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This paper presents a hybrid antenna design for an optically powered super high frequency (SHF) radio frequency identifi-
cation transponder applicable for the integration into metal. The key feature of the antenna is its ability to receive microwave
signals at SHF for data communication and optical signals for the power supply of the transponder. The antenna design is
based on a circular waveguide which is filled with a bundle of polymer optical fibers to guide light to the photodiodes. In
addition, a transition is placed within the circular waveguide to transfer the waveguide mode of the SHF signal into a micro-
strip mode which is a more suitable structure for the integration of electronic transponder components. This paper discusses
the constraints and solutions for the aforementioned combination of SHF microwave and light. The figures of merit of the
optical power supply are presented, including considerations of the light distribution and the obtained power as a function
of the incident angle and the used polymer optical fiber diameter. Furthermore, the measured gain and return loss of the
SHF antenna structure is compared to the simulated results.
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I . I N T R O D U C T I O N

During the last few years, radio frequency identification
(RFID) applications in general have been significantly
growing and especially in the field of electronic article surveil-
lance they have become one of the most important techniques.
However, commonly used RFID transponder antennas, typi-
cally dipole-like antennas, suffer from performance degra-
dation under the influence of a metallic environment
especially when they are placed directly on a metallic
surface. For the use of transponders in machine tools e.g. a
miller, it is desirable to integrate them into that tool, as a
transponder placed on the surface can be damaged easily
under mechanical stress. The usage of an integratable trans-
ponder equipped with memory is a very interesting task in
the field of machine tool monitoring, providing the ability
to trace the product life of the tools. Hereby, the range of
application is mainly limited by the transponder size, as the
integration of the transponder mechanically weakens the
machine tool and the volume needed for the integration of
the transponder is sometimes not available. Since the
antenna dimensions and the carrier frequency are reciprocally
proportional, the antenna is designed to work in the
Industrial, Scientific and Medical (ISM) band at 24 GHz.

Owing to the high operating frequency and therefore
increased free space attenuation, a classical passive RFID
transponder supply concept based on a rectifier [1] does not
yield enough supply power. Thus, hybrid antenna concepts
are necessary to overcome this limitation. These designs utiliz-
ing optical energy harvesting and data communication typi-
cally use solar cells directly as part of the antenna. For
example, in [2], a patch antenna is designed using solar cells
as ground plane of the patch or [3] uses a solar panel as a
slot antenna. These solutions or similar ones are not favorable
under the constraint that the antenna structure must work in
metal as a patch antenna or a cavity backed slot antenna are
not well suited for the integration into a metallic machine
tool. Thus, this paper presents an optically powered RFID
transponder design based on a circular waveguide with a
drill diameter of 8 mm, illustrated in Fig. 1. This concept sup-
ports the integration of the transponder into a metallic
machine tool and the waveguide aperture can be used as an
antenna. An intrinsic property of the circular aperture
antenna is broad radiation characteristic and thus positioning
of the reader antenna in relation to the transponder is less
critical. The circular waveguide has the task of guiding light
to the photodiodes for supply of the transponder while also
leading the electromagnetic wave received by the waveguide
aperture to the transponder circuit (reception case).
Therefore, the circular waveguide is filled with a bundle of
polymer optical fibers (POF) which end at a photodiode
array (see Fig. 2) to power the transponder circuit which is
placed behind the photodiodes. Data communication is rea-
lized via backscattering at 24 GHz. As the transponder
circuit consists of a modulator and demodulator made of
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discrete components and a microcontroller which is used for
detection of reader data and modulator control, a transition
that converts the waveguide mode into microstrip mode is
required to connect these discrete components. The modu-
lator is a high electron mobility transistor that is connected
in parallel to the antenna. For demodulation, an envelope
detector based on beam lead Schottky diodes is used. In this
paper, the focus is on optimization of the super high frequency
(SHF) antenna structure and optical power supply of the
transponder as shown in detail in Fig. 2. This paper is orga-
nized as follows: In Section II, the optical power supply is
explained. In Section III, the waveguide to planar transition
is presented containing the comparison between measure-
ment and simulation for radiation characteristic and return
loss.

