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Existence of affine realizations for Lévy term
structure models
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We investigate the existence of affine realizations for term structure models driven by
Lévy processes. It turns out that we obtain more severe restrictions on the volatility
than in the classical diffusion case without jumps. As special cases, we study constant
direction volatilities and the existence of short-rate realizations.
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1. Introduction

A zero coupon bond with maturity T is a financial asset that pays the holder one
unit of cash at T . Its price at t ≤ T can be written as the continuous discounting
of one unit of cash,

P(t, T ) = exp
(

−
∫T

t
f (t, s) ds

)
,

where f (t, T ) is the rate prevailing at time t for instantaneous borrowing at time
T , also called the forward rate for date T . The classical continuous framework
for the evolution of the forward rates goes back to Heath, Jarrow and Morton
(HJM Heath et al. 1992). They assume that, for every date T , the forward rates
f (t, T ) follow an Itô process of the form

df (t, T ) = aHJM(t, T ) dt + s(t, T ) dWt , t ∈ [0, T ], (1.1)

where W is a Wiener process.
In this study, we consider Lévy term structure models that generalize the

classical HJM framework by replacing the Wiener process W in (1.1) by a more
general Lévy process X , also taking into account the occurrence of jumps. This
extension has been proposed by Eberlein & Raible (1999), Eberlein & Özkan
(2003), Eberlein et al. (2005) and Eberlein & Kluge (2006a,b, 2007). Other
approaches in order to generalize the classical HJM framework can be found
in Björk et al. (1997a,b), Carmona & Tehranchi (2006) and, for example, in
Shirakawa (1991), Jarrow & Madan (1995) and Hyll (2000).
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In the following, we therefore assume that, for every date T , the forward rates
f (t, T ) follow an Itô process,

df (t, T ) = aHJM(t, T ) dt + s(t, T ) dXt , t ∈ [0, T ],
with X being a Lévy process. Note that such an HJM interest rate model is an
infinite-dimensional object because for every date of maturity T ≥ 0, we have an
Itô process.

There are several reasons why, in practice, we are interested in the existence of
a finite-dimensional realization, that is, the forward rate evolution being described
by a finite-dimensional state process. Such a finite-dimensional realization ensures
larger analytical tractability of the model, for example, in view of option pricing
(Duffie & Kan 1996). Moreover, as argued in Baudoin & Teichmann (2005), HJM
models without a finite-dimensional realization do not seem reasonable because
then the support of the forward rate curves f (t, t + ·), t > 0, becomes too large,
and hence any ‘shape’ of forward rate curves, which we assume from the beginning
to model the market phenomena, is destroyed with positive probability.

For classical HJM models driven by a Wiener process, the construction of
finite-dimensional realizations for particular volatility structures has been treated
in Jeffrey (1995), Ritchken & Sankarasubramanian (1995), Duffie & Kan (1996),
Bhar & Chiarella (1997), Inui & Kijima (1998), Björk & Christensen (1999),
Björk & Gombani (1999) and Chiarella & Kwon (2001, 2003), and finally, the
problem concerning the existence of finite-dimensional realizations has completely
been solved in Björk & Svensson (2001), Björk & Landén (2002), Filipović &
Teichmann (2003), see also Filipović & Teichmann (2004) and Tappe (2010).
A survey about the topic can be found in Björk (2003).

However, there are only very few references, such as Eberlein & Raible (1999),
Küchler & Naumann (2003), Gapeev & Küchler (2006) and Hyll (2000), that deal
with affine realizations for term structure models with jumps.

The purpose of this study is to investigate when a Lévy-driven term structure
model admits an affine realization.

The main idea is to switch to the Musiela parametrization of forward curves
rt(x) = f (t, t + x) (Musiela 1993), and to consider the forward rates as the solution
of a stochastic partial differential equation (SPDE), the so-called Heath–Jarrow–
Morton–Musiela (HJMM) equation,

drt =
(

d
dx

rt + aHJM(rt)
)

dt + s(rt−) dXt

and r0 = h0,

⎫⎪⎬
⎪⎭ (1.2)

on a suitable Hilbert space H of forward curves, where d/dx denotes the
differential operator that is generated by the strongly continuous semigroup
(St)t≥0 of shifts. Such models have been investigated in Peszat & Zabczyk (2007b),
Filipović & Tappe (2008) and Marinelli (2010).

The bank account B is the riskless asset that starts with one unit of cash and
grows continuously at time t with the short rate rt(0), i.e.

B(t) = exp
(∫ t

0
rs(0) ds

)
, t ≥ 0.
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According to Delbaen & Schachermayer (1994), the implied bond market that we
can now express as

P(t, T ) = exp
(

−
∫T−t

0
rt(x) dx

)
, 0 ≤ t ≤ T ,

is free of arbitrage if there exists an equivalent (local) martingale measure Q ∼ P
such that the discounted bond prices

P(t, T )
B(t)

, t ∈ [0, T ],

are local Q-martingales for all maturities T . If we formulate the HJMM
equation (1.2) with respect to such an equivalent martingale measure Q ∼ P,
then the drift is determined by the volatility, i.e. aHJM : H → H in (1.2) is given
by the HJM drift condition

aHJM(h) = d
dx

J

(
−

∫ •

0
s(h)(h) dh

)
= −s(h)J′

(
−

∫ •

0
s(h)(h) dh

)
, h ∈ H ,

(1.3)

where J denotes the cumulant generating function of the Lévy process
(Eberlein & Özkan 2003, §2.1).

