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1. Introduction

In this note, we are concerned with the classification of algebraic surfaces that are equiv-
ariant compactifications of two-dimensional connected linear algebraic groups. Over an
algebraically closed field K of characteristic 0, any such group is isomorphic to the
torus G2

m, the additive group G2
a or a semi-direct product Ga � Gm.

Here, varieties admitting an action of a connected linear algebraic group G with an
open dense orbit are called equivariant compactifications of homogeneous spaces for G.
If the stabilizer of a point in the open dense orbit is trivial, then we simply say that the
variety is an equivariant compactification of G.

Equivariant compactifications of tori are widely studied in toric geometry. The classi-
fication of equivariant compactification of additive groups Gn

a was initiated by Hassett
and Tschinkel [18]. Here, we start the classification of equivariant compactifications of
semi-direct products Ga � Gm. We focus on del Pezzo surfaces (possibly with rational
double points) having such a structure.

This has arithmetic motivations. Namely, the distribution of rational points on Fano
varieties over number fields is predicted by Manin’s conjecture [3], giving a precise asymp-
totic formula for the number of rational points of bounded height. Using methods of har-
monic analysis, it has been proved for toric varieties [4], for equivariant compactifications
of Gn

a [9], and recently for certain equivariant compactifications of Ga � Gm [22].
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150 U. Derenthal and D. Loughran

Furthermore, Manin’s conjecture is studied systematically in dimension 2, where Fano
varieties are del Pezzo surfaces, primarily using universal torsors combined with various
analytic techniques (see [7, Chapter 2] for an overview). In the version stated in [5],
Manin’s conjecture is expected to hold for any del Pezzo surface whose singularities
are rational double points (i.e. canonical); different behaviour occurs if one allows other
singularities (see [5, Example 5.1.1]).

Therefore, it is important to know which del Pezzo surfaces with at most rational
double points are equivariant compactifications, so they may be covered by the results
from harmonic analysis. It turns out that this depends only on the type of a del Pezzo
surface (which can be expressed by its degree, the types of its singularities in the
ADE classification and the number of its lines, where the latter is relevant only in
a few cases).

Toric del Pezzo surfaces are easily identified (see, for example, [13, Figure 1]). Del
Pezzo surfaces that are equivariant compactifications of G2

a were classified in [14]. This
leaves the classification of those del Pezzo surfaces that are equivariant compactifications
of semi-direct products Ga � Gm, which is the main theorem of this paper.

Theorem 1.1. A del Pezzo surface S, possibly singular with rational double points,
is an equivariant compactification of some semi-direct product Ga � Gm if and only if it
has one of the following types.

• Degree � 7: all types.

• Degree 6: types A2 + A1, A2, 2A1, A1 (with three or four lines).

• Degree 5: types A3, A2 + A1, A2.

• Degree 4: types A3 + 2A1, D4, A3 + A1.

Additionally, precisely the following types are equivariant compactifications of a homo-
geneous space for some semi-direct product Ga � Gm.

• Degree 5: type A4.

• Degree 4: type D5, A4.

• Degree 3: type E6, A5 + A1.

Theorem 1.1 is visualized diagrammatically in Figure 1. Note that, as remarked
in [18, § 2], if a variety can be given the structure of a toric variety, this structure is
unique up to equivalence (see Definition 2.2). This may, however, fail for other algebraic
groups. For example, even Pn has infinitely many different structures as an equivariant
compactification of Gn

a for n � 6 [18, Example 3.6]. We consider the corresponding prob-
lem for each semi-direct product Ga � Gm. In the case where Ga � Gm is not the direct
product Ga×Gm, we show that up to equivalence P2 admits precisely two different struc-
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Equivariant compactifications of two-dimensional algebraic groups 151

tures as an equivariant compactification of Ga � Gm (see Theorem 3.3). We also prove
that it admits infinitely many different structures as an equivariant compactification of
a homogeneous space for each Ga � Gm.

