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Propagation at a finite speed is established for non-negative weak solutions to a
thin-film approximation of the two-phase Muskat problem. The expansion rate of the
support matches the scale invariance of the system. Moreover, we determine sufficient
conditions on the initial data for the occurrence of waiting time phenomena.

Keywords: finite propagation speed; waiting time; degenerate parabolic system

2010 Mathematics subject classification: Primary 35K65; 35K40; 35B99; 35Q35

1. Introduction and main results

The Muskat problem is a complex free-boundary model that was proposed by
Muskat [13] to describe the motion of two immiscible fluids with different den-
sities and viscosities in a porous medium with impermeable bottom (such as the
intrusion of water into oil). In the limit of thin fluid layers it was shown in [7] that
the Muskat problem can be approximated by a strongly coupled parabolic system
of equations, which, when neglecting surface tension effects, reads as follows:

∂tf = ∂x(f∂x((1 + R)f + Rg)),
∂tg = Rµ∂x(g∂x(f + g))

}
(1.1 a)

for (t, x) ∈ (0,∞) × R, and is supplemented with initial conditions

f(0) = f0, g(0) = g0, x ∈ R. (1.1 b)

The constants R and Rµ in (1.1 a), which are assumed in this paper to be positive,
are defined as

R :=
ρ+

ρ− − ρ+
and Rµ :=

µ−
µ+

R,
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with ρ− and µ− (respectively, ρ+ and µ+) denoting the density and viscosity of the
lower fluid (respectively, upper fluid). This reduced model retains only the functions
f = f(t, x) � 0 and g = g(t, x) � 0 as unknowns, where f is the thickness of the
lower fluid layer and g is the thickness of the upper fluid layer, so that f + g is the
total height of the fluids. When Rµ = R system (1.1 a) is also a particular case of
thin-film models derived in [9] in the context of seawater intrusion.

System (1.1 a) is a degenerate parabolic system with a full diffusion matrix, and
can be regarded as a two-phase generalization of the porous medium equation.
Among the salient features of the latter are the finite speed of propagation and
waiting time phenomena. Recall that the former means that the support of solutions
remains compact if it is initially compact, while a waiting time phenomenon refers
to the situation in which the solution vanishes at a point on the boundary of the
support of its initial condition for some time. Since system (1.1 a) is degenerate
and somewhat related to the porous medium equation, it is natural to ask whether
these two features also appear in the thin-film Muskat problem. It is the purpose
of this paper to provide an affirmative answer to these questions.

There is a huge literature on the finite speed of propagation for degenerate
parabolic equations, and various methods have been developed to investigate this
issue. In particular, for second-order parabolic equations, e.g. the porous medium
equation or the p-Laplacian equation, for which the comparison principle is avail-
able, this property can be derived by comparison with suitable sub- and super-
solutions (see [16] and the references therein). This approach cannot, however, be
extended to higher-order equations or to systems, and energy methods have been
developed instead (see [2–4, 15] and the references therein). These methods were
applied, in particular, to the thin-film equation, which is a fourth-order degenerate
parabolic equation, and they also work for second-order equations. A few appli-
cations to systems of equations can be found in the literature: the finite speed of
propagation and the occurrence of waiting time phenomena are shown in [5] for
the Poisson–Nernst–Planck system, which is of diagonal type with lower-order cou-
pling, and in [8] for the parabolic–elliptic chemotaxis Keller–Segel system, which
one can view as a non-local parabolic equation.

As we shall see below, the energy method is sufficiently flexible to be adapted to
study the strongly coupled degenerate parabolic system (1.1 a). Before stating our
result, let us introduce the notion of a weak solution to (1.1) to be used hereafter.
Let K denote the positive cone of the Banach space L1(R, (1 + x2) dx) ∩ L2(R)
defined by

K := {u ∈ L1(R, (1 + x2) dx) ∩ L2(R) : u � 0}, (1.2)

and set K2 := K × K.

Definition 1.1. Given (f0, g0) ∈ K2, a pair (f, g) : [0,∞) → K2 is a weak solution
to (1.1) if

(i) (f, g) ∈ L∞(0,∞; L2(R; R2)), (f, g) ∈ L2(0, t; H1(R; R2)) for all t > 0,

(ii) (f, g) ∈ C([0,∞); H−1(R; R2)) with (f, g)(0) = (f0, g0),
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Propagation speed and waiting time for a thin-film Muskat problem 815

and (f, g) solves (1.1 a) in the following sense:∫
R

f(t)ξ dx −
∫

R

f0ξ dx +
∫ t

0

∫
R

f(σ)[(1 + R)∂xf + R∂xg](σ)∂xξ dxdσ = 0,∫
R

g(t)ξ dx −
∫

R

g0ξ dx + Rµ

∫ t

0

∫
R

g(σ)(∂xf + ∂xg)(σ)∂xξ dxdσ = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(1.3)

for all ξ ∈ C∞
0 (R) and t � 0.

The existence of weak solutions to (1.1) is shown in [10] by a variational scheme.
The proof relies on the observation that system (1.1 a) is a gradient flow with
respect to the 2-Wasserstein metric of the energy functional

E(f, g) := 1
2

∫
R

[f2 + R(f + g)2] dx. (1.4)

This approach actually extends to the two-dimensional setting as well as to a related
fourth-order degenerate system that is also a thin-film approximation of the Muskat
problem which additionally incorporates surface tension effects [11]. Note that the
uniqueness of solutions to (1.1) is an open problem.

The main results of this paper are the following.