As in Björk & Svensson (2001), Björk & Landén (2002) and Filipović &
Teichmann (2003), we can now regard the problem from a geometric point of
view, i.e. the forward rate process has to stay on a collection of finite-dimensional
affine manifolds indexed by the time t, a so-called foliation.

In general, invariance of a manifold for a stochastic process with jumps is a
difficult issue because we have to ensure that the process does not jump out of
the manifold. This problem has been addressed in Kurtz et al. (1995), where the
authors consider a particular Stratonovich type integral (introduced by Markus
(1978, 1981)) which, intuitively speaking, ensures that the jumps of a stochastic
differential equation with vector fields being tangential to a given manifold M,
map the manifold M onto itself.

In this study, we avoid this problem by focusing on affine realizations because
for affine manifolds, the jumps will automatically be captured, provided the
volatility h �→ s(h) is tangential at each point of the manifold. Hence, in our
framework, the stochastic integral in (1.2) is the usual Itô integral.

Although the jumps of the Lévy process X do not cause problems in this
respect, that is, we do not have to worry that the solution r jumps out of the
manifold, our investigations will show—and this is due to the particular structure
of the HJM drift term aHJM in (1.3) which ensures the absence of arbitrage—
that we obtain more severe restrictions on the volatility s than in the classical
diffusion case.

The remainder of this text is organized as follows. In §2, we provide results on
invariant foliations and on affine realizations for SPDEs driven by Lévy processes.
Then, we introduce the term structure model in §3. After these preparations,
in §§4 and 5, we present necessary and sufficient conditions for the existence
of affine realizations for Lévy term structure models. In §6, we study constant
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volatilities, and in §7 constant direction volatilities and consequences for the
existence of short-rate realizations. For the sake of lucidity, appendix A provides
some auxiliary results that are needed in this text.

2. Invariant foliations for stochastic partial differential equations driven by
Lévy processes

In this section, we provide results on invariant foliations for SPDEs driven by Lévy
processes that we will apply to the HJMM equation (1.2) later on. The proofs
of our results are similar to those from Tappe (2010, §§2,3), where analogous
statements for Wiener-driven SPDEs are provided. Indeed, owing to the affine
structure of a foliation, the Lévy process cannot jump out of the foliation.
We refer the reader to Tappe (2010, §§2,3) for more details and explanations
about invariant foliations.

From now on, let (U, F , (Ft)t≥0, P) be a filtered probability space satisfying
the usual conditions, and let X be a real-valued, square-integrable Lévy process
with Gaussian part c ≥ 0 and Lévy measure F . In order to avoid trivialities, we
assume that c + F(R) > 0. Here, we shall deal with SPDEs of the type

drt = (Art + a(rt)) dt + s(rt−) dXt

and r0 = h0,

}
(2.1)

on a separable Hilbert space H . In (2.1), the operator A : D(A) ⊂ H → H is
the infinitesimal generator of a C0-semigroup (St)t≥0 on H , and a, s : H → H
are measurable mappings. We refer to Peszat & Zabczyk (2007a) for general
information about SPDEs driven by Lévy processes.

In the following, let V ⊂ H be a finite-dimensional linear subspace.

Definition 2.1. A family (Mt)t≥0 of affine subspaces Mt ⊂ H , t ≥ 0, is called a
foliation generated by V if there exists j ∈ C 1(R+; H ) such that

Mt = j(t) + V , t ≥ 0.

In what follows, let (Mt)t≥0 be a foliation generated by the subspace V .

Definition 2.2. The foliation (Mt)t≥0 is called invariant for (2.1) if for every
t0 ∈ R+ and h ∈ Mt0 , there exists a weak solution (rt)t≥0 for (2.1) with r0 = h
having càdlàg sample paths such that

P(rt ∈ Mt0+t) = 1, for all t ≥ 0.

Definition 2.2 of an invariant foliation slightly deviates from that in Tappe
(2010), as it includes the existence of a weak solution for (2.1). However, the
proofs of the following results are similar to that in Tappe (2010).

Theorem 2.3. We suppose that the following conditions are satisfied:

— the foliation (Mt)t≥0 is invariant for (2.1) and
— the mappings a and s are continuous.
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Then, for all t ≥ 0, the following conditions hold true:

Mt ⊂ D(A), (2.2)

n(h) ∈ TMt , h ∈ Mt , (2.3)

and s(h) ∈ V , h ∈ Mt . (2.4)

In theorem 2.3, the mapping n : D(A) → H is defined by n := A + a, and TMt
denotes the tangent space of the foliation at time t (Tappe 2010).

Theorem 2.4. We suppose that the following conditions are satisfied:

— conditions (2.2)–(2.4) hold true and
— a and s are Lipschitz continuous.

Then, the foliation (Mt)t≥0 is invariant for (2.1).

The previous results lead to the following definition of an affine realization.

Definition 2.5. Let V ⊂ H be a finite-dimensional subspace.

