 D Re A3;3; b D Re A2;2;

c D 1

2

ˇ

ˇA1;2 C A2;1

ˇ

ˇ ; d D 1

2
jA2;3 C A3;2j:
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3. �e Feinberg–Zee random hopping matrix

In this section we consider a generalization of the Feinberg–Zee random hopping

matrix that was considered in [4]:

A� WD

0

B

B

B

B

B

B

B

B

B

@

: : :
: : :

: : : 0 1

c�1 0 1

c0 0 1

c1 0
: : :

: : :
: : :

1

C

C

C

C

C

C

C

C

C

A

;

where .cj /j 2Z is a sequence of i.i.d. random variables taking values in ¹˙�º and

� 2 .0; 1�. �e authors of [4] showed

sp.A�/ � ¹x C iy W jxj C jyj �
p

2.1 C �2/º:

In the case � D 1 this square is (almost surely) exactly the numerical range of A�

as shown in [3] by an explicit computation. For � < 1 the square is tangential to

the ellipses in �eorem 16 and thus a proper superset of the numerical range of A�

(see Proposition 28 for an explicit formula of N.A� /). We try to further improve

this bound obtained in �eorem 16 by computing the numerical range of N.A2
� /.

�e idea is the following:

sp.A� / D ¹z 2 C W z 2 sp.A�/º

� ¹z 2 C W z2 2 sp.A2
�/º

� ¹z 2 C W z2 2 N.A2
� /º

DW
q

N.A2
� /:

We thus obtain another upper bound to the spectrum. As we will see in Sec-

tion 3.2, we indeed have
p

N.A2
�/ � N.A� /, thus improving the upper bound to

the spectrum for all � 2 .0; 1�, in particular improving the upper bound of [3] that

was obtained by a massive numerical computation in the case � D 1. To compute

N.A2
� / we will observe that, although A2

� is not tridiagonal itself, it can be decom-

posed into tridiagonal matrices and thus the method introduced in Section 2.3 can

be applied. Explicit formulas for N.A� /, N.A� /2 and N.A2
� / are postponed to

Section 3.2. To simplify the notation, we �x � here and drop the index.
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3.1. Computation of N.A2/. We will prove the following theorem at the end of

this section. �e sets N.B2
1 /, N.B2

2 / and N.B2
2 / are �lled ellipses/disks and can

be computed explicitly (see Proposition 24). �eorem 23 thus provides an explicit

formula for the (almost sure) numerical range of A2.

�eorem 23. Let � 2 .0; 1�, U�1 D ¹1º, U0 D ¹0º, and U1 D ¹˙�º. Take an

operator A 2 M.U�1; U0; U1/. �en

N.A2/ � conv.N.B2
1 / [ N.B2

2 / [ N.B2
3 //;

where

� B1 2 Mper;4.U�1; U0; U1/ is the operator with period .�; �; �; �/,

� B2 2 Mper;4.U�1; U0; U1/ is the operator with period .��; ��; �; �/, and

� B3 2 Mper;4.U�1; U0; U1/ is the operator with period .��; ��; ��; ��/.

If A 2 ‰E.U�1; U0; U1/, then equality holds.

�at in the case A 2 ‰E.U�1; U0; U1/ the right-hand side is a subset of

the left-hand side is clear by �eorem 11 and the fact that �op.B2/ D �op.B/2

(see Proposition 1). Moreover, it is su�cient to prove

N.A2/ � conv.N.B2
1 / [ N.B2

2 / [ N.B2
3 //

for A 2 ‰E.U�1; U0; U1/ by the same reason. To do so, we need to compute

N.B2
i / for i 2 ¹1; 2; 3º �rst.

Proposition 24. Let B1, B2 and B3 be as above. �en

r'.B2
1 / D 2� cos.'/ C

p

.1 C �2/2 cos.'/2 C .1 � �2/2 sin.'/2;

r'.B2
2 / D 1 C �2;

r'.B2
3 / D �2� cos.'/ C

p

.1 C �2/2 cos.'/2 C .1 � �2/2 sin.'/2

and the boundaries of N.B2
1 / and N.B2

2 / are given by the following parametriza-

tions:

@N.B2
1 / W z.t/ D 2� C .1 C �2/ cos.t / C i.1 � �2/ sin.t /;

@N.B2
2 / W z.t/ D .1 C �2/eit ;

@N.B2
3 / W z.t/ D �2� C .1 C �2/ cos.t / C i.1 � �2/ sin.t /:
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Proof. B1 is a Laurent operator with diagonals .1/i2Z, .0/i2Z and .�/i2Z and

therefore B2
1 is a Laurent operator with diagonals .1/i2Z, .0/i2Z, .2�/i2Z, .0/i2Z

and .�2/i2Z. �erefore the spectrum of B2
1 is given by the ellipse

E WD ¹t 2 Œ0; 2�/ W 2� C .1 C �2/ cos.t / C i.1 � �2/ sin.t /º

(see e.g. [20] or use �eorem 5). Since Laurent operators are normal, E is equal

to the boundary of the numerical range of B2
1 . An elementary computation yields

r'.B2
1 / D 2� cos.'/ C

p

.1 C �2/2 cos.'/2 C .1 � �2/2 sin.t /2:

B2
2 is a 4-periodic operator that looks like this:

B2
2 D

0

B

B

B

B

B

B

B

B

B

@

: : :
: : :

: : :
: : :

: : :

�2 0 0 0 1

��2 0 �2� 0 1

�2 0 0 0 1

��2 0 2� 0 1
: : :

: : :
: : :

: : :
: : :

1

C

C

C

C

C

C

C

C

C

A

: (13)

It can be decomposed into an even and an odd part as follows. Let

Xe WD
®

x 2 X W x2j C1 D 0 for all j 2 Z
¯

and

Xo WD
®

x 2 X W x2j D 0 for all j 2 Z
¯

:

�en B2
2 .Xe/ � Xe and B2

2 .Xo/ � Xo. �us we can consider

C2 WD A2jXe
and D2 WD A2jXo

and get A2 D C ˚ D with respect to this decomposition of X, where C2 and D2

are tridiagonal operators given by

C2 D

0

B

B

B

B

@

: : :
: : :

: : :

�2 0 1

�2 0 1
: : :

: : :
: : :

1

C

C

C

C

A

and

D2 D

0

B

B

B

B

@

: : :
: : :