Theorem 1.2 (finite speed of propagation). Let (f, g) be a weak solution of (1.1).
If (f, g) satisfies the local energy estimate∫

R

[f2(T ) + R(f + g)2(T )]ζ2 dx

+
∫ T

0

∫
R

(f |(1 + R)∂xf + R∂xg|2 + RRµg|∂xf + ∂xg|2)ζ2 dxdt

�
∫

R

[f2(0) + R(f + g)2(0)]ζ2 dx

+ 4
∫ T

0

∫
R

[f((1 + R)f + Rg)2 + RRµg(f + g)2]|∂xζ|2 dxdt (1.5)

for all ζ ∈ W 1
4 (R) as well as for ζ ≡ 1, then (f, g) has a finite speed of propagation.

More precisely, if a � 0, r0 > 0, and supp(f0 + g0) ∩ (a − r0, a + r0) = ∅, then there
exists a positive constant C∗ = C∗(R, Rµ) such that

supp(f(T ) + g(T )) ∩ (a − 1
2r0, a + 1

2r0) = ∅ for all T ∈ (0, C∗r
5/2
0 /E1/2(f0, g0)].

In particular, if supp(f0 + g0) ⊂ [−b0, b0], with b0 > 0, then there exists a positive
constant C∗ = C∗(Rµ, R, f0, g0) such that

supp(f(T ) + g(T )) ⊂ [−b0 − C∗T 1/3, b0 + C∗T 1/3] for all T > 0.

We note that theorem 1.2 is only valid for weak solutions that also satisfy the
local energy estimate (1.5). Unfortunately, we are as yet unable to derive it for
arbitrary weak solutions, and it is unclear whether it holds in particular for the weak
solutions constructed in [10]. We shall show in § 3 that for each initial condition
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there is at least one weak solution to (1.1) satisfying the local estimate (1.5). To
this end we shall adapt an approximation scheme from [6] that allows us to obtain a
weak solution as a limit of classical solutions to a regularized version of the original
system.

Note also that theorem 1.2 gives no clue regarding the finite speed of propagation
for each component when taken separately.

Remark 1.3.

(a) It is shown in [12] that system (1.1 a) has self-similar solutions of the type

[(t, x) �→ (1 + t)−1/3(F, G)((1 + t)−1/3x)] for t � 0 and x ∈ R,

with compactly supported profiles (F, G) ∈ H1(R, R2) ∩ K2. Hence, the esti-
mate on the growth rate of the support obtained in theorem 1.2 matches that
of the self-similar solutions and is likely to be optimal.

(b) The constant C∗ in the last statement of theorem 1.2 depends only on f0 and
g0 through the energy E(f0, g0) and the second moments of f0 and g0.

Due to [4], a direct consequence of the local energy estimate (1.5) is the occurrence
of waiting time phenomena.

Theorem 1.4 (waiting time phenomena). Let (f, g) be a weak solution of (1.1)
such that (1.5) holds for all ζ ∈ W 1

4 (R). Let x0 ∈ R \ supp(f0 + g0) be such that

lim sup
r→0

1
r5

∫ x0+r

x0−r

[f2
0 + R(f0 + g0)2] dx < ∞.

Then there exists a positive time T∗ such that x0 ∈ R \ supp(f(T ) + g(T )) for all
T ∈ (0, T∗).

Let us now describe the content of this paper. Section 2 is devoted to the proof
of the main results. While theorem 1.4 is a straightforward consequence of (1.5)
and [4, theorem 1.2], the proof of theorem 1.2 requires several steps and is inspired
by [3], which deals with the thin-film equation. We note that fewer estimates are
available for (1.1) than for the equation studied in [3]. The last section is devoted to
the existence of weak solutions to (1.1) that satisfy the local energy estimate (1.5).

2. Finite speed of propagation

Throughout this section, (f, g) is a weak solution of (1.1) that satisfies the local
energy estimate (1.5) and

w := [f2 + R(f + g)2]3/4. (2.1)

The function w inherits some regularity properties of (f, g) as shown in the following
result.

Lemma 2.1. Given non-negative functions u, v ∈ H1(R), let

z := (u2 + Rv2)3/4.
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Propagation speed and waiting time for a thin-film Muskat problem 817

Then z ∈ H1(R) and

∂xz =
3
2

u∂xu + Rv∂xv

1{0}(z) + (u2 + Rv2)1/4 ,

where 1E is the characteristic function of the set E.

Proof. We choose positive functions un, vn ∈ C∞(R) ∩ H1(R), n � 1, such that
un → u and vn → v in H1(R) and set

zn := (u2
n + Rv2

n)3/4.

Obviously, z
4/3
n → z4/3 in L1(R) and it follows from the Hölder continuity of the

function [x �→ |x|3/4] that

|zn − z|4/3 � |z4/3
n − z4/3| for all n ∈ N.

Hence, zn → z in L4/3(R). We next note that the sequence (zn)n is bounded in
H1(R) so that it has a subsequence which converges weakly in H1(R) towards a
limit coinciding with z almost everywhere. Consequently, z belongs to H1(R) and
the formula for ∂xz follows by standard arguments.

We now derive from (1.5) a local energy estimate for the function w, defined
in (2.1), which is at the heart of our analysis.

Lemma 2.2. The function w defined in (2.1) satisfies

∫
R

w4/3(T )ζ2 dx + C1

∫ T

0

∫
R

|∂xw|2ζ2 dxdt

�
∫

R

w4/3(0)ζ2 dx + C2

∫ T

0

∫
R

w2|∂xζ|2 dxdt (2.2)

for all T > 0 and all ζ ∈ W 1
4 (R). The constants C1 and C2 depend only on R

and Rµ.