— The SPDE (2.1) has an affine realization generated by V , if for each h0 ∈
D(A), there exists a foliation (M(h0)

t )t≥0 generated by V with h0 ∈ M(h0)
0 ,

which is invariant for (2.1).
— In this case, we call d := dim V the dimension of the affine realization.
— The SPDE (2.1) has an affine realization, if it has an affine realization

generated by some subspace V .
— An affine realization generated by some subspace V is called minimal ,

if for another affine realization generated by some subspace W , we have
V ⊂ W .

Lemma 2.6. Let V ⊂ H be a finite-dimensional subspace. We suppose that the
following conditions are satisfied:

— the SPDE (2.1) has an affine realization generated by V and
— a and s are continuous.

Then, we have s(h) ∈ V, for all h ∈ H.

Proof. Using theorem 2.3, we have s(h) ∈ V for all h ∈ D(A). Because s is
continuous, D(A) is dense in H , and V is closed, we deduce that s(h) ∈ V for all
h ∈ H . �

3. Presentation of the term structure model

In this section, we shall introduce the Lévy term structure model. Recall that
c ≥ 0 denotes the Gaussian part and F the Lévy measure of the Lévy process X .
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We define the domain

D(J) :=
{
z ∈ R :

∫
{|x |>1}

ezxF(dx) < ∞
}

and the cumulant generating function

J : D(J) → R, J(z) := bz + c
2
z2 +

∫
R

(ezx − 1 − zx)F(dx),

where b ∈ R denotes the drift of X . Note that J is of class C∞ in the interior of
D(J). In what follows, we assume that K ⊂ D(J) for some compact interval K
with 0 ∈ Int K . Then, the cumulant-generating function J is even analytic on the
interior of K , and thus, for some e > 0, we obtain the power series representation

J(z) =
∞∑

n=0

anzn , z ∈ (−e, e), (3.1)

where the coefficients (an) are given by

an = J(n)(0)
n! , n ∈ N0.

Note that

a2 = 1
2

(
c +

∫
R

x2F(dx)
)

and an = 1
n!

∫
R

xnF(dx), for n ≥ 3. (3.2)

We fix an arbitrary constant b > 0 and denote by Hb the space of all absolutely
continuous functions h : R+ → R such that

‖h‖b :=
(

|h(0)|2 +
∫

R+
|h ′(x)|2 ebx dx

)1/2

< ∞. (3.3)

Spaces of this kind have been introduced in Filipović (2001). We also refer to
Tappe (2010, §4), where some relevant properties have been summarized. Let H 0

b

be the subspace

H 0
b :=

{
h ∈ Hb : lim

x→∞ h(x) = 0
}
. (3.4)

We fix arbitrary constants 0 < b < b′.

Definition 3.1. Let H J
b,b′ be the set of all mappings s : Hb → H 0

b′ such that

−
∫ x

0
s(h)(h) dh ∈ K , for all h ∈ Hb and x ∈ R+.

For a volatility s ∈ H J
b,b′ , we define the drift aHJM according to the HJM drift

condition (1.3).
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Remark 3.2. Owing to lemma 2.6, throughout this text, we will deal with
volatility structures of the form

s(h) =
p∑

i=1

Fi(h)li , h ∈ Hb, (3.5)

with real-valued mappings F1, . . . , Fp : Hb → R and functions l1, . . . , lp ∈ H 0
b′ .

By Tappe (2010, lemma 4.3), we have L1, . . . , Lp ∈ Hb, where Lj := ∫•
0 l(h)dh

for j = 1, . . . , p, and hence, these functions are bounded. Thus, any volatility
s of the form (3.5), for which the mappings F1, . . . , Fp are suitably bounded,
belongs to H J

b,b′ .

We denote by (St)t≥0 the shift-semigroup on Hb. From the theory of strongly
continuous semigroups (Pazy 1983), it is well known that the domain D(d/dx),
endowed with the graph norm

‖h‖D(d/dx) :=
(

‖h‖2
b +

∥∥∥∥
(

d
dx

)
h
∥∥∥∥

2

b

)1/2

, h ∈ Hb,

itself is a separable Hilbert space, and that (St)t≥0 is also a C0-semigroup
on (D(d/dx), ‖ · ‖D(d/dx)). Using similar techniques as in Tappe (2010, §4) and
Filipović & Tappe (2008, §4), we obtain the following auxiliary result.

Lemma 3.3. Let s ∈ H J
b,b′ be arbitrary.

— We have aHJM(h) ∈ H 0
b , for all h ∈ Hb.

— If s is continuous, then aHJM is continuous, too.
— If s is Lipschitz continuous and bounded, then aHJM is Lipschitz continuous.
— If s(D(d/dx)) ⊂ D(d/dx) and s is Lipschitz continuous and bounded

on (D(d/dx), ‖ · ‖D(d/dx)), then aHJM(D(d/dx)) ⊂ D(d/dx) and aHJM is
Lipschitz continuous on (D(d/dx), ‖ · ‖D(d/dx)).

Note that the HJMM equation (1.2) is a particular example of the SPDE (2.1)
on the state space H = Hb with infinitesimal generator A = d/dx and a = aHJM.
Owing to lemma 3.3, we can apply all previous results about invariant foliations
from §2 in the following.