: : :

��2 �2� 1

��2 2� 1
: : :

: : :
: : :

1

C

C

C

C

A

:
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We see that C2 is a Laurent operator and similarly as before we conclude that the

boundary of the numerical range of C2 is given by the ellipse

¹t 2 Œ0; 2�/ W .1 C �2/ cos.t / C i.1 � �2/ sin.t /º:

D2 is a 2-periodic operator, hence we can apply Proposition 21. Let

D2;' WD ei'D2; N WD 1 C �2;

and let us exclude the cases .�; '/ D .1; 0/ and .�; '/ D .1; �/ for the moment so

that D2;' C D�
2;' is not diagonal. In the notation of Proposition 21 �1.D2;'/ and

�2.D2;'/ are given by

�1.D2;'/ D jei' � �2e�i' j2
4.1 C �2 C 2� cos.'//.1 C �2 � 2� cos.'//

D .1 C �2/2 � 4�2 cos.'/2

4..1 C �2/2 � 4�2 cos.'/2/

D 1

4
;

�2.D2;'/ D �1.D2;'/ D 1

4
:

�us
q

�1.D2;'/ C
q

�2.D2;'/ D 1

and, by Proposition 21,

r'.D2/ D 1 C �2 for all ' 2 Œ0; 2�/ (.�; '/ … ¹.1; 0/; .1; �/º).

In the remaining two cases 1
2
.D2;' C D�

2;'/ is a diagonal matrix and thus it is

easily seen that r'.D2/ D 2 holds. �erefore we have

r'.D2/ D 1 C �2 for all ' 2 Œ0; 2�/.

Now obviously N.C2/ � N.D2/ holds and thus we get

r'.B2
2 / D 1 C �2 for all ' 2 Œ0; 2�/.

A parametrization of @N.B2
2 / is then of course given by

z.t/ D .1 C �2/eit ; t 2 Œ0; 2�/:

B3 is the same as B1 just with � replaced by �� .
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Next we have to compute

N.'/ WD max
j 2¹1;2;3º

r'.B2
j / (14)

for every ' 2 Œ0; 2�/.

Proposition 25. Let B1, B2 and B3 be as above, '� WD arccos. �
1C�2 / and let N

be given by (14). �en N takes the following values:

� for 0 � ' � '�,

N.'/ D 2� cos.'/ C
p

.1 C �2/2 cos.'/2 C .1 � �2/2 sin.'/2I

� for '� � ' � � � '�;

N.'/ D 1 C �2I

� for � � '� � ' � � C '�,

N.'/ D �2� cos.'/ C
p

.1 C �2/2 cos.'/2 C .1 � �2/2 sin.'/2I

� for � C '� � ' � 2� � '�,

N.'/ D 1 C �2I

� for 2� � '� � ' � 2� ,

N.'/ D 2� cos.'/ C
p

.1 C �2/2 cos.'/2 C .1 � �2/2 sin.'/2:

Proof. Since all of these functions are continuous, we only have to check where

the graphs of r'.B2
1 /, r'.B2

2 / and r'.B2
3 / intersect. Let us have a look at r'.B2

1 /

and r'.B2
2 / �rst:

r'.B2
1 / D r'.B2

2 /

() 2� cos.'/ C
p

.1 C �2/2 cos.'/2 C .1 � �2/2 sin.'/2 D 1 C �2

() .1 C �2/2 cos.'/2 C .1 � �2/2.1 � cos.'/2/ D .1 C �2 � 2� cos.'//2

() cos.'/ D �

1 C �2
:

�us the graphs of r'.B2
1 / and r'.B2

2 / only intersect at '� D arccos. �
1C�2 /

and 2� � '�. Similarly, the graphs of r'.B2
2 / and r'.B2

3 / only intersect at

� � '� D arccos. ��
1C�2 / and � C '�. Finally, r'.B2

1 / and r'.B2
3 / obviously only

intersect at �
2

and 3�
2

. Plugging in some angles and using (14), one easily deduces

the assertion.
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Now let us focus on A2. Let us denote the �rst subdiagonal of an operator

A 2 ‰E.U�1; U0; U1/ by .hj /j 2Z, i.e. hj WD Aj C1;j for all j 2 Z. �en A2 has

the following entries:

.A2/j;j C2 D Aj;j C1Aj C1;j C2 D 1;

.A2/j;j C1 D Aj;j C1Aj C1;j C1 C Aj;j Aj;j C1 D 0;

.A2/j;j D Aj;j C1Aj C1;j C Aj;j Aj;j C Aj;j �1Aj �1;j D hj C hj �1;

.A2/j;j �1 D Aj;j Aj;j �1 C Aj;j �1Aj �1;j �1 D 0;

.A2/j;j �2 D Aj;j �1Aj �1;j �2 D hj �1hj �2;

and can be decomposed as A2 D C ˚ D as in the proof of Proposition 24.

�e matrices C and D are given by

Cj;j C1 D 1;

Cj;j D h2j C h2j �1;

Cj;j �1 D h2j �1h2j �2;

and

Dj;j C1 D 1;

Dj;j D h2j C1 C h2j ;

Dj;j �1 D h2j h2j �1;

for j 2 Z, respectively. We will focus on the computation of the numerical range

of C . �e computation of the numerical range of D is exactly the same so that

we obtain N.C / D N.D/. Since the numerical range of a direct sum is just

the convex hull of the union of the numerical ranges of its components, we get

N.A2/ D N.C / D N.D/.

By Proposition 3, we have A 2 �op.A/ and thus there exists a sequence of inte-

gers .gn/n2N tending to in�nity such that Ag exists and is equal to A.

Without loss of generality we may assume that this sequence tends to C1. �en

.A2/g D .Ag/2 D A2 D C ˚ D

by Proposition 1. Observe that

V�gn
.C ˚ D/Vgn

D V�gn=2C Vgn=2 ˚ V�gn=2DVgn=2
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if gn is even and

V�gn
.C ˚ D/Vgn

D V�.gn�1/=2DV.gn�1/=2 ˚ V�.gnC1/=2C V.gnC1/=2

if gn is odd. Clearly either ¹n 2 N W gn is evenº or ¹n 2 N W gn is oddº is an in-

�nite set. Let us �rst assume that ¹n 2 N W gn is evenº is in�nite and denote the

sequence of even elements in g by ge. �en by construction V�ge
n=2C Vge

n=2 con-

verges strongly to C and V�ge
n=2DVge

n=2 converges strongly to D as n ! 1. �us

C 2 �op.C / and D 2 �op.D/. Similarly, assume that ¹n 2 N W gn is oddº is in�-

nite and denote the sequence of odd elements in g by go. �en by construction,

V�.go
n�1/=2C V.go

n�1/=2 converges strongly to D and V�.go
nC1/=2DV.go

nC1/=2 con-

verges strongly to C as n ! 1. �us D 2 �op.C / and C 2 �op.D/ in this case.