I I . O P T I C A L P O W E R T R A N S F E R

Power by light has proven to be an applicable concept using
optical fibers [4] and free space [5] as media for power trans-
fer. In this application, the transponder shall be supplied with
a voltage of at least 2 V and a power of 4 mW. The conversion
of optical to electrical energy is accomplished by a circular
photodiode array with a diameter of 8 mm which is placed
inside the hybrid waveguide. Similar to free space applications,
the light source is not fixed in relation to the waveguide

aperture. Therefore, the system has to accept light from differ-
ent angles with low losses. Owing to the relatively high voltage
of 2 V, six photodiode segments connected in series are placed
around the centre of the waveguide in a pie shape (Fig. 3). For
an optimal performance of the electrical power supply all
photodiodes must receive the same irradiance. As shown in
Fig. 2, the microstrip line must pass through the photodiode
array therefore the array is divided into two mechanical
parts. The photodiode segments are fabricated using laser
beam cutting; hence nearly arbitrary shapes of the array are
possible. Owing to the influence of the diode segments on
microstrip line impedance the diode segments form an ellipti-
cally shaped slot at the edge where the line passes through the
array (see Fig. 3). The dimensions of the slot area are opti-
mized regarding electromagnetic field distribution of the
microstrip line which is concentrated near the microstrip con-
ductor and vanishes toward the sidewalls. The major axis is
8 mm and the minor axis is 1.5 mm. The waveguide filled
with the POF-bundle that is positioned in front of the photo-
diode array, has to feature three optical properties to work effi-
ciently. First, it has to accept light from a wide angle of
incidence, in order to avoid exact positioning between the
reader light source and the transponder. Thus, easy position-
ing of the reader antenna and the light source is possible.
Second, the waveguide has to have a high transparency for
the light. And third, it has to provide an even distribution of
light at the photodiode array, as the photodiodes are con-
nected in series. Thus, the element with the lowest irradiance
determines the available current and therefore the overall per-
formance. The first property can be fulfilled by standard POFs
bundled utilizing epoxy resin. The acceptance angle of these
fibers is 308. The second property can also be accomplished
by using POFs. The fibers are made of polymethylmethacry-
late (PMMA) which have a high transparency for visible
light. They even have minimal optical attenuation at 650 nm
[6]. Hence, the focus is on this wavelength for the power trans-
fer. For optimization of the optical path of the circular wave-
guide the system is simulated using the ray tracer software
ZEMAX. A beam expanded laser is used as a source for the
simulation. It is directed at the aperture of the waveguide at
different angles. The irradiance and the radiant flux wD at
backplane of the waveguide are determined. To verify the
simulation, the radiant flux is measured. A 650 nm beam
expanded laser with an irradiance of 30 mW/cm2 at the

Fig. 2. Design of the hybrid waveguide utilizing optical power supply and
microwave antenna design (left: front view, right: perspective view). Fig. 3. Photodiode array for optical power supply of the transponder.

Fig. 1. The optically powered RFID transponder concept.
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aperture of the waveguide is used to illuminate a reference
photodiode behind the fiber bundle. From the short current
of this photodiode the radiant flux wD is calculated. Results
of these measurements and the simulation are shown in
Fig. 4. Since a PMMA rod is used instead of POF with a diam-
eter of 8 mm, measured values differ from the simulated ones
at bigger angles of incidence, as the imperfect surface of the
rod gains influence on the total reflection. The simulated
radiant flux shows almost no losses in the dielectrically
loaded waveguide. Measured results are significantly lower,
though. This is due to attenuation of the epoxy, impurities,
bubbles, and imperfect interfaces between air, fiber bundle,
and reference diode. These losses have to be countered by
light sources with higher power. Furthermore, the transpar-
ency of bundles of 1 mm fibers seems to be better than that
of bundles of 2 mm and 0.5 mm fibers. For 2 mm fibers, the
proportion of epoxy is higher, while at 0.5 mm the polishing
of the end faces of the bundles is more difficult. For the
third property of the waveguide, an even distribution of
light, the number of fibers in the bundle, and hence the diam-
eter of the fibers are relevant. Figure 5 shows the distribution
for a single PMMA rod placed within the 8 mm drill hole for
an angle of incidence of 208. It becomes clear that the power is

concentrated in a focal point and the segments are unevenly
illuminated. Thus, the usage of a single rod is not applicable.
Another example of an illumination distribution with a
bundle consisting of fibers with a diameter of 1 mm for an
angle of incidence of 208 is shown in Fig. 6. This example
shows an almost even distribution and is therefore preferable.
These two examples illustrate that the optical performance is
strongly influenced by the fiber diameter. Thus, a quantitative
value for the quality of the resulting distribution of the photo-
diode array is introduced, which is the characteristic number
V and it is defined as:

V = 6
min (w1, w2, . . . , w6)

wD
, (1)

whereas wi is the radiant flux at the photodiode segment i,
while wD is the radiant flux at the whole array. V characterizes
the maximal electrical current which can be expected from the
whole array with respect to the radiant flux reaching the array,
as the least illuminated element determines the achievable
electrical current. Ideally, V would reach 100%. Practically,
this is not possible, due to losses. Nevertheless, V should
stay above 90% for the angle of incidence ranging from 08
to 308 which is sufficient to obtain a stable communication
between the reader and the transponder placed inside the
machine tool. From the simulation results of the radiant
flux, V is calculated by a Matlab script. V is also measured.
The short circuit current of each photodiode segment is
used as representation of the radiant flux. In Fig. 7, simulated
and measured results are shown. By comparing Figs. 4 and 7,
it is obvious that the variations as a function of the fiber diam-
eter are higher in Fig. 7 than in Fig. 4. Specially, the distri-
bution of light for the 8 mm fiber is strongly dependent on
the angle of incidence. This is caused by focal points and
thus only a small area is well illuminated while other parts
of the photodiodes are dimly lit. An example is depicted in
Fig. 5. At fiber diameters of 0.5 and 1 mm the distribution
stays above 90%. Therefore, these fiber diameters are pre-
ferred. Evaluation of the aforementioned three criteria
results in the usage of fibers with a diameter of 1 mm. Thus,
this diameter is used to form the POF-bundle and conse-
quently the dielectric load of the waveguide.

Fig. 4. Optical power of the photodiode array as a function of the angle of
incidence and fiber diameter of the single fiber for bundles with a length of
25 and 8 mm bundle diameter.

Fig. 6. Simulated power distribution for a POF-bundle with fiber diameters of
dF ¼ 1 mm for an angle of incidence of 208.

Fig. 5. Simulated power distribution for a POF-bundle with fiber diameters of
dF ¼ 8 mm for an angle of incidence of 208.
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I I I . A N T E N N A D E S I G N

The hybrid antenna presented in this contribution is con-
nected to the transponder circuit. Hence, a waveguide to
microstrip transition is necessary to transfer the waveguide
mode into a microstrip mode to connect discrete electronic
devices of the modulator and demodulator. This transition
should not lower the reception of optical energy in the ideal
case, though. Thus, a transition that is placed in front of the
photodiodes and therefore obscures them is not suitable. A
transition that fulfils the aforementioned necessities is a
finline structure [7]. Compared to other transitions e.g. uni-
polar finlines, antipodal finline structures suit the problem
well as they transfer a waveguide mode directly to a microstrip
mode and no further network, which would increase the
overall dimensions of the transponder, is necessary. Since
the transition must be as thin as possible to maximize the
available space for the photodiodes a Rogers RT/duroid
5880 substrate material with a thickness of h ¼ 0.254 mm, a
loss tangent of tan(d) ¼ 0.0009, and a permittivity of 1r ¼

2.2 is used. Both the transponder circuit and the antenna
are designed to a 50 V input impedance. Hence, the
antenna feed point impedance is created with a line width
of d ¼ 0.78 mm resulting in the desired impedance to match
the circuit impedance. Complex permittivity of the
POF-bundle which consists of several POF and epoxy resins
has a significant influence on transition design and was there-
fore measured using a waveguide transmission method [8]. It
is almost constant over the desired frequency band and has a
value of approx. 1r ¼ 2.44 and a loss tangent of approx.
tan(d) ¼ 0.015. The measured values of complex permittivity
are used within CST Microwave Studio to model the behavior
of the POF-bundle, resulting in a well defined layout of the
transition which is depicted in Fig. 8. For the sake of clarity,
the POFs, photodiodes, and the waveguide are not shown.
After the microstrip line has passed the photodiodes, the
line structure is changed by forming a semi-circle realized
by two metallization planes (see Fig. 8). The radius of the
semi-circle has been changed during optimization of the tran-
sition regarding the reflection coefficient. To finally transfer

the energy that is still within the substrate to the waveguide
mode a taper with a square root taper function is used. The
optimized overall length of the transition from the radiating
aperture to the photodiode array is l ¼ 13 mm. The length
of the transition is obtained by optimizing the return loss of
the antenna. The transition is fabricated using a precise
etching process. In order to evaluate the antenna performance
a coaxial connector is needed that has a minor influence on
the return loss and the antenna gain. A Southwest
Microwave connector [9] is used, as it offers superior perform-
ance in the K-band. An overall view of the realized antenna
integrated into a metallic workpiece is depicted in Fig. 9.
The cylinder has a length of 30 mm, a wall thickness of
6 mm, and a flange which is needed to position the antenna
into an anechoic measurement chamber. The characterization
of the transition can be divided into two steps. At first, the
transition is placed in the dielectrically loaded waveguide con-
taining only the POF-bundle to evaluate the accuracy of the
measured permittivity of the dielectric load. The resulting
comparison of the simulated and measured reflection coeffi-
cient of the transition is shown in Fig. 10. Since the measure-
ment and simulation results fit well it infers that the
permittivity of the POF-bundle was determined precisely.
The second step is characterization of the realized transponder
antenna including the dielectrically loaded waveguide as well
as the photodiode array. The material of the photodiodes is
defined as glass (1r ¼ 4.82, tan(d) ¼ 0.0054) and a thin met-
allic sheet to consider the cathode of the diode. The FR-4 sub-
strate material (1r ¼ 4.3, tan(d) ¼ 0.025) on which the

Fig. 8. Simulation model of the antipodal finline structure to excite the
waveguide mode.