4. Necessary conditions for the existence of affine realizations

In this section, we shall derive necessary conditions for the existence of affine
realizations for Lévy term structure models.

Throughout this section, we assume that the HJMM equation (1.2) has an
affine realization generated by some subspace V ⊂ Hb. We suppose that the
volatility s ∈ H J

b,b′ is continuous. According to lemma 3.3, the drift aHJM is
continuous, too. Recall that F denotes the Lévy measure of the driving Lévy
process X in (1.2). We suppose there exists an index n0 ∈ N such that∫

R

xnF(dx) �= 0, for all n ≥ n0, (4.1)
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and we suppose that for each l ∈ V with l �= 0, we have

l|[0,k] �≡ 0, for all k > 0. (4.2)

We fix an arbitrary h0 ∈ D(d/dx) and define the linear space W := 〈s(h0 + V )〉.
Recall that a function v ∈ D((d/dx)∞) is called quasi-exponential if

dim
〈(

d
dx

)n

v : n ∈ N0

〉
< ∞.

Theorem 4.1. The following statements are true:

— we have s(Hb) ⊂ V;
— for every subspace U ⊂ W with dim U ≥ 1 and each set Y ⊂ s(h0 + V ) with

Y ∩ U �= ∅, the set Y ∩ U cannot be open in U ; and
— if s is constant on h0 + V, then each v ∈ V is quasi-exponential, and we

have 〈(d/dx)nv : n ∈ N0〉 ⊂ V.

Remark 4.2. The relation s(Hb) ⊂ V implies that the volatility s is of the form

s(h) =
p∑

i=1

Fi(h)li , h ∈ Hb,

with real-valued mappings F1, . . . , Fp : Hb → R and functions l1, . . . , lp ∈ H 0
b′ .

Theorem 4.1 shows that we obtain restrictions on the mappings F1, . . . , Fp, which
mean that their range cannot be arbitrarily rich. Such restrictions do not occur in
the Wiener driven case (Björk & Svensson 2001; Björk & Landén 2002; Filipović &
Teichmann 2003, 2004; Tappe 2010).

Before we start with the proof of theorem 4.1, we shall derive some immediate
consequences. If the volatility s is locally linear, then it vanishes.

Corollary 4.3. Suppose there exist a linear operator S ∈ L(V, W ) and a non-
empty open subset O ⊂ V, such that s(h0 + v) = Sv, for all v ∈ O. Then, we have
S = 0.

Proof. Setting Y := s(h0 + O) = S(O) ⊂ ran S , we have Y ⊂ s(h0 + V ) and, by
the open mapping theorem, the range Y is open in ran S . Using theorem 4.1, it
follows that S = 0. �

Corollary 4.4 concerns the case of constant direction volatility.

Corollary 4.4. If dim W = 1, then s is constant on h0 + V.

Proof. There exists l ∈ W with W = 〈l〉. Suppose that s is not constant on
h0 + V . Then, there exist a, b ∈ R with a < b and al, bl ∈ s(h0 + V ). The set
Y := {ql : q ∈ (a, b)} ⊂ W is open in W , and by the continuity of s we obtain
Y ⊂ s(h0 + V ), which contradicts theorem 4.1. �

Remark 4.5. The assumption dim W = 1 implies that on h0 + V , the volatility
s is of the form s(h) = F(h)l with a real-valued mapping F and a function l ∈ H 0

b′ ,
whence we speak about constant direction volatility. As we shall see in §7, in this
particular situation, we can replace (4.1) by the weaker condition F(R) �= 0, and
condition (4.2) can be skipped.
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Our goal for the rest of this section is the proof of theorem 4.1. The first
statement of theorem 4.1 immediately follows from lemma 2.6. According to
Tappe (2010, lemma 4.3), the integral operator

T : H 0
b′ → Hb, Tl := −

∫ •

0
l(h) dh

is a bounded linear operator, and it is injective. We define the mapping S :=
T ◦ s : Hb → Hb.

Lemma 4.6. We have V ⊂ D(d/dx), and there exists g0 ∈ Hb such that

d
dx

v + d
dx

J(S(h0 + v)) + g0 ∈ V , for all v ∈ V . (4.3)

Proof. We apply theorem 2.3 to the invariant foliations (M(0)
t )t≥0 and

(M(h0)
t )t≥0, implying V ⊂ D(d/dx) and the existence of some h ′

0 ∈ Hb such that

n(h0 + v) + h ′
0 ∈ V , for all v ∈ V . (4.4)

Inserting the HJM drift condition (1.3) into (4.4) gives us relation (4.3). �

Now, the third statement of theorem 4.1 is a direct consequence of
relation (4.3).

Remark 4.7. Integrating (4.3), we see that the linear space

V J := 〈J(S(h0 + v)) : v ∈ V 〉 (4.5)

must necessarily be finite dimensional. In the present situation, by (3.1) and (3.2),
the cumulant-generating function J is no polynomial, and hence, this condition
is difficult to ensure without s being constant on h0 + V .