Since limit operators of limit operators are again limit operators of the original

operator (see e.g. [17, Corollary 3.97]), we also get C 2 �op.C / and D 2 �op.D/

in this case. Since ge and go tend to C1, we can apply Proposition 15 to get

N.A2/ D N.C / D N.CC/;

where

CC WD PNCPNjim PN 2 L.`2.N//:

Fix ' 2 Œ0; 2�/ and let E.'/ be the real symmetric tridiagonal operator that

satis�es

Ej;j .'/ D Re.ei'.CC/j;j /;

Ej;j C1.'/ D 1

2
jei'.CC/j;j C1 C e�i'.CC/j C1;j j

and

r'.A2/ D r'.CC/ D r0.E.'//

(cf. (5)). Now for every angle ' there are 16 di�erent combinations for

.h2j �1; h2j ; h2j C1; h2j C2/

in (6). De�ne

�j .'/ WD Ej;j C1.'/2

.N.'/ � Ej;j .'//.N.'/ � Ej C1;j C1.'//
(15)

for all j 2 N, where N.'/ is given by Proposition 25. Let us consider ' 2 Œ'�; �
2

�

�rst. For these angles, we have the following table. For later reference we num-

bered the 16 cases lexicographically.
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Table 1

tj .h2j �1; h2j ; h2j C1; h2j C2/ �j .'/

1 .�; �; �; �/ .1��2/2C4�2 cos.'/2

4.1C�2�2� cos.'//2

2 .�; �; �; ��/ .1��2/2C4�2 cos.'/2

4.1C�2�2� cos.'//.1C�2/

3 .�; �; ��; �/ .1C�2/2�4�2 cos.'/2

4.1C�2�2� cos.'//.1C�2/

4 .�; �; ��; ��/ .1C�2/2�4�2 cos.'/2

4.1C�2�2� cos.'//.1C�2C2� cos.'//

5 .�; ��; �; �/ .1C�2/2�4�2 cos.'/2

4.1C�2�2� cos.'//.1C�2/

6 .�; ��; �; ��/ .1C�2/2�4�2 cos.'/2

4.1C�2/2

7 .�; ��; ��; �/ .1��2/2C4�2 cos.'/2

4.1C�2/2

8 .�; ��; ��; ��/ .1��2/2C4�2 cos.'/2

4.1C�2C2� cos.'//.1C�2/

9 .��; �; �; �/ .1��2/2C4�2 cos.'/2

4.1C�2�2� cos.'//.1C�2/

10 .��; �; �; ��/ .1��2/2C4�2 cos.'/2

4.1C�2/2

11 .��; �; ��; �/ .1C�2/2�4�2 cos.'/2

4.1C�2/2

12 .��; �; ��; ��/ .1C�2/2�4�2 cos.'/2

4.1C�2C2� cos.'//.1C�2/

13 .��; ��; �; �/ .1C�2/2�4�2 cos.'/2

4.1C�2�2� cos.'//.1C�2C2� cos.'//

14 .��; ��; �; ��/ .1C�2/2�4�2 cos.'/2

4.1C�2C2� cos.'//.1C�2/

15 .��; ��; ��; �/ .1��2/2C4�2 cos.'/2

4.1C�2C2� cos.'//.1C�2/

16 .��; ��; ��; ��/ .1��2/2C4�2 cos.'/2

4.1C�2C2� cos.'//2

�is table has to be read as follows. �e sequence .hj /j 2N induces a sequence

.tj /j 2N. For example if the sequence .hj /j 2N starts with

.�; ��; ��; �; �; �; �; ��; �; ��; : : :/;

the sequence .tj /j 2N starts with .7; 9; 2; 6; : : :/. �e numbers tj are used to refer

to the respective �j , which are computed via Formula (15). So if, for example,

tj D 6, then �j .'/ D .1C�2/2�4�2 cos.'/2

4.1C�2/2 .
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We will �nd the following equalities and inequalities useful:

0 � cos.'/ � �

1 C �2
< 1 (16)

.1 � �2/2 C 4�2 cos.'/2 � .1 � �2/2 C 4�4

.1 C �2/2
D .1 C �4/2

.1 C �2/2
(17)

1 C �2 � 2� cos.'/ � 1 C �2 � 2�2

1 C �2
D 1 C �4

1 C �2
(18)

.1 C �2/2 � 4�2 cos.'/2 D .1 C � C 2� cos.'//.1 C � � 2� cos.'// (19)

Using these, it is not di�cult to see that �j .'/ � 1
2

for all ' 2 Œ'�; �
2

� and

j 2 N (i.e. for all possible values of �j .'/ in Table 1). We even have �j .'/ � 1
4

for all ' 2 Œ'�; �
2

� and j 2 N with tj … ¹3; 5º. �is observation is very useful to

�nally construct the sequence needed for Lemma 19.

Proposition 26. Let � 2 .0; 1�, U�1 D ¹1º, U0 D ¹0º, U1 D ¹˙�º and let A 2
‰E.U�1; U0; U1/. Let ' 2 Œ'�; �

2
�, �j WD �j .'/ and tj for all j 2 N be de�ned as

above. �en the sequence .gj /j 2N, de�ned by the following prescription, satis�es

gj 2 Œ0; 1� and �j � gj C1.1 � gj / for all j 2 N:

� if t1 D 5, choose g1 D 1
2

1C�2�2� cos.'/

1C�2 ;

� if there is some k 2 N such that t1 D : : : D tk D 6 and tkC1 D 5, choose

g1 D 1
2

1C�2�2� cos.'/

1C�2 ;

� if neither is true, choose g1 D 1
2
;

� if tj 2 ¹2; 6; 10; 14º and tj C1 D 5, choose gj C1 D 1
2

1C�2�2� cos.'/

1C�2 ;

� if tj 2 ¹2; 6; 10; 14º, there is some k > j such that tj C1 D : : : D tk D 6 and

tkC1 D 5, choose gj C1 D 1
2

1C�2�2� cos.'/

1C�2 ;

� if tj D 3, choose gj C1 D 1
2

1C�2C2� cos.'/

1C�2 ;

� if tj D 11, there is some k � j such that tk D : : : D tj D 11 and tk�1 D 3,

choose gj C1 D 1
2

1C�2C2� cos.'/

1C�2 ;

� if none of the above is true, choose gj C1 D 1
2
.