Proof. By lemma 2.1 the function w belongs to H1(R) and

|∂xw|2 =
∣∣∣∣f [(1 + R)∂xf + R∂xg] + Rg(∂xf + ∂xg)

1{0}(w) + (f2 + R(f + g)2)1/4

∣∣∣∣
2

� 2f

1{0}(w) + (f2 + R(f + g)2)1/2 f |(1 + R)∂xf + R∂xg|2

+
2R2g

1{0}(w) + (f2 + R(f + g)2)1/2 g|∂xf + ∂xg|2

� 2 max
{

1,

√
R

Rµ

}
[f |(1 + R)∂xf + R∂xg|2 + RRµg|∂xf + ∂xg|2]. (2.3)

In addition, since w4/3 � max {(1 + R)f2, Rg2}, it holds that

f((1 + R)f + Rg)2 + RRµg(f + g)2 � 2 max
{

Rµ√
R

,
√

1 + R

}
w2.

Combining these two inequalities with (1.5) gives the claim.
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We next recall that the Gagliardo–Nirenberg inequality [14, theorem 1] states
that there exists a constant C > 0 such that

‖v‖2 � C‖∂xv‖1/5
2 ‖v‖4/5

4/3 + C‖v‖4/3 for all v ∈ H1((−1, 1)).

Using a scaling argument, we deduce from the inequality above that, for r > 0,

‖v‖2 � C‖∂xv‖1/5
2 ‖v‖4/5

4/3 + Cr−1/4‖v‖4/3 for all v ∈ H1((−r, r)). (2.4)

A consequence of the Gagliardo–Nirenberg inequality (2.4) is the following interpo-
lation inequality in the spirit of [3, lemma 10.1].

Lemma 2.3. There exists a C3 > 0 such that, given r > 0 and v ∈ H1((−r, r)),

‖v‖2
2 � C3‖∂xv‖14/11

2 I6/11
r + C3r

−7/2I3/2
r (2.5)

holds, where

Ir :=
∫ r

−r

(r − |x|)2+|v(x)|4/3 dx.

Proof. We pick ρ ∈ (0, r) arbitrarily and infer from the Hölder inequality that∫ r

−r

|v|4/3 dx =
∫ ρ

−ρ

|v|4/3 dx +
∫

{ρ<|x|<r}
|v|4/3 dx

� 1
(r − ρ)2

∫ ρ

−ρ

(r − |x|)2+|v|4/3 dx + 2(r − ρ)1/3‖v‖4/3
2 .

We now choose ρ ∈ (0, r) such that

1
(r − ρ)2

∫ ρ

−ρ

(r − |x|)2+|v|4/3 dx = 2(r − ρ)1/3‖v‖4/3
2 ,

and obtain

‖v‖4/3 � 4‖v‖6/7
2 I3/28

r . (2.6)

Using (2.4) and (2.6) yields

‖v‖2
2 � C‖∂xv‖2/5

2 (‖v‖2
2)

24/35I6/35
r + Cr−1/2(‖v‖2

2)
6/7I3/14

r ,

and thus

(‖v‖2
2)

11/35 � C‖∂xv‖2/5
2 I6/35

r + Cr−1/2(‖v‖2
2)

6/35I3/14
r .

By Young’s inequality we get

‖v‖2
2 � C‖∂xv‖14/11

2 I6/11
r + Cr−35/22(‖v‖2

2)
6/11I15/22

r

� C‖∂xv‖14/11
2 I6/11

r + 1
2‖v‖2

2 + Cr−7/2I3/2
r ,

and the proof is complete.
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We now introduce additional notation. For r > 0 and T > 0 we set

uk(r, T ) :=
∫ T

0

∫ r

−r

|∂xw(t, x)|2(r − |x|)k
+ dxdt for k ∈ {0, 1, 2},

I(r, T ) := sup
t∈(0,T )

∫ r

−r

w4/3(t, x)(r − |x|)2+ dx,

where w is defined in (2.1). We first derive from (2.2) an inequality relating I(r, T ),
u0(r, T ) and u2(r, T ) under suitable constraints on r and T .

Lemma 2.4. Consider r0 > 0 such that supp(f0 + g0) ∩ (−r0, r0) = ∅. There are
positive constants C4 and C5 such that, if T0 > 0 is such that

C4T0( 1
2r0)−7/2I1/2(r0, T0) � 1

2 , (2.7)

then

1
3I(r, T ) + u2(r, T ) � C5T

4/5u
7/5
0 (r, T ) (2.8)

for all 1
2r0 � r � r0 and 0 < T � T0.

Proof. Let T ∈ (0, T0] and r ∈ (0, r0]. Setting ζ(x) := (r − |x|)+, x ∈ R, we observe
that the assumptions on f0 + g0 guarantee that ζ2(x)w4/3(0, x) = 0 for x ∈ R, and
we infer from (2.2) that∫

R

w4/3(t)ζ2 dx + C1

∫ t

0

∫
R

|∂xw|2ζ2 dxds � C2

∫ t

0

∫ r

−r

w2 dxds

for all t ∈ (0, T ). Hence, there exists a constant C > 0 such that

I(r, T ) + u2(r, T ) � C

∫ T

0

∫ r

−r

w2 dxds.

Using (2.5) and the Hölder inequality, it follows that

I(r, T ) + u2(r, T ) � CTr−7/2I3/2(r, T ) + CI6/11(r, T )
∫ T

0
‖∂xw(s)‖14/11

L2((−r,r)) ds

� C4Tr−7/2I3/2(r, T ) + CT 4/11I6/11(r, T )u7/11
0 (r, T ).