Note that for the proof of theorem 4.1, we have not used conditions (4.1) and
(4.2) up to this point. We shall now prove the second statement of theorem 4.1.
In the following, for z0 ∈ Rn and d > 0, we denote by Bd(z0) the open ball

Bd(z0) := {z ∈ Rn : ‖z − z0‖Rn < d}.
Proof (of the second statement of theorem 4.1). Suppose there is a subspace

U ⊂ W with dim U ≥ 1 and a set Y ⊂ s(h0 + V ) with Y ∩ U �= ∅ such that Y ∩ U
is open in U . We will derive the contradiction

dimV J = ∞. (4.6)

In order to prove (4.6), by virtue of (3.1), (3.2) and (4.1), we may assume
that an �= 0, for all n ∈ N. We set E := T (U ). Because T is injective, we have
dim E = dim U ≥ 1. By the open mapping theorem, the set T (Y ∩ U ) is open in
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E . Because T (Y ∩ U ) ⊂ S(h0 + V ), there exist a direct sum decomposition E =
E1 ⊕ E2 with dim E1 ≥ 1, elements L1 ∈ E1, L2 ∈ E2 with L1 �= 0, and constants
a, b ∈ R with a < b such that

qL1 + L2 ∈ S(h0 + V ), for all q ∈ (a, b). (4.7)

Now, let m ∈ N be arbitrary. By (4.7), there exist q1, . . . , qm ∈ (a, b) with qi �= qj
for i �= j such that

qiL1 + L2 ∈ S(h0 + V ), for all i = 1, . . . , m.

We will show that

dim〈J(qiL1 + L2) : i = 1, . . . , m〉 = m. (4.8)

Indeed, let x1, . . . , xm ∈ R be such that
m∑

i=1

xiJ(qiL1 + L2) = 0. (4.9)

By the power series representation (3.1), there exists h > 0 such that for all (y, z) ∈
Bh(0), we obtain

m∑
i=1

xiJ(qiy + z) =
m∑

i=1

xi

∞∑
n=0

an(qiy + z)n

=
∞∑

n=0

an

m∑
i=1

xi(qiy + z)n =
∞∑

n=0

an

m∑
i=1

xi

∑
k,l∈N0
k+l=n

(qiy)kz l

=
∞∑

n=0

an

∑
k,l∈N0
k+l=n

(
m∑

i=1

xiq
k
i

)
ykz l .

Hence, defining the coefficients

c(k,l) := ak+l

m∑
i=1

xiq
k
i , (k, l) ∈ N2

0, (4.10)

there is a bijection p : N0 → N2
0 such that the power series

∞∑
n=0

(k,l)=p(n)

c(k,l)ykz l (4.11)

converges for all (y, z) ∈ Bh(0). According to proposition A.3, there exists r > 0
such that the power series (4.11) converges absolutely and uniformly on Kr(0)—
which denotes the compact ball defined in (A 1)—to a continuous function

f : Kr(0) → R, f (y, z) =
∑

(k,l)∈N2
0

c(k,l)ykz l .
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We claim that
c(k,0) = 0, for all k ∈ N0. (4.12)

Indeed, suppose that (4.12) is not satisfied. Then, there exists k0 ∈ N0 such that
c(k0,0) �= 0 and c(k,0) = 0 for k < k0. Because an �= 0, for all n ∈ N0, by (4.10), for all
k < k0 and l ∈ N0, we obtain

c(k,l) = ak+l

m∑
i=1

xiq
k
i = ak+l

ak
c(k,0) = 0.

Because the power series (4.11) converges absolutely for all (y, z) ∈ Bh(0), we
deduce that for some bijection t : N0 → N2

0, the power series
∞∑

n=0
(k,l)=t(n)

c(k0+k,l)ykz l = 1
yk0

∞∑
n=0

(k,l)=t(n)

c(k0+k,l)yk0+kz l

= 1
yk0

∞∑
n=0

(k,l)=p(n)

c(k,l)ykz l (4.13)

also converges for all (y, z) ∈ Bh(0) with y �= 0. According to proposition A.3, the
power series (4.13) converges absolutely and uniformly on Kr(0) to a continuous
function

g : Kr(0) → R, g(y, z) =
∑

(k,l)∈N2
0

c(k0+k,l)ykz l .

Moreover, for each (y, z) ∈ Kr(0) with y �= 0, we have

g(y, z) = f (y, z)
yk0

.

Setting L := (L1, L2) by (4.9), we have

f (y, z) = 0, for all (y, z) ∈ L(R+) ∩ Kr(0). (4.14)

Because L1 �= 0, by (4.2), there exists a sequence (xn)n∈N ⊂ (0, ∞) with xn →
0 and L1(xn) �= 0, for all n ∈ N. Because L is continuous with L(0) = (0, 0),
setting (yn , zn) := L(xn), n ∈ N, we have (yn , zn) → (0, 0). By (4.14), we obtain
the contradiction

c(k0,0) = g(0, 0) = lim
n→∞ g(yn , zn) = lim

n→∞
f (yn , zn)

yk0
n

= 0.

Consequently, we have (4.12). Because an �= 0 for all n ∈ N, by definition (4.10),
we get

m∑
i=1

xiq
k
i = 0, for all k ∈ N0.