248 R. Hagger

Proof. �at gj 2 Œ0; 1� holds for all j 2 N follows from (16). So it remains

to prove that �j � gj C1.1 � gj / holds. Above we observed that �j � 1
4

unless

tj 2 ¹3; 5º. So if tj … ¹3; 5º for all j 2 N, then �j � gj C1.1 � gj / is obviously

satis�ed. It remains to investigate what happens if tj 2 ¹3; 5º for some j 2 N.

Roughly speaking, the idea is that the cases tj D 3 and tj D 5 a�ect the sequence

.gk/k2N only locally in the sense that
®

k 2 N W gk D 1
2

¯

is an in�nite set. �us

if tj 2 ¹3; 5º occurs, we try to get back to 1
2

as soon as possible as j increases.

�e argument can then be repeated by induction.

Note that if tj 2 ¹3; 5º, we can simplify �j as follows:

�j D .1 C �2/2 � 4�2 cos.'/2

4.1 C �2 � 2� cos.'//.1 C �2/
D 1

4

1 C �2 C 2� cos.'/

1 C �2
;

where we used (19).

Let us consider the case tj D 3 �rst and assume gj D 1
2
. More precisely, we

start our sequence with g1 D g2 D : : : D 1
2

until tj 2 ¹3; 5º occurs the �rst time

and consider the case where tj D 3 occurs �rst. �en by de�nition

gj C1 D 1

2

1 C �2 C 2� cos.'/

1 C �2

and

gj C1.1 � gj / D 1

4

1 C �2 C 2� cos.'/

1 C �2
D �j :

Observe that �j and �j C1 are not independent. Indeed, �j C1 depends on h2j C1,

h2j C2, h2j C3 and h2j C4 whereas �j depends on h2j �1, h2j , h2j C1 and h2j C2.

�us if we �x �j , there are only 4 possible combinations for �j C1. In particular,

if tj D 3, then tj C1 has to be contained in ¹9; 10; 11; 12º. So there are four cases:

�j C1 D .1 � �2/2 C 4�2 cos.'/2

4.1 C �2 � 2� cos.'//.1 C �2/
.tj C1 D 9/;

�j C1 D .1 � �2/2 C 4�2 cos.'/2

4.1 C �2/2
.tj C1 D 10/;

�j C1 D .1 C �2/2 � 4�2 cos.'/2

4.1 C �2/2
.tj C1 D 11/;

�j C1 D .1 C �2/2 � 4�2 cos.'/2

4.1 C �2 C 2� cos.'//.1 C �2/
.tj C1 D 12/:
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In the �rst case we have gj C2 D 1
2
:

gj C2.1 � gj C1/ D 1

2
� 1

4

1 C �2 C 2� cos.'/

1 C �2

D 1

4

1 C �2 � 2� cos.'/

1 C �2

� 1

4

1 C �4

.1 C �2/2

� �j C1;

where we used (18) in line 2 and (17) and (18) in line 3. In the second case we

have gj C2 D 1
2

1C�2�2� cos.'/

1C�2 � 1
2

if tj C2 2 ¹5; 6º and gj C2 D 1
2

if not:

gj C2.1 � gj C1/ � 1 C �2 � 2� cos.'/

1 C �2

�1

2
� 1

4

1 C �2 C 2� cos.'/

1 C �2

�

D 1

4

.1 C �2 � 2� cos.'//2

.1 C �2/2

� 1

4

.1 C �4/2

.1 C �2/4

� �j C1;

where we used (18) in line 2 and (17) in line 3. In the third case we have

gj C2 D 1
2

1C�2C2� cos.'/

1C�2 :

gj C2.1 � gj C1/ D 1 C �2 C 2� cos.'/

1 C �2

�1

2
� 1

4

1 C �2 C 2� cos.'/

1 C �2

�

D 1

4

1 C �2 C 2� cos.'/

1 C �2

1 C �2 � 2� cos.'/

1 C �2

D 1

4

.1 C �2/2 � 4�2 cos.'/2

.1 C �2/2

D �j C1:

In the fourth case we have gj C2 D 1
2
:

gj C2.1 � gj C1/ D 1

2
� 1

4

1 C �2 C 2� cos.'/

1 C �2

D 1

4

1 C �2 � 2� cos.'/

1 C �2

D 1

4

.1 C �2/2 � 4�2 cos.'/2

.1 C �2 C 2� cos.'//.1 C �2/

D �j C1:
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So either gj C2 � 1
2

(and we included one special case that we need afterwards) or

gj C2 D gj C1. �us either we are where we started with, namely 1
2
, or we are in the

third case, where �j C1 is of type (11). But in this case we have h2j C1 D h2j C3 and

h2j C2 D h2j C4 and thus we have again the same four cases for �j C2 and so on.

So either we end up with an in�nite sequence with gk D gj C1 for all k > j (which

is impossible by pseudo-ergodicity, but would still be just �ne) or we eventually

go out with gk � 1
2

for some k � j C 2. �us we are done by induction if we can

control the case tj D 5 as well.

�e case tj D 5 is very similar to the case tj D 3, but we have to think back-

wards this time, which is a little bit more complicated. If we have a look at the

generators (i.e. h2j �1, h2j , h2j C1 and h2j C2) of the cases tj D 3 and tj D 5, it is

intuitively clear, why this has to be the same but backwards. So assume tj D 5.

�en gj D 1
2

1C�2�2� cos.'/

1C�2 and gj C1 D 1
2

by de�nition and thus

gj C1.1 � gj / D 1

2
� 1

4

1 C �2 � 2� cos.'/

1 C �2
D 1

4

1 C �2 C 2� cos.'/

1 C �2
D �j :

As already mentioned, we have to look backwards here, i.e. we want to control

gj �1. Now there are �ve cases. �e �rst case is j D 1, which is trivial of course.