Since I(r, T ) is a non-decreasing function in both variables r and T , the property
(2.7), together with Young’s inequality and the above inequality, leads us to

I(r, T ) + u2(r, T ) � 1
2I(r, T ) + 1

6I(r, T ) + C5T
4/5u

7/5
0 (r, T )

for all 1
2r0 � r � r0 and 0 < T � T0. This completes the proof.

We are now in a position to prove our main results.

Proof of theorem 1.2. Since (1.1) is invariant with respect to translation, we may
assume that a = 0, so that supp(f0 + g0) ∩ (−r0, r0) = ∅. Then w4/3(0, x) = 0 for
x ∈ (−r0, r0) and I(r0, t) → 0 as t → 0 by (2.2). Consequently, there exists a T0 > 0
such that the condition (2.7) in lemma 2.4 is satisfied.
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Let T ∈ (0, T0). In view of

[x �→ ‖∂xw(·, x)‖2
L2(0,T )] ∈ L1(R),

we have
∂ru2(r, T ) = 2u1(r, T ), ∂ru1(r, T ) = u0(r, T ) (2.9)

for almost every (a.e.) r ∈ (0, r0), and the Hölder inequality yields

u1(r, T ) � u
1/2
2 (r, T )u1/2

0 (r, T ).

This inequality, together with (2.8), which is valid here due to the choice of T0,
gives

u1(r, T ) � CT 2/5u
6/5
0 (r, T ) = CT 2/5(∂ru1(r, T ))6/5 for a.e. r ∈ ( 1

2r0, r0).

Equivalently,

u
5/6
1 (r, T ) � 1

6C6
T 1/3∂ru1(r, T ) for a.e. r ∈ ( 1

2r0, r0). (2.10)

Taking a smaller value of T0 if necessary, we further assume that

T
1/3
0 u

1/6
1 (r0, T0) � 1

2C6r0. (2.11)

Let T ∈ (0, T0] and assume for the following argument by contradiction that
u1( 1

2r0, T ) > 0. Together with the monotonicity properties of u1 this implies that
u1(r, T ) > 0 for all r ∈ [ 12r0, r0]. Due to this positivity property, we infer from
(2.10) that

C6T
−1/3 � ∂r(u

1/6
1 )(r, T ) for a.e. r ∈ ( 1

2r0, r0).

After integration we end up with

C6T
−1/3(r0 − r) � u

1/6
1 (r0, T ) − u

1/6
1 (r, T ),

or, equivalently,

T 1/3u
1/6
1 (r, T ) � T 1/3u

1/6
1 (r0, T ) − C6(r0 − r), r ∈ [ 12r0, r0]. (2.12)

Taking r = 1
2r0 in (2.12) gives

0 < T
1/3
0 u

1/6
1 (r0, T0) − 1

2C6r0,

and contradicts (2.11). Therefore, u1( 1
2r0, T ) = 0 and it follows from (2.9) that

u0( 1
2r0, T ) = 0 for all T ∈ (0, T0]. Recalling (2.8), we find that I( 1

2r0, T ) = 0 for all
T ∈ (0, T0].

We further note that, in view of theorem 3.1(b) and (2.3),

u1(r, T ) � r

∫ T

0
‖∂xw(t)‖2

2 dt � Cr[E(f0, g0) − E(f(T ), g(T ))] � CrE(f0, g0),

I(r, T ) � r2 sup
t∈[0,T ]

‖w(t)‖4/3
4/3 � r2 sup

t∈[0,T ]
E(f(t), g(t)) � r2E(f0, g0),
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so that (2.7) and (2.11) are satisfied provided that T0 = C∗r
5/2
0 /E1/2(f0, g0) for a

sufficiently small constant C∗ > 0 depending only on R and Rµ. This proves the
first claim of theorem 1.2.

Finally, let supp(f0+g0) ⊂ [−b0, b0], with b0 > 0, and let T > 0 be fixed. Choosing
r0 = (TE1/2(f0, g0)/C∗)2/5, we have that, for each a � b0 + (TE1/2(f0, g0)/C∗)2/5

or a � −b0 − (TE1/2(f0, g0)/C∗)2/5,

supp(f0 + g0) ∩ (a − r0, a + r0) = ∅.

We then infer from the first statement of theorem 1.2 that supp(f(T ) + g(T )) ∩
(a − 1

2r0, a + 1
2r0) = ∅, from which it follows that

supp(f(T ) + g(T )) ⊂
[
−b0 − T 2/5E1/5(f0, g0)

2C
2/5
∗

, b0 +
T 2/5E1/5(f0, g0)

2C
2/5
∗

]
for all T > 0. (2.13)

Consequently, (f(T ) + g(T )) is compactly supported for each T � 0 and we set

β(T ) := max{b0, sup(supp(f(T ) + g(T )))}.

It then follows that β(T ) → β(0) = b0 as T → 0. Since problem (1.1 a) is autono-
mous, the estimate (2.13) yields

β(T2) − β(T1) � (T2 − T1)2/5E1/5(f(T1), g(T1))

2C
2/5
∗

for all T2 > T1. (2.14)

Besides, we know from [12, theorem 4.1(iv)] (after rescaling) that

E(f(t), g(t)) � (1 + t)−1/3
[
E(f0, g0) + 1

6

∫
R

(
f0 +

R

Rµ
g0

)
x2 dx

]
� Ct−1/3 for all t > 0. (2.15)

Combining (2.14) and (2.15) yields

β(T2) − β(T1) � C(T2 − T1)2/5T
−1/15
1 for all T2 > T1 > 0.