It follows that Bx = 0, where B ∈ Rm×m denotes the Vandermonde matrix
Bki = qk

i for k = 0, . . . , m − 1 and i = 1, . . . , m. Because qi �= qj for i �= j , we
deduce that x1 = · · · = xm = 0, which proves (4.8). Because m ∈ N was arbitrary,
we obtain (4.6), which contradicts remark 4.7. This completes the proof of
theorem 4.1. �
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5. Sufficient conditions for the existence of affine realizations

In this section, we shall derive sufficient conditions for the existence of affine
realizations for Lévy term structure models.

We suppose that the volatility s ∈ H J
b,b′ is Lipschitz continuous and bounded.

According to lemma 3.3, the drift aHJM is Lipschitz continuous, too.
We have seen that for the existence of an affine realization, the linear spaces V J

defined in (4.5) must necessarily be finite dimensional. As discussed in remark 4.7
(and shown in theorem 4.1), this is difficult to ensure with a driving Lévy process
having jumps, unless the volatility s is constant on the affine spaces generating
the realization. Therefore, and because of theorem 4.1, we make the following
assumptions:

— there exists a finite-dimensional subspace W ⊂ Hb with s(Hb) ⊂ W ;
— each w ∈ W is quasi-exponential, then, the linear space

V :=
〈(

d
dx

)n

w : w ∈ W and n ∈ N0

〉

is finite dimensional; and
— for each h0 ∈ D(d/dx), the volatility s is constant on h0 + V .

Theorem 5.1. If the previous conditions are satisfied, then the HJMM equation
(1.2) has a minimal realization generated by V .

Proof. Let h0 ∈ D(d/dx) be arbitrary. Because V ⊂ D(d/dx) and s(Hb) ⊂ W ,
we have s(D(d/dx)) ⊂ D(d/dx) and s is Lipschitz continuous and bounded
on (D(d/dx), ‖ · ‖D(d/dx)). By lemma 3.3, we have aHJM(D(d/dx)) ⊂ D(d/dx),
and aHJM is Lipschitz continuous on (D(d/dx), ‖ · ‖D(d/dx)). Thus, according to
Pazy (1983, theorem 6.1.7), there exists a classical solution j ∈ C 1(R+; Hb) with
j(R+) ⊂ D(d/dx) of the evolution equation⎧⎨

⎩
d
dt

j(t) = d
dx

j(t) + aHJM(j(t)),

j(0) = h0.

Defining the foliation (M(h0)
t )t≥0 by M(h0)

t := j(t) + V , relation (2.2) is fulfilled,
and we have (2.4) because s(Hb) ⊂ W . Let t ≥ 0 and v ∈ V be arbitrary. By the
HJM drift condition (1.3), the drift aHJM is constant on j(t) + V , and hence,
we obtain

n(j(t) + v) = d
dx

j(t) + d
dx

v + aHJM(j(t) + v)

= d
dt

j(t) − aHJM(j(t)) + d
dx

v + aHJM(j(t))

= d
dt

j(t) + d
dx

v ∈ d
dt

j(t) + V = TMt ,
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showing (2.3). Theorem 2.4 applies and yields that the foliation (M(h0)
t )t≥0 is

invariant for the HJMM equation (1.2). Consequently, the HJMM equation (1.2)
has an affine realization generated by V . The minimality follows from
theorem 4.1. �

Remark 5.2. In particular, for every volatility structure of the form

s(h) =
p∑

i=1

Fi(h)li , h ∈ Hb,

with quasi-exponential functions l1, . . . , lp ∈ H 0
b′ , the HJMM equation (1.2) has a

minimal realization generated by

V =
〈(

d
dx

)n

l1 : n ∈ N0

〉
+ · · · +

〈(
d
dx

)n

lp : n ∈ N0

〉
,

provided that for each h0 ∈ D(d/dx), the mappings F1, . . . , Fp : Hb → R are
constant on the affine space h0 + V .

6. Constant volatility

In this section, we apply our previous results for the particular case of a constant
volatility s ∈ H 0

b′ with s �= 0.

Corollary 6.1. The following statements are equivalent:

— the HJMM equation (1.2) has an affine realization and
— s is quasi-exponential.

In either case, the HJMM equation (1.2) has a minimal realization generated by
V = 〈(d/dx)ns : n ∈ N0〉.

Proof. This is an immediate consequence of theorems 4.1 and 5.1. �
Remark 6.2. Consequently, for constant volatility structures, we obtain exactly

the same criterion for the existence of an affine realization as in the classical
diffusion case, where the HJMM equation (1.2) is driven by a Wiener process,
namely the function l has to be quasi-exponential (Björk & Svensson 2001;
Björk & Landén 2002; Tappe 2010).

7. Constant direction volatility

In this section, we shall tighten the statement of corollary 4.4 and present some
consequences.

Throughout this section, we assume that the HJMM equation (1.2) has an
affine realization generated by some subspace V ⊂ Hb. We suppose that the
volatility s ∈ H J

b,b′ is continuous. According to lemma 3.3, the drift aHJM is
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continuous, too. Moreover, we assume that dim W = 1, where W := 〈s(Hb)〉, and
that F(R) �= 0, where F denotes the Lévy measure of the driving Lévy process X
in (1.2).

Theorem 7.1. The following statements are true:

— for each h0 ∈ Hb, the volatility s is constant on the affine space h0 + V and
— each v ∈ V is quasi-exponential, and we have 〈(d/dx)nv : n ∈ N0〉 ⊂ V.