�e second case is where tj �1 D 2. In this case we have gj �1 D 1
2
:

gj .1 � gj �1/ D 1

4

1 C �2 � 2� cos.'/

1 C �2

� 1

4

1 C �4

.1 C �2/2

� �j �1;

where we used (18) in line 1 and (17) and (18) in line 2. �e third case is where

tj �1 D 6. In this case we have gj �1 D 1
2

1C�2�2� cos.'/

1C�2 :

gj .1 � gj �1/ D 1

2

1 C �2 � 2� cos.'/

1 C �2

�

1 � 1

2

1 C �2 � 2� cos.'/

1 C �2

�

D 1

4

1 C �2 � 2� cos.'/

1 C �2

1 C �2 C 2� cos.'/

1 C �2

D 1

4

.1 C �2/2 � 4�2 cos.'/2

.1 C �2/2

D �j �1:
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�e fourth case is where tj �1 D 10. We either have gj �1 D 1
2

1C�2C2� cos.'/

1C�2 � 1
2

if tj �2 2 ¹3; 11º or gj �1 D 1
2

if not:

gj .1 � gj �1/ � 1

2

1 C �2 � 2� cos.'/

1 C �2

�

1 � 1

2

1 C �2 C 2� cos.'/

1 C �2

�

D 1

4

.1 C �2 � 2� cos.'//2

.1 C �2/2

� 1

4

.1 C �4/2

.1 C �/4

� �j �1;

where we used (18) in line 2 and (17) and in line 3. Note that this case matches

perfectly with the second case above. �e �fth case is where tj �1 D 14. In this

case we have gj �1 D 1
2
:

gj .1 � gj �1/ D 1

4

1 C �2 � 2� cos.'/

1 C �2

D 1

4

.1 C �2/2 � 4�2 cos.'/2

.1 C �2 C 2� cos.'//.1 C �2/

D �j �1:

Again we conclude that either gj �1 � 1
2

(note that the inequality is in the other

direction this time, which is good!) or gj �1 D gj . �us either we started where

we ended, namely 1
2

(or even better, we started with something that is greater than

or equal to 1
2

and the sequence reduced to 1
2
, compare with the mentioned special

case above), or we are in the third case, where tj �1 D 6. But in this case we have

h2j �1 D h2j �3 and h2j �2 D h2j �4 and thus we again have the same four cases for

�j �2 and so on. �us we either end up at g1, which is �ne or we eventually have

gk � 1
2

for some k � j � 1. In either case we are done by induction.

So we are done with the case ' 2 Œ'�; �
2

�. �is means that there is only the

case ' 2 Œ0; '�� left. All the other angles will follow by symmetry. Let us now

consider the table for the angles ' 2 Œ0; '��. Remember that we have

N.'/ D 2� cos.'/ C
p

.1 C �2/2 cos.'/2 C .1 � �2/2 sin.'/2

D 2� cos.'/ C
p

.1 � �2/2 C 4�2 cos.'/2

here and let us drop the ' in N.'/ for the sake of readability.
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Table 2

tj .h2j �1; h2j ; h2j C1; h2j C2/ �j .'/

1 .�; �; �; �/ 1
4

2 .�; �; �; ��/ .1��2/2C4�2 cos.'/2

4.N �2� cos.'//N

3 .�; �; ��; �/ .1C�2/2�4�2 cos.'/2

4.N �2� cos.'//N

4 .�; �; ��; ��/ .1C�2/2�4�2 cos.'/2

4.N �2� cos.'//.N C2� cos.'//

5 .�; ��; �; �/ .1C�2/2�4�2 cos.'/2

4.N �2� cos.'//N

6 .�; ��; �; ��/ .1C�2/2�4�2 cos.'/2

4N 2

7 .�; ��; ��; �/ .1��2/2C4�2 cos.'/2

4N 2

8 .�; ��; ��; ��/ .1��2/2C4�2 cos.'/2

4.N C2� cos.'//N

9 .��; �; �; �/ .1��2/2C4�2 cos.'/2

4.N �2� cos.'//N

10 .��; �; �; ��/ .1��2/2C4�2 cos.'/2

4N 2

11 .��; �; ��; �/ .1C�2/2�4�2 cos.'/2

4N 2

12 .��; �; ��; ��/ .1C�2/2�4�2 cos.'/2

4.N C2� cos.'//N

13 .��; ��; �; �/ .1C�2/2�4�2 cos.'/2

4.N �2� cos.'//.N C2� cos.'//

14 .��; ��; �; ��/ .1C�2/2�4�2 cos.'/2

4.N C2� cos.'//N

15 .��; ��; ��; �/ .1��2/2C4�2 cos.'/2

4.N C2� cos.'//N

16 .��; ��; ��; ��/ .1��2/2C4�2 cos.'/2

4.N C2� cos.'//2

We will �nd the following equalities and inequalities useful:

N � 1 C �2; (20)

cos.'/ � �

1 C �2
; (21)
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N � 2� cos.'/ D
p

.1 � �2/2 C 4�2 cos.'/2

�

s

.1 � �2/2 C 4�4

.1 C �2/2

D 1 C �4

1 C �2

(22)

N C 2� cos.'/ � 1 C �4

1 C �2
C 4�2

1 C �2

D 1 C 4�2 C �4

1 C �2

(23)

.1 � �2/2 C 4�2 cos.'/2 D .N � 2� cos.'//2 (24)

.1 C �2/2 � 4�2 cos.'/2 � .1 C �2/2 � 4�4

.1 C �2/2

D .1 C 4�2 C �4/.1 C �4/

.1 C �2/2
:

(25)

Using these, it is not di�cult to see that �j .'/ � 1
2

for all ' 2 Œ0; '�� and j 2 N

(i.e. for all possible values of �j .'/ in Table 2 and �j .'/ � 1
4

for all ' 2 Œ0; '��

and j 2 N with tj … ¹3; 5º. If

.1 C �2/2 � 4�2 cos.'/2 � .N � 2� cos.'//N;

then even �j .'/ � 1
4

for all ' 2 Œ0; '�� and j 2 N (i.e. also if tj 2 ¹3; 5º). In this

case we can just choose gj D 1
2

for all j 2 N and we are done. It thus remains to

consider the case where

.1 C �2/2 � 4�2 cos.'/2 > .N � 2� cos.'//N:

�e argument is now exactly the same as in the proof of Proposition 26.