We are now in the position to apply [3, lemma 7.6] to the above functional inequality
and conclude that there exists a positive constant C∗ depending only on R, Rµ, f0,
and g0 such that

β(T ) � b0 + C∗T 1/3 for all T > 0,

which is the expected propagation rate. The estimate for the expansion of the left
boundary of the support is derived in a similar way.

Proof of theorem 1.4. Invoking (2.2), theorem 1.4 is a particular case of the more
general result [4, theorem 1.2], which we apply with k = 1, p = 2 and q = 4

3 .

3. Weak solutions satisfying the local energy estimate

As mentioned in § 1, we now check that there exists at least a weak solution to (1.1)
satisfying the local energy estimate (1.5).
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822 Ph. Laurençot and B.-V. Matioc

Theorem 3.1 (existence of weak solutions). Given (f0, g0) ∈ K2, where K2 is de-
fined in (1.2), there exists at least a weak solution (f, g) to (1.1), satisfying the local
energy estimate (1.5) as well as the following estimates:

(a) ‖f(T )‖1 = ‖f0‖1, ‖g(T )‖1 = ‖g0‖1,

(b) H(f(T ), g(T )) +
R

1 + 2R

∫ T

0

∫
R

[|∂xf |2 + R|∂x(f + g)|2] dxdt � H(f0, g0),

(c) E(f(T ), g(T )) + 1
2

∫ T

0

∫
R

[f((1 + R)∂xf + R∂xg)2 + RRµg(∂xf + ∂xg)2] dxdt

� E(f0, g0)

for all T ∈ (0,∞). The energy functional E is given by (1.4) and the entropy
functional H is defined as

H(f, g) :=
∫

R

(
f ln f +

R

Rµ
g ln g

)
dx.

The remainder of this section is devoted to the proof of theorem 3.1. We split
the proof of theorem 3.1 into two steps: we first truncate the spatial domain to a
finite interval (−L, L), for some arbitrary L > 0, and then introduce a regularized
system having global classical solutions.

3.1. A regularized problem

To be more precise, given L > 0 and ε ∈ (0, 1), we define the Hilbert space

H2
B := {u ∈ H2((−L, L)) : ∂xu(±L) = 0}

and we note that the elliptic operator (1 − ε2∂2
x) : H2

B → L2((−L, L)) is an isomor-
phism. Setting

Rε[u] := (1 − ε2∂2
x)−1u ∈ H2

B for u ∈ L2((−L, L)), (3.1)

we consider the following regularized problem:

∂tfε = (1 + R)∂x(fε∂xfε) + R∂x((fε − ε)∂xRε[gε]),
∂tgε = Rµ∂x((gε − ε)∂xRε[fε]) + Rµ∂x(gε∂xgε)

}
(3.2 a)

for (t, x) ∈ (0,∞) × (−L, L), supplemented with homogeneous Neumann boundary
conditions

∂xfε(t, ±L) = ∂xgε(t, ±L) = 0, t ∈ (0,∞), (3.2 b)

and with regularized initial data

fε(0) = f0ε := Rε[f01(−L,L)] + ε, gε(0) = g0ε := Rε[g01(−L,L)] + ε. (3.2 c)

Clearly, the regularized initial data satisfy (f0ε, g0ε) ∈ H2
B × H2

B and

f0ε � ε, g0ε � ε. (3.3)

The solvability of problem (3.2) is studied in [6, theorem 2.1] with the help of
the quasilinear parabolic theory developed in [1] and we recall the result now.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S030821051600038X
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 05 Feb 2018 at 14:21:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S030821051600038X
https://www.cambridge.org/core


Propagation speed and waiting time for a thin-film Muskat problem 823

Proposition 3.2. The problem (3.2) has a unique non-negative classical solution

fε, gε ∈ C([0,∞); H1((−L, L))) ∩ C((0,∞); H2
B) ∩ C1((0,∞); L2((−L, L))).

Moreover, we have

fε � ε, gε � ε for all (t, x) ∈ (0,∞) × (−L, L),

and

‖fε(t)‖1 = ‖f0ε‖1 = ‖f01(−L,L)‖1 + 2εL,

‖gε(t)‖1 = ‖g0ε‖1 = ‖g01(−L,L)‖1 + 2εL

for all t � 0.

The solutions constructed in proposition 3.2 enjoy additional properties (see [6,
lemmas 2.4 and 2.6]).

Lemma 3.3. Given T ∈ (0,∞), the following hold:

H(fε(T ), gε(T )) +
∫ T

0

∫ L

−L

(
|∂xfε|2

2
+

R

1 + 2R
|∂xgε|2

)
dxdt

� H(fε(0), gε(0)) (3.4)

and

Eε(fε(T ), gε(T )) +
∫ T

0

∫ L

−L

[fε|(1 + R)∂xfε + R∂xGε|2 + RRµgε|∂x(Fε + gε)|2] dxdt

� Eε(f0ε, g0ε) + εC2

∫ T

0

∫ L

−L

(|∂xfε|2 + |∂xgε|2) dxdt, (3.5)

with Fε := Rε[fε], Gε := Rε[gε],

Eε(fε, gε) :=
1
2

[
(1 + R)‖fε‖2

2 + R‖gε‖2
2 + R

∫ L

−L

(Fεgε + Gεfε) dx

]
,

H(fε, gε) :=
∫ L

−L

(
fε ln fε +

R

Rµ
gε ln gε

)
dx.

As a consequence of proposition 3.2 and lemma 3.3, the following result is proved
in [6].