Proof. Let h0 ∈ D(d/dx) be arbitrary. Suppose that s is not constant on h0 + V .
We will derive the contradiction

dim V J = ∞, (7.1)

where the linear space V J was defined in (4.5). Because T is injective, we have
dim T (W ) = 1 with T (W ) = 〈S(Hb)〉, and the mapping S is not constant on
h0 + V . There exists L ∈ T (W ) with T (W ) = 〈L〉. Because S is not constant on
h0 + V , there exist a, b ∈ R with a < b and aL, bL ∈ S(h0 + V ). By the continuity
of S, we obtain

qL ∈ S(h0 + V ), for all q ∈ [a, b]. (7.2)

Now, let m ∈ N be arbitrary. By (7.2), there exist q1, . . . , qm ∈ [a, b] with |qi| �= |qj |
for i �= j such that

qiL ∈ S(h0 + V ), for all i = 1, . . . , m.

We will show that

dim〈J(qiL)〉 = m. (7.3)

Indeed, let x1, . . . , xm ∈ R be such that

m∑
i=1

xiJ(qiL) = 0. (7.4)

By the power series representation (3.1), there exists h > 0 such that

m∑
i=1

xiJ(qix) =
m∑

i=1

xi

∞∑
n=0

an(qix)n

=
∞∑

n=0

an

(
m∑

i=1

xiq
n
i

)
xn , x ∈ (−h, h),

and we obtain

∞∑
n=0

an

(
m∑

i=1

xiq
n
i

)
xn = 0, x ∈ L(R+) ∩ (−h, h).
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Because l �= 0 and L(0) = 0, there exists a sequence (xn)n∈N ⊂ L(R+) ∩ (−h, h)
with xn �= 0, n ∈ N and xn → 0. Therefore, the identity theorem for power series
applies and yields

an

m∑
i=1

xiq
n
i = 0, n ∈ N0.

Because F(R) �= 0 by assumption, relations (3.1) and (3.2) show that an > 0
for every even n ∈ N. It follows that Bx = 0, where B ∈ Rm×m denotes the
Vandermonde matrix Bki = q2k

i for k = 1, . . . , m and i = 1, . . . , m. Because |qi| �=
|qj | for i �= j , we deduce that x1 = · · · = xm = 0, which proves (7.3). Because m ∈ N
was arbitrary, we conclude (7.1), which contradicts remark 4.7. Consequently, s
is constant on h0 + V .

Now, let h0 ∈ Hb be arbitrary. Because D(d/dx) is dense in Hb, there exists a
sequence (hn)n∈N ⊂ D(d/dx) with hn → h0. By the continuity of s, for each v ∈ V ,
we obtain

s(h0) = lim
n→∞ s(hn) = lim

n→∞ s(hn + v) = s(h0 + v),

showing that s is constant on h0 + V . The second statement follows from
relation (4.3). �

Remark 7.2. The assumption dim W = 1 implies that the volatility s is of the
form s(h) = F(h)l with a real-valued mapping F : Hb → R and a function l ∈ H 0

b′ ,
whence we speak about constant direction volatility. Theorem 7.1 shows that
in the presence of jumps, we obtain restrictions on the mapping F, which do
occur in the Wiener driven case (Björk & Svensson 2001; Björk & Landén 2002;
Tappe 2010).

Now, we assume that s = f ◦ � with a continuous mapping f : R → H 0
b′ and a

continuous linear functional � : Hb → R. We suppose that �(W ) = R.

Corollary 7.3. The following statements are true:

— the volatility s is constant and
— s is quasi-exponential, and we have 〈(d/dx)ns : n ∈ N0〉 ⊂ V.

Proof. Because W ⊂ V by lemma 2.6, applying theorem 7.1 with h0 = 0 yields
that the volatility s is constant on W . Note that �|W : W → R is an isomorphism.
Therefore, for all x , y ∈ R, we obtain

f(x) = f(�(�−1x)) = s(�−1x) = s(�−1y) = f(�(�−1y)) = f(y),

showing that s is constant. The second statement follows from theorem 7.1. �

Now, we assume that, in addition, dim V = 1. Then, according to lemma 2.6,
we have V = W .

Corollary 7.4. There are r ∈ R, r �= 0 and q ∈ (b′/2, ∞) such that

s ≡ r e−q•. (7.5)
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Proof. By corollary 7.3, the volatility s is constant, and we have 〈(d/dx)ns :
n ∈ N0〉 ⊂ V . Because dimV = 1, we obtain that (7.5) is satisfied for some r ∈ R,
r �= 0 and q ∈ R. By definition (3.3) of the norm ‖ · ‖b′ , we have

∫
R+

|l′(x)|2 eb′x dx < ∞,

and, by definition (3.4) of the subspace H 0
b′ , we have

lim
x→∞ l(x) = 0.

We conclude that q ∈ (b′/2, ∞), which finishes the proof. �

From the literature (Jeffrey 1995; Björk & Svensson 2001; Filipović &
Teichmann 2004), it is well known that for Wiener driven interest rate models,
the following three types of affine short-rate realizations exist:

— the Ho–Lee model;
— the Hull–White extension of the Vasic̆ek model; and
— the Hull–White extension of the Cox–Ingersoll–Ross model.