Proposition 27. Let � 2 .0; 1�, U�1 D ¹1º, U0 D ¹0º, U1 D ¹˙�º and let

A 2 ‰E.U�1; U0; U1/. Let ' 2 Œ0; '��, �j WD �j .'/ and tj for all j 2 N be

de�ned as above. Further assume that

.1 C �2/2 � 4�2 cos.'/2 > .N � 2� cos.'//N:

�en the sequence .gj /j 2N, de�ned by the following prescription, satis�es

gj 2 Œ0; 1� and �j � gj C1.1 � gj / for all j 2 N:
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� if t1 D 5, choose g1 D 1 � 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
;

� if there is some k 2 N such that t1 D : : : D tk D 6 and tkC1 D 5, choose

g1 D 1 � 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
;

� if neither is true, choose g1 D 1
2
;

� if tj 2 ¹2; 6; 10; 14º and tj C1 D 5, choose gj C1 D 1 � 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
;

� if tj 2 ¹2; 6; 10; 14º, there is some k > j such that tj C1 D : : : D tk D 6 and

tkC1 D 5, choose gj C1 D 1 � 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
;

� if tj D 3, choose gj C1 D 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
;

� if tj D 11, there is some k � j such that tk D : : : D tj D 11 and tk�1 D 3,

choose gj C1 D 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
;

� if none of the above is true, choose gj C1 D 1
2
.

Proof. �e proof is exactly the same as the proof of Proposition 26. We only have

to change the numbers. �at gj 2 Œ0; 1� holds for all j 2 N follows from (20),

(22), and (25). So it remains to prove �j � gj C1.1 � gj /. Above we observed that

�j � 1
4

unless tj 2 ¹3; 5º. �us if the cases tj D 3 and tj D 5 do not occur, then

�j � gj C1.1 � gj / is obviously satis�ed. So we are left with the cases tj D 3 and

tj D 5 again.

Let us consider the case tj D 3 �rst and assume that gj D 1
2
. �en by de�nition

gj C1 D 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

and

gj C1.1 � gj / D 1

4

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N
D �j :

Now there are four possible cases for �j C1:

�j C1 D .1 � �2/2 C 4�2 cos.'/2

4.N � 2� cos.'//N
.tj C1 D 9/;

�j C1 D .1 � �2/2 C 4�2 cos.'/2

4N 2
.tj C1 D 10/;

�j C1 D .1 C �2/2 � 4�2 cos.'/2

4N 2
.tj C1 D 11/;

�j C1 D .1 C �2/2 � 4�2 cos.'/2

4.N C 2� cos.'//N
.tj C1 D 12/:
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In the �rst case we have gj C2 D 1
2
:

gj C2.1 � gj C1/ D 1

2
� 1

4

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

D 1

4

2.N � 2� cos.'//N � .1 C �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N

� 1

4

2.1 C �4/ � .1 C �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N

D 1

4

.1 � �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N

D �j C1;

where we used (20) and (22) in line 2. In the second case we have

gj C2 D 1 � 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N
� 1

2

if tj C2 2 ¹5; 6º and gj C2 D 1
2

if not:

gj C2.1 � gj C1/

�
�

1 � 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

��

1 � 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

�

D 1

4
.
2N.N � 2� cos.'// � .1 C �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N
/2

� 1

4
.
N.N � 2� cos.'// C 1 C �4 � .1 C �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N
/2

� 1

4
.
N.N � 2� cos.'// � 2�N cos.'/ C 4�2 cos.'/2

.N � 2� cos.'//N
/2

D 1

4

.N � 2� cos.'//2

N 2

D 1

4

.
p

.1 � �2/2 C 4�2 cos.'/2/2

N 2

D �j C1;

where we used (20) and (22) in line 2 and (20) and (21) in line 3.
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In the third case we have gj C2 D 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
:

gj C2.1 � gj C1/ D 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

�

1 � 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

�

� 1

4

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

N � 2� cos.'/

N

D 1

4

.1 C �2/2 � 4�2 cos.'/2

N 2

D �j C1

like in the second case. In the fourth case we have gj C2 D 1
2
:

gj C2.1 � gj C1/ D 1

2
� 1

4

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

� 1

2
� 1

4

1 C 4�2 C �4

.1 C �2/2

D 1

4

1 C �4

.1 C �2/2

� 1

4

.1 C �2/2 � 4�2 cos.'/2

.N C 2� cos.'//N

D �j C1;

where we used (20), (22) and (25) in line 1 and (20), (23) and (25) in line 3.

So either gj C2 � 1
2

or gj C2 D gj C1. As in the proof of Proposition 26 we con-

clude that we eventually go out with gk � 1
2

for some k � j C 2. �us we are

done by induction if we can control the case tj D 5 as well.

So assume tj D 5. �en gj D 1 � 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
and gj C1 D 1

2
by

de�nition and thus

gj C1.1 � gj / D 1

4

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

D �j :

Again there are �ve cases here. �e �rst case is j D 1, which is again trivial.
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�e second case is where tj �1 D 2. In this case we have gj �1 D 1
2
:

gj .1 � gj �1/ D 1

2
� 1

4

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

D 1

4

2.N � 2� cos.'//N � .1 C �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N

� 1

4

2.1 C �4/ � .1 C �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N

D 1

4

.1 � �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N

D �j C1;

where we used (20) and (22) in line 2. �e third case is where tj �1 D 6. In this

case we have gj �1 D 1 � 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
:

gj .1 � gj �1/ D
�

1 � 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

�1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

D 1

4

.2N.N � 2� cos.'// � .1 C �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

� 1

4

.N.N � 2� cos.'// C 1 C �4 � .1 C �2/2 C 4�2 cos.'/2

.N � 2� cos.'//N

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

� 1

4

.N.N � 2� cos.'// � 2�N cos.'/ C 4�2 cos.'/2

.N � 2� cos.'//N

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

D 1

4

N � 2� cos.'/

N

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

D 1

4

.1 C �2/2 � 4�2 cos.'/2

N 2

D �j �1;

where we used (20) and (22) in line 2 and (20) and (21) in line 3. �e fourth case

is where tj �1 D 10. In this case we either have gj �1 D 1
2

.1C�2/2�4�2 cos.'/2

.N �2� cos.'//N
� 1

2
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if tj �2 2 ¹3; 11º or gj �1 D 1
2

if not:

gj .1 � gj �1/ �
�

1 � 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

�

�

1 � 1

2

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

�

D 1

4

.N � 2� cos.'//2

N 2

D 1

4

.
p

.1 � �2/2 C 4�2 cos.'/2/2

N 2

D �j C1:

�e �fth case is where tj �1 D 14. In this case we have gj �1 D 1
2
:

gj .1 � gj �1/ D 1

2
� 1

4

.1 C �2/2 � 4�2 cos.'/2

.N � 2� cos.'//N

� 1

2
� 1

4

1 C 4�2 C �4

.1 C �2/2

D 1

4

1 C �4

.1 C �2/2

� 1

4

.1 C �2/2 � 4�2 cos.'/2

.N C 2� cos.'//N

D �j C1;

where we used (20), (22), and (25) in line 1 and (20), (23), and (25) in line 3. As

in the proof of Proposition 26 we conclude that we either end up at g1, which is

�ne or we eventually have gk � 1
2

for some k � j � 1. In either case we are done

by induction.

Using the sequences obtained in Proposition 26 and Proposition 27, we can

now apply Lemma 19 to prove �eorem 23:

Proof of �eorem 23. Let A 2 ‰E.U�1; U0; U1/. �e inclusion

N.A2/ � conv.N.B2
1 / [ N.B2

2 / [ N.B2
3 //

is clear by �eorem 11 and the fact that �op.B2/ D �op.B/2 (see Proposition 1).

To prove the other inclusion, we have to show r'.A2/ � N.'/ for all ' 2 Œ0; 2�/,

where N.'/ is given by Proposition 25. Using the transformations ' 7! � � '
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and ' 7! ' C � , it is clear that is su�ces to consider ' 2 Œ0; �
2

�. Indeed, N.'/ is

invariant under these transformations and in the Tables 1 and 2 only the roles of

C� and �� are interchanged. To apply Lemma 19 to E.'/, we have to assure

Ej;j C1.'/ D 1

2
jei'.CC/j;j C1 C e�i'.CC/j;j C1j > 0

and Ej;j .'/ > 0 for all ' 2 Œ0; �
2

�. �e latter can be achieved by shifting and the

former can only fail if � D 1 and ' D 0. But in this case we trivially have

r0.E.'// � kE.'/k � 4 D N.'/

by the Wiener estimate (e.g. [17, p. 25]). Moreover, we clearly have

N.'/ > sup
j 2N

Ej;j .'/

as Ej;j 2 ¹�2� cos.'/; 0; 2� cos.'/º for all j 2 N and ' 2 Œ0; �
2

� (cf. Proposi-

tion 25). We can thus apply Lemma 19, using the sequences from Proposition 26

and Proposition 27,3 to obtain

r'.A2/ D r0.E.'// � N.'/ for all ' 2 Œ0; �
2

�

and hence all ' 2 Œ0; 2�/.

�e inclusion for more general operators A 2 M.U�1; U0; U1/ now follows

from �eorem 11 and Proposition 1 again.

In Figure 1 we can see that
p

N.A2/ is indeed a tighter upper bound to the

spectrum than N.A/. Moreover, it shows that sp.A/ is not equal to N.A/ and thus

not convex. �is con�rms and improves the numerical results obtained in [3].

A rigorous proof of this observation can be found in Section 3.2.

3.2. A proof that
p

N.A2/ � N.A/. In this section we provide formulas for

N.A/, N.A/2 and N.A2/ in terms of graphs of explicit functions. �ese follow

from elementary computations using �eorem 16, �eorem 23 and Proposition 24.

�ese formulas then allow us to show that
p

N.A2/ is indeed a proper subset of

N.A/.

3 Including the trivial case where .1 C �2/2 � 4�2 cos.'/2 � .N � 2� cos.'//N .
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Figure 1. �e boundary of
p

N.A2/ (blue), the boundary of N.A/ (red) and a lower bound

to sp.A/ consisting of spectra of periodic operators and the closed unit disk (black, see [2]

and [3]) in the case � D 1.

Proposition 28. Let � 2 .0; 1�, U�1 D ¹1º, U0 D ¹0º, U1 D ¹˙�º and consider

an operator A 2 ‰E.U�1; U0; U1/. �en

N.A/ D ¹x C iy 2 C W � f .x/ � y � f .x/; �.1 C �/ � x � 1 C �º ;

where

f W Œ�.1 C �/; 1 C �� �! R

is given by

f .x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1 � �/

r

1 �
� x

1 C �

�2

for x 2
h

� .1 C �/; � .1 C �/2

p

2.1 C �2/

i

;

p

2.1 C �2/ C x for x 2
�

� .1 C �/2

p

2.1 C �2/
; � .1 � �/2

p

2.1 C �2/

i

;

.1 C �/

r

1 �
� x

1 � �

�2

for x 2
�

� .1 � �/2

p

2.1 C �2/
;

.1 � �/2

p

2.1 C �2/

�

;

p

2.1 C �2/ � x for x 2
h .1 � �/2

p

2.1 C �2/
;

.1 C �/2

p

2.1 C �2/

�

;

.1 � �/

r

1 �
� x

1 C �

�2

for x 2
h .1 C �/2

p

2.1 C �2/
; 1 C �

i

:
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Proof. By �eorem 16, the numerical range of A is given by the convex hull of

the two ellipses ¹ei# C �e�i# W # 2 Œ0; 2�/º and ¹ei# � �e�i# W # 2 Œ0; 2�/º.
�e assertion thus follows by an elementary computation.

Proposition 29. Let � 2 .0; 1�, U�1 D ¹1º, U0 D ¹0º, U1 D ¹˙�º and take an

operator A 2 ‰E.U�1; U0; U1/. �en

N.A/2 D ¹x C iy 2 C W � f .x/ � y � f .x/; �.1 C �/2 � x � .1 C �/2º;

where

f W Œ�.1 C �/2; .1 C �/2� �! R

is given by

f .x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1 � �2/

r

1 �
�x C 2�

1 C �2

�2

for x 2 Œ�.1 C �/2; �4�/;

1 C �2 � x2

4.1 C �2/
for x 2 Œ�4�; 4��;

.1 � �2/

r

1 �
�x � 2�

1 C �2

�2

for x 2 .4�; .1 C �/2�:

Proof. Using Re.z2/ D .Re z/2 � .Im z/2 and Im.z2/ D 2 Re z Im z for z 2 C,

this follows from Proposition 28 by another elementary computation.