Proposition 3.4 (weak solutions on a finite interval). There exist a sequence
εk → 0 and a pair (f, g) satisfying

(i) f � 0, g � 0 in (0,∞) × (−L, L),

(ii) f, g ∈ L∞(0,∞; L2((−L, L))) ∩ L2(0, T ; H1((−L, L))) for all T > 0,

(iii) fεk
→ f , gεk

→ g in L2((0, T ) × (−L, L)),
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and∫ L

−L

f(T )ξ dx −
∫ L

−L

f0ξ dx = −
∫ T

0

∫ L

−L

f((1 + R)∂xf + R∂xg)∂xξ dxdt, (3.6)

∫ L

−L

g(T )ξ dx −
∫ L

−L

g0ξ dx = −Rµ

∫ T

0

∫ L

−L

g(∂xf + ∂xg)∂xξ dxdt (3.7)

for all ξ ∈ W 1
4 ((−L, L)) and all T > 0. Moreover,

(a) ‖f(T )‖1 = ‖f01(−L,L)‖1, ‖g(T )‖1 = ‖g01(−L,L)‖1,

(b) H(f(T ), g(T )) +
∫ T

0

∫ L

−L

[
|∂xf |2

2
+

R

1 + 2R
|∂xg|2

]
dxdt � H(f0, g0),

(c) E(f(T ), g(T )) +
∫ T

0

∫ L

−L

[f((1 + R)∂xf + R∂xg)2 + RRµg(∂xf + ∂xg)2] dxdt

� E(f0, g0)

for all T ∈ (0,∞).

3.2. A local energy estimate

We now derive a local version of the inequality in proposition 3.4(c).

Lemma 3.5. Let (f, g) be the limit of ((fεk
, gεk

))k found in proposition 3.4. Then∫ L

−L

[f2(T ) + R(f + g)2(T )]ζ2 dx

+
∫ T

0

∫ L

−L

(f |(1 + R)∂xf + R∂xg|2 + RRµg|∂xf + ∂xg|2)ζ2 dxdt

�
∫ L

−L

[f2(0) + R(f + g)2(0)]ζ2 dx

+ 4
∫ T

0

∫ L

−L

[f((1 + R)f + Rg)2 + RRµg(f + g)2]|∂xζ|2 dxdt (3.8)

for all T > 0 and all ζ ∈ W 1
4 ((−L, L)).

Proof. We set

Uε :=
√

fε∂x[(1 + R)fε + RGε], Vε :=
√

gε∂x[Fε + gε],

and prove first the claim (3.8) for ζ ∈ C∞
0 ((−L, L)). We multiply the first equation

of (3.2 a) by ((1 + R)fε + RGε)ζ2 and integrate over (−L, L) to obtain

∫ L

−L

∂tfε((1 + R)fε + RGε)ζ2 dx

= −
∫ L

−L

√
fεUε∂x[((1 + R)fε + RGε)ζ2] dx + I1,ε (3.9)
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with

I1,ε := εR

∫ L

−L

∂xGε∂x[((1 + R)fε + RGε)ζ2] dx.

Similarly, multiplying the second equation of (3.2 a) by R(Fε+gε)ζ2 and integrating
over (−L, L) give

R

∫ L

−L

∂tgε(Fε + gε)ζ2 dx = −RRµ

∫ L

−L

√
gεVε∂x[(Fε + gε)ζ2] dx + I2,ε (3.10)

with

I2,ε := εRRµ

∫ L

−L

∂xFε∂x[(Fε + gε)ζ2] dx.

We now observe that∫ L

−L

∂tfε((1 + R)fε + RGε)ζ2 dx + R

∫ L

−L

∂tgε(Fε + gε)ζ2 dx

=
1 + R

2
d
dt

‖fεζ‖2
2 +

R

2
d
dt

‖gεζ‖2
2 + RJε, (3.11)

with

Jε :=
∫ L

−L

(Gε∂tfε + Fε∂tgε)ζ2 dx

=
d
dt

∫ L

−L

(FεGε + ε2∂xFε∂xGε)ζ2 dx

+ 2ε2
∫ L

−L

(Gε∂x∂tFε + Fε∂x∂tGε)ζ∂xζ dx.

Recalling that ζ ∈ C∞
0 ((−L, L)), we have∫ L

−L

(FεGε + ε2∂xFε∂xGε)ζ2 dx

= 1
2

∫ L

−L

(FεGε + ε2∂xFε∂xGε)ζ2 dx

+ 1
2

∫ L

−L

(FεGε + ε2∂xFε∂xGε)ζ2 dx

= 1
2

∫ L

−L

(FεGε − ε2Gε∂
2
xFε)ζ2 dx

+ 1
2

∫ L

−L

(FεGε − ε2Fε∂
2
xGε)ζ2 dx

− ε2
∫ L

−L

Gε∂xFεζ∂xζ dx − ε2
∫ L

−L

Fε∂xGεζ∂xζ dx

= 1
2

∫ L

−L

(Fεgε + Gεfε)ζ2 dx + ε2
∫ L

−L

FεGε∂x(ζ∂xζ) dx,
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while∫ L

−L

(Gε∂x∂tFε + Fε∂x∂tGε)ζ∂xζ dx = −
∫ L

−L

(∂tFε∂xGε + ∂xFε∂tGε)ζ∂xζ dx

−
∫ L

−L

(Gε∂tFε + Fε∂tGε)∂x(ζ∂xζ) dx

= −
∫ L

−L

(∂tFε∂xGε + ∂xFε∂tGε)ζ∂xζ dx

− d
dt

∫ L

−L

FεGε∂x(ζ∂xζ) dx.