Fig. 7. Simulated and measured power distribution on the photodiode array as
a function of the angle of incidence and the single fiber diameter of fiber
bundles with a length of 25 and 8 mm bundle diameter.

Fig. 9. The testbed consisting of a brass cylinder with integrated antenna.
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photodiodes are placed has a thickness of 1.5 mm. The com-
parison between measurement and simulation is depicted in
Fig. 11. The deviation between simulation and measurement
for the reflection coefficient is larger compared to the one
depicted in Fig. 10. The deviation is introduced due to the
number of unknowns, for example, the electrical behavior of
the FR-4 and of the both not characterized for the used fre-
quency band. Nevertheless, the curve shaping of the return
loss agrees well for both measurement and simulation. An
alternative approach that is almost independent of the photo-
diodes and the substrate material is a combination of a wave-
guide to substrate integrated waveguide (SIW) [10] transition
followed by an SIW to microstrip transition. A drawback of
this solution is that two transitions are required and it is
thus not investigated in this paper. Another important par-
ameter for the transponder antenna is realized gain, since it
has a significant influence on the reading range of the RFID
system. Therefore, the antenna (see Fig. 9) is positioned in
an anechoic chamber depicted in Fig. 12. It is obvious that

the transponder antenna can achieve gain of the dielectrically
loaded waveguide at best. Hence, the comparison between
gain of the realized antenna and an ideal radiating circular
waveguide is depicted in Fig. 13 for the E-plane which is par-
allel to the transition substrate. In this presentation, realized
gain definition is used for the measured results and the simu-
lated ones of the proposed antenna and the gain definition of
the IEEE are used for the ideal circular waveguide as it does
not include mismatch losses of the waveguide port.
According to Fig. 13, the resulting difference between the pro-
posed transition and the dielectrically loaded circular wave-
guide is less than 0.1 dB and the gain is approx. 6.0 dBi at
24 GHz. Another aspect is the influence of dielectric losses
of the POF-bundle. Thus, the waveguide is simulated with a
lossless dielectric resulting in an increased gain with a value
of 6.8 dBi. The difference of 0.8 dB reduces the communi-
cation range of the RFID system. After having discussed the
influence of the dielectric losses, the following section deals
with the comparison between the measured and simulated
gain of the realized transition. Here, Fig. 13 shows the cut
for the E-plane and Fig. 14 shows the cut for the H-plane.
According to these figures, the measured and simulated gain
fit well. The antenna has a measured gain of approx. 4.4 dBi
and it has a slightly preferred radiation direction which
depends on the feeding position and resulting aperture distri-
bution. Furthermore, the radiation characteristic shows linear
radiation behavior and suppression of the cross-polar com-
ponent is greater than 15 dB. The beamwidth for the
H-plane is 70 and 948 for the E-plane, thus a broad radiation
characteristic is obtained which enables a stable link for arbi-
trary positioning between reader and transponder antenna.
Owing to mounting of the antenna inside the anechoic
chamber, the measurement results are only valid for 2908,
q , 908. The measured and the simulated gain values show
a difference of approx. 1.6 dB. This deviation is probably
caused by measurement inaccuracy regarding the dielectric
losses of the POF-bundle as the waveguide transmission
method is not well suited to evaluate them [11]. Another
point is the influence of the anechoic chamber that exhibits
an accuracy of approx. 1 dB, based on the experience gained
from reference measurements.

Fig. 10. Comparison between simulated and measurement reflection
coefficient for the dielectrically loaded waveguide to microstrip transition.

Fig. 11. Comparison between simulated and measured reflection coefficient
for the realized waveguide to microstrip transition including the photodiode
array. Fig. 12. Anechoic chamber for gain measurement.
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I V . C O N C L U S I O N

This paper presents a hybrid antenna for a miniaturized opti-
cally powered 24 GHz RFID transponder. The antenna allows
an easy integration of the transponder into metallic work-
pieces, e.g. a machine tool. Therefore, the aperture of a circular
waveguide is used as antenna as well as optical waveguide to
guide the incident light to a photodiode array. The optical
components of the transponder are optimized for good

power transfer and a uniform distribution of the light at the
photodiode array even for different incident angles of the
optical signal. For excitation of the waveguide mode an anti-
podal finline structure is used as its influence is minimal on
optical performance. The circular waveguide is dielectrically
loaded and the permittivity of the POF-bundle is therefore
characterized. Followed by the characterization of the
POF-bundle, the design of the transition and the resulting
antenna parameters are shown.

Fig. 13. Measured and simulated gain pattern of the antenna structure for the E-plane of the transition and an ideal circular waveguide.

Fig. 14. Measured and simulated gain pattern of the antenna structure for the H-plane.
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