Proposition 30. Let � 2 .0; 1�, U�1 D ¹1º, U0 D ¹0º, U1 D ¹˙�º and take an

operator A 2 ‰E.U�1; U0; U1/. �en

N.A2/ D
®

x C iy 2 C W � g.x/ � y � g.x/; �.1 C �/2 � x � .1 C �/2
¯

;

where

g W Œ�.1 C �/2; .1 C �/2� �! R

is given by

� for x 2 Œ�.1 C �/2; �2� � � .1C�2/2

1C�4 /,

g.x/ D .1 � �2/

r

1 �
�x C 2�

1 C �2

�2

I

� for x 2 Œ�2� � � .1C�2/2

1C�4 ; ��/,

g.x/ D .1 C �2/2

p
1 C �2 C �4

C �p
1 C �2 C �4

xI
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� for x 2 Œ��; ��,

g.x/ D
p

.1 C �2/2 � x2I

� for x 2 Œ�; 2� C � .1C�2/2

1C�4 /,

.1 C �2/2

p
1 C �2 C �4

� �p
1 C �2 C �4

xI

� for x 2 Œ2� C � .1C�2/2

1C�4 ; .1 C �/2/,

.1 � �2/

r

1 �
�x � 2�

1 C �2

�2

:

Proof. �is follows from �eorem 23 and Proposition 24 by yet another tedious

but elementary computation.

�us N.A/2 is surrounded by (parts of) two parabolas and two ellipses whereas

N.A2/ is surrounded by (parts of) a circle, two ellipses and four straight lines (see

Figure 2 for the case � D 1
2
). It is readily seen that the ellipses are the same,

respectively.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2. �e two parabolas and the two ellipses (blue, dotted), the circle (red, dotted),

N.A/2 (blue, solid) and N.A2/ (red, solid) in the case � D 1
2
.
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�eorem 31. Let � 2 .0; 1�, U�1 D ¹1º, U0 D ¹0º, U1 D ¹˙�º and take an

operator A 2 ‰E.U�1; U0; U1/. �en N.A2/ is a proper subset of N.A/2.

Proof. Let f be as in Proposition 29 and B1, B2, B3 as in �eorem 23.

We will show that f is concave, which implies that N.A/2 is convex. It then

remains to show that N.A/2 contains N.B2
1 /, N.B2

2 / and N.B2
3 / by �eorem 23.

Using Corollary 13 and the parametrizations of @N.B2
1 / and @N.B2

3 / provided by

Proposition 24, it is easily seen that

N.B2
1 / D N.B1/2 � N.A/2

and

N.B2
3 / D N.B3/2 � N.A/2:

It will thus su�ce to consider N.B2
2 /.

Clearly, f is continuously di�erentiable with

f 0.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

2
x C 2�

1 C �2

1 � �2

1 C �2

�

1 �
�x C 2�

1 C �2

�2��1=2

for x 2 Œ�.1 C �/2; �4�/;

� x

2.1 C �2/
for x 2 Œ�4�; 4��;

2
x � 2�

1 C �2

1 � �2

1 C �2

�

1 �
�x � 2�

1 C �2

�2��1=2

for x 2 .4�; .1 C �/2�:

Moreover, f 0 is piecewise continuously di�erentiable with

f 00.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� 1 � �2

1 C �2

�

1 �
�x C 2�

1 C �2

�2��3=2

for x 2 Œ�.1 C �/2; �4�/;

� 1

2.1 C �2/
for x 2 .�4�; 4�/;

� 1 � �2

1 C �2

�

1 �
�x � 2�

1 C �2

�2��3=2

for x 2 .4�; .1 C �/2�:

�us f 00.x/ < 0 for x 2 Œ�.1 C �/2; .1 C �/2� n ¹�4�; 4�º, which implies that f

is concave.

Let

g W Œ�.1 C �2/; 1 C �2� �! R

be de�ned by
p

.1 C �2/2 � x2 so that

N.B2
2 / D

®

x C iy 2 C W �g.x/ � y � g.x/; �.1 C �2/ � x � 1 C �2
¯

(see Proposition 24).
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Assume �rst that 4� � 1 C �2. �en

f .x/ D g.x/ () 1 C �2 � x2

4.1 C �2/
D

p

.1 C �2/2 � x2

()
�

1 C �2 � x2

4.1 C �2/

�2

D .1 C �2/2 � x2

() x2

2
C x4

16.1 C �2/2
D 0

() x D 0

for x 2 Œ�.1 C �2/; 1 C �2�. �us the graphs of f and g only intersect at

x D 0. Since both f and g are continuous, it su�ces to plug in some values

(e.g. ˙.1 C �2/) to conclude f � g and thus N.B2
2 / � N.A/2. As we mentioned

at the beginning of the proof, this implies N.A2/ � N.A/2.

Now let 4� < 1 C �2. For x 2 Œ�4�; 4��, this is the same as above. For

x 2 .4�; 1 C �2� we have

f .x/ D g.x/ () .1 � �2/

r

1 �
�x � 2�

1 C �2

�2

D
p

.1 C �2/2 � x2

() .1 � �2/2
�

1 �
�x � 2�

1 C �2

�2�

D .1 C �2/2 � x2:

But this quadratic equation only has the solutions x D 2� and x D �1C�4

�
,

which are not contained in .4�; 1 C �2�. �us the graphs of f and g do not

intersect in .4�; 1 C �2�. Similarly, the graphs of f and g do not intersect in

Œ�.1 C �2/; �4�/. Since f and g are continuous, this again implies that f � g

and thus N.A2/ � N.A/2.

It is now easily seen that this inclusion has to be proper.

Since N.A/ is symmetric with respect to the origin (cf. Proposition 28), �eo-

rem 31 implies that
p

N.A2/ is indeed a tighter upper bound to sp.A/ than N.A/.

Corollary 32. Let � 2 .0; 1�, U�1 D ¹1º, U0 D ¹0º, U1 D ¹˙�º and take an

operator A 2 ‰E.U�1; U0; U1/. �en
p

N.A2/ is a proper subset of N.A/.
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