We end up with the following formula for Jε:

Jε =
1
2

d
dt

∫ L

−L

(Fεgε + Gεfε)ζ2 dx − ε2 d
dt

∫ L

−L

FεGε∂x(ζ∂xζ) dx

− 2ε2
∫ L

−L

(∂tFε∂xGε + ∂xFε∂tGε)ζ∂xζ dx.

After integration over (0, T ), it follows from (3.9)–(3.11) and the previous identity
that

1
2 (1 + R)‖fε(T )ζ‖2

2 − 1
2 (1 + R)‖fε(0)ζ‖2

2 + 1
2R‖gε(T )ζ‖2

2 − 1
2R‖gε(0)ζ‖2

2

+ 1
2R

∫ L

−L

(Fεgε + Gεfε)(T )ζ2 dx − 1
2R

∫ L

−L

(Fεgε + Gεfε)(0)ζ2 dx

− Rε2
∫ L

−L

(FεGε)(T )∂x(ζ∂xζ) dx + Rε2
∫ L

−L

(FεGε)(0)∂x(ζ∂xζ) dx

− 2Rε2
∫ T

0

∫ L

−L

(∂tFε∂xGε + ∂xFε∂tGε)ζ∂xζ dxds

= −
∫ T

0

∫ L

−L

√
fεUε∂x[((1 + R)fε + RGε)ζ2] dxds +

∫ T

0
I1,ε ds

− RRµ

∫ T

0

∫ L

−L

√
gεVε∂x[(Fε + gε)ζ2] dxds +

∫ T

0
I2,ε ds.

Using Young’s inequality we get

1
2 (1 + R)‖fε(T )ζ‖2

2 + 1
2R‖gε(T )ζ‖2

2 + 1
2R

∫ L

−L

(Fεgε + Gεfε)(T )ζ2 dx

+ Kε(T ) + 1
2

∫ T

0

∫ L

−L

[U2
ε + RRµV 2

ε ]ζ2 dxds

� 1
2 (1 + R)‖fε(0)ζ‖2

2 + 1
2R‖gε(0)ζ‖2

2 + 1
2R

∫ L

−L

(Fεgε + Gεfε)(0)ζ2 dx

+ 2
∫ T

0

∫ L

−L

[fε|(1 + R)fε + RGε|2 + RRµgε|Fε + gε|2]|∂xζ|2 dxds

(3.12)
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with

Kε(T ) := −Rε2
∫ L

−L

(FεGε)(T )∂x(ζ∂xζ) dx + Rε2
∫ L

−L

(FεGε)(0)∂x(ζ∂xζ) dx

− 2Rε2
∫ T

0

∫ L

−L

(∂tFε∂xGε + ∂xFε∂tGε)ζ∂xζ dxds −
∫ T

0
(I1,ε + I2,ε) ds.

According to [6], the convergences of (fεk
)k and (gεk

)k towards f and g actually
take place in stronger topologies than stated in proposition 3.4. In fact, for all
T > 0,

fεk
→ f, Fεk

→ f, gεk
→ g, Gεk

→ g in L2(0, T ; C([−L, L])),

(3.13)

fεk
(0) → f0, Fεk

(0) → f0, gεk
(0) → g0, Gεk

(0) → g0 in L2((−L, L)), (3.14)

and

Uεk
⇀ U :=

√
f((1 + R)∂xf + R∂xg) in L2((0, T ) × (−L, L)), (3.15)

Vεk
⇀ V :=

√
g(∂xf + ∂xg) in L2((0, T ) × (−L, L)). (3.16)

Furthermore, it follows from [6, lemmas 2.3 and 2.5] that

((fεk
, gεk

, Fεk
, Gεk

))k are bounded in L∞(0, T ; L2(−L, L)) ∩ L2(0, T ; H1(−L, L)).
(3.17)

We also infer from (3.13) that

lim
k→∞

{‖(fεk
− f)(T )‖2 + ‖(Fεk

− f)(T )‖2 + ‖(gεk
− g)(T )‖2 + ‖(Gεk

− g)(T )‖2} = 0

(3.18)
for almost all T > 0. We may then take ε = εk in (3.12) and let k → ∞ to deduce
from (3.13)–(3.18) that, for almost all T > 0,

1 + R

2
‖f(T )ζ‖2

2 + 1
2R‖g(T )ζ‖2

2 + R

∫ L

−L

(fg)(T )ζ2 dx

+ 1
2

∫ T

0

∫ L

−L

[U2 + RRµV 2]ζ2 dxds

� 1 + R

2
‖f0ζ‖2

2 + 1
2R‖g0ζ‖2

2 + R

∫ L

−L

f0g0ζ
2 dx

+ 2
∫ T

0

∫ L

−L

[f |(1 + R)f + Rg|2 + RRµg|f + g|2]|∂xζ|2 dxds (3.19)

provided we establish that

lim
k→∞

Kεk
(T ) = 0. (3.20)
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828 Ph. Laurençot and B.-V. Matioc

3.2.1. The term Kε(T )

It remains to prove (3.20) and actually identify the behaviour of Kε(T ) as ε → 0.
Owing to (3.14) and (3.18), it is clear that

lim
k→∞

Rε2
k

∫ L

−L

(Fεk
Gεk

)(T )∂x(ζ∂xζ) dx

= lim
k→∞

Rε2
k

∫ L

−L

(Fεk
Gεk

)(0)∂x(ζ∂xζ) dx = 0 (3.21)

for almost all T > 0. Next, it readily follows from (3.17) that

lim
ε→0

∫ T

0
I1,ε dt = lim

ε→0

∫ T

0
I2,ε dt = 0. (3.22)

Finally, since
∂tfε = ∂x(

√
fεUε − Rε∂xGε),

the boundedness (3.17) of (Uε)ε in L2((0, T ) × (−L, L)), and the boundedness
of (fε)ε in L∞(0, T ; L2(−L, L)) imply the boundedness of (