The evaluation at the short end � : Hb → R, �(h) := h(0) is a continuous linear
functional (Tappe 2010, theorem 4.1). Thus, applying corollary 7.4 for the Lévy
case with jumps, we recognize (7.5) as the Hull–White extension of the Vasic̆ek
model, whereas an analogue for the Hull–White extension of the Cox–Ingersoll–
Ross model does not exist.

Remark 7.5. The Ho–Lee model would correspond to (7.5) with q = 0. Note
that in our framework, this volatility is even excluded in the Wiener case because
of the technical reason that aHJM /∈ Hb. Indeed, for aHJM ∈ Hb, one necessarily
needs that limx→∞ s(x) = 0, see relation (5.13) in Filipović (2001), which is not
satisfied for s ≡ r with r �= 0.

If the volatility s is of the form (7.5), then the HJMM equation (1.2) has a
one-dimensional realization, see corollary 6.1. By a well-known technique (Tappe
2010, proposition 2.8), we can choose the short rate rt(0) as a state process,
whence we speak about a short-rate realization.

The author is grateful to Damir Filipović, Michael Kupper, Elisa Nicolato, Daniel Rost, David
Skovmand, Josef Teichmann and Vilimir Yordanov for their helpful remarks and discussions. The
author is also grateful to two anonymous referees for their helpful comments and suggestions.

Appendix A. Results about power series with several variables

For the proof of theorem 4.1, we require some results about power series with
several variables. Because these results were not immediately available in the
literature, we provide self-contained proofs in this appendix.
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Lemma A.1. Let (ak)k∈N0 ⊂ R and (bl)l∈N0 ⊂ R be sequences such that the series∑
k∈N0

ak and
∑

l∈N0
bl are absolutely convergent. Then, the series∑

(k,l)∈N2
0

akbl

is also absolutely convergent, and we have

∑
(k,l)∈N2

0

akbl =
⎛
⎝∑

k∈N0

ak

⎞
⎠ ·

⎛
⎝∑

l∈N0

bl

⎞
⎠ .

Proof. This is a direct consequence of the Cauchy product formula for
absolutely convergent series (Forster 2011, Satz 8.3). �

In what follows, let p ∈ N be a positive integer. Let K ⊂ Rp be a compact subset.
For a function f : K → R, we define the supremum norm

‖f ‖K := sup{|f (x)| : x ∈ K }.
We will need the following version of Weierstrass’ criterion of uniform
convergence.

Lemma A.2. Let fn : K → R, n ∈ N0 be functions such that
∑∞

n=0 ‖fn‖K < ∞.
Then, the series

∑∞
n=0 fn converges absolutely and uniformly on K to a continuous

function
f : K → R, f (z) =

∑
n∈N

fn .

Proof. We can literally adapt the proof for functions with one variable (Forster
2011, Satz 21.2). �

For x ∈ Rp and k ∈ N
p
0, we introduce the notation

xk := xk1
1 · . . . · xkp

p .

For a ∈ Rp and r > 0, let Kr(a) be the compact ball

Kr(a) := {x ∈ Rp : ‖x − a‖Rp ≤ r}. (A 1)

Proposition A.3. Let p : N0 → N
p
0 be a bijective mapping, let (cn)n∈N

p
0
⊂ R and

a ∈ Rp be such that the power series
∞∑

n=0
k=p(n)

ck(x − a)k (A 2)

converges for some x ∈ Rp with xi �= ai, for all i = 1, . . . , p. Then, for all 0 <
r < min{|x1 − a1|, . . . , |xp − ap|}, the power series (A 2) converges absolutely and
uniformly on Kr(a) to a continuous function

f : Kr(a) → R, f (z) =
∑
k∈N

p
0

ck(z − a)k .
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Proof. For each k ∈ N
p
0, we define the function

fk : Rp → R, fk(z) := ck(z − a)k .

Because the series (A 2) converges, there exists a constant M ≥ 0 such that

|fk(x)| ≤ M , for all k ∈ N
p
0.

Let 0 < r < min{|x1 − a1|, . . . , |xp − ap|} be arbitrary. We define the vector

Q :=
(

r
|x1 − a1| , . . . ,

r
|xp − ap|

)
∈ (0, 1)p.

For all z ∈ Kr(a) and k ∈ N
p
0, we obtain

|fk(z)| = |ck(z − a)k | = |ck(x − a)k | |(z − a)k |
|(x − a)k |

= |fk(x)| |z1 − a1|k1 · . . . · |zp − ap|kp

|x1 − a1|k1 · . . . · |xp − ap|kp

≤ M
rk1 · . . . · rkp

|x1 − a1|k1 · . . . · |xp − ap|kp
= MQ

k1
1 · . . . · Q

kp
p = MQk .

By the geometric series and lemma A.1, the series

∑
k∈N

p
0

Qk =
p∏

i=1

⎛
⎝∑

k∈N0

Qk
i

⎞
⎠

converges absolutely. Therefore, we obtain
∞∑

n=0
k=p(n)

‖fk‖Kr (a) < ∞,

and hence, applying lemma A.2 concludes the proof. �
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