√
fεUε − Rε∂xGε)ε

in L2(0, T ; L4/3(−L, L)). As a consequence, the sequence (∂tfε)ε is bounded in
L2(0, T ; (W 1

4 (−L, L))′), and so, by a similar argument, is (∂tgε)ε. Owing to the
properties of (1 − ε2∂2

x)−1, we conclude that

(∂tFε)ε, (∂tGε)ε are bounded in L2(0, T ; (W 1
4 )′) (3.23)

(see [6, lemma 3.1] for a similar result). Now, since ζ ∈ C∞
0 ((−L, L)) and W 1

4 (−L, L)
is an algebra, we infer from (3.23) that

2Rε2
∣∣∣∣
∫ T

0

∫ L

−L

(∂tFε∂xGε + ∂xFε∂tGε)ζ∂xζ dxds

∣∣∣∣
� Cε2

∫ T

0
(‖∂tFε‖(W 1

4 )′‖∂xGε‖W 1
4

+ ‖∂tGε‖(W 1
4 )′‖∂xFε‖W 1

4
)‖ζ∂xζ‖W 1

4
ds

� C(ζ, T )ε2
[ ∫ T

0
(‖∂xGε‖2

W 1
4

+ ‖∂xFε‖2
W 1

4
) ds

]1/2

. (3.24)

Now, owing to (3.1), for almost all t ∈ (0, T ) the function ∂xFε(t) solves

∂xFε − ε2∂2
x∂xFε = ∂xfε in (−L, L), ∂xFε(±L) = 0,

which implies that

‖∂xFε‖2
2 + ε2‖∂2

xFε‖2
2 + ε4‖∂3

xFε‖2
2 � C‖∂xfε‖2

2.

These estimates, along with the Gagliardo–Nirenberg inequality [14, theorem 1],
give

‖∂xFε‖W 1
4

� C(‖∂xFε‖4 + ‖∂2
xFε‖4)

� C(‖∂2
xFε‖1/4

2 ‖∂xFε‖3/4
2 + ‖∂3

xFε‖1/4
2 ‖∂2

xFε‖3/4
2 + ‖∂2

xFε‖2)

� Cε−5/4‖∂xfε‖2.
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As a similar estimate is valid for ‖∂xGε‖W 1
4

with ‖∂xgε‖2 instead of ‖∂xfε‖2, we
deduce from (3.17) and (3.24) that

2Rε2
∣∣∣∣
∫ T

0

∫ L

−L

(∂tFε∂xGε + ∂xFε∂tGε)ζ∂xζ dxds

∣∣∣∣
� C(ζ, T )ε3/4

[ ∫ T

0
(‖∂xfε‖2

2 + ‖∂xgε‖2
2) ds

]1/2

� C(ζ, T )ε3/4. (3.25)

Combining (3.21), (3.22) and (3.25) gives the claim (3.20) and completes the proof
of (3.8) for ζ ∈ C∞

0 (R), its validity for all T > 0 being obtained by a lower semicon-
tinuity argument. According to the regularity of (f, g), the extension of lemma 3.5
to all functions ζ ∈ W 1

4 ((−L, L)) follows by a density argument.

3.3. The limit L → ∞
For each positive L, we denote the couple found in proposition 3.4 by (fL, gL).

The family ((fL, gL))L satisfies the same bounds as the family ((fε, gε))ε, so that
taking the limit as L → ∞ may be done as ε → 0, the only difference being the
unboundedness of the domain that one has to cope with. To this end we derive the
following lemma, which controls the behaviour of (fL, gL) at infinity.

Lemma 3.6. It holds that∫ L/2

−L/2

(
fL +

R

Rµ
gL

)
(T )x2 dx �

∫ L

−L

(
f0 +

R

Rµ
g0

)
x2 dx + TE(f0, g0) (3.26)

for all T > 0.

Proof. We define the function

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

−2Lx − x2 − 3
4L2, −L � x � − 1

2L,

x2, − 1
2L � x � 1

2L,

2Lx − x2 − 3
4L2, 1

2L � x � L.

We take ξ = Φ in (3.6) and ξ = RΦ/Rµ in (3.7). Then, using integration by parts
and the bound Φ′′ � 2, we obtain∫ L

−L

(
fL +

R

Rµ
gL

)
(T )Φ dx =

∫ L

−L

(
f0 +

R

Rµ
g0

)
Φ dx

+ 1
2

∫ T

0

∫ L

−L

((fL)2 + R(fL + gL)2)Φ′′ dxdt

�
∫ L

−L

(
f0 +

R

Rµ
g0

)
Φ dx + TE(f0, g0).

In addition,
x21[−L/2,L/2] � Φ(x) � x2 for x ∈ [−L, L],

and the claim follows.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S030821051600038X
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 05 Feb 2018 at 14:21:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S030821051600038X
https://www.cambridge.org/core
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Using lemma 3.6 we may argue as in the proof of proposition 3.4 (see [6]), to
take the limit as L → ∞ and complete the proof of theorem 3.1. In particular, we
use lemma 3.6 to establish the entropy inequality in theorem 3.1(b) as well as the
conservation of mass in theorem 3.1.
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