Note that a related result is proved in [1, § 6]. There, however, only the classification
of those equivariant compactifications of homogeneous spaces (‘almost homogeneous’ in
their terminology) having Picard number 1 is considered, while our techniques allow us
to identify the equivariant compactifications of Ga � Gm. Moreover, in § 4 we also give
results towards classifying the possible actions that may occur for the surfaces listed in
Theorem 1.1; for example, we show which stabilizers may arise.

The layout of this paper is as follows. In § 2 we gather various facts on algebraic group
actions and on equivariant compactifications of homogeneous spaces. In § 3 we classify the
different structures that P2 admits as an equivariant compactification of a homogeneous
space for each semi-direct product Ga�Gm. Finally, in § 4, we consider del Pezzo surfaces
and prove Theorem 1.1. Throughout this paper we work over an algebraically closed
field K of characteristic 0, and all algebraic groups are linear.

2. Generalities on algebraic groups

2.1. Actions of algebraic groups

We begin by collecting various results on actions of (always linear) algebraic groups on
varieties.

Definition 2.1. Let G be a connected algebraic group and let X be a proper normal
variety. If X admits an action of G that is generically transitive (i.e. transitive on some
dense open subset), we say that X is an equivariant compactification of a homogeneous
space for G. If, moreover, the action is also generically free (i.e. free on some dense open
subset), then we say that X is an equivariant compactification of G.

For motivation with this terminology, suppose that X is an equivariant compactifica-
tion of a homogeneous space for G and let H be the stabilizer of a general point (i.e. a
point in the open dense orbit). Then, X contains an open subset isomorphic to the homo-
geneous space G/H, and the action of G on X extends the natural action of G on G/H.
If, moreover, H is reductive, then the quotient G/H is affine (see [20, Theorem 1.1]),
and so the complement of G/H in X is a divisor [16, Corollaire 21.12.7], which we call
the boundary of the action. As an example, note that a toric variety is by definition an
equivariant compactification of an algebraic torus. As algebraic tori are commutative,
however, every homogeneous space for a torus is in fact itself a torus; in particular, every
equivariant compactification of a homogeneous space for an algebraic torus is also a toric
variety. To obtain homogeneous spaces that are not themselves algebraic groups, one
needs to consider non-commutative groups; we present many such examples in § 4.

We are interested in classifying generically transitive actions up to the following notion
of equivalence.
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152 U. Derenthal and D. Loughran

Definition 2.2. Let G be an algebraic group acting on varieties X1 and X2. An
equivalence of (left) G-actions is then a commutative diagram

G × X1

��

(α,j) �� G × X2

��
X1

j �� X2

where α : G → G is an automorphism and j : X1 → X2 is an isomorphism.

Note that, in order to classify generically transitive actions up to equivalence, we need
only consider left actions. Indeed, if G acts on the right on a variety X via (x, g) �→ xg,
then we obtain a left action of G on X defined by (g, x) �→ xg−1. This left action is
obviously generically transitive (or generically free) if and only if the original action is.
Throughout this paper we therefore assume that all groups act on the left.

Recall that given an action of an algebraic group G on a variety X and a line bundle L

on X, a G-linearization of L is a fibrewise linear action of G on L that respects the action
of G on X (see [20, Chapter 1] and [15, Chapter 7]).

Lemma 2.3. Let G be a connected algebraic group such that Pic(G) = 0, and sup-
pose that G acts on some normal variety X. Then, every line bundle on X admits a
G-linearization.

In particular, for any n ∈ N, every projective representation G → PGLn admits a lift
to a representation G → GLn, i.e. there exists a homomorphism G → GLn such that the
following diagram is commutative:

G

����
��

��
��

�
�� GLn

��
PGLn

Proof. By [15, Theorem 7.2], as G is connected, we have an exact sequence

PicG(X) → Pic(X) → Pic(G),

where PicG(X) denotes the group of isomorphism classes of G-linearized line bundles on
X. As Pic(G) = 0, the map PicG(X) → Pic(X) is surjective, and hence every line bundle
on X admits a G-linearization.

To prove the second part of the lemma, note that a projective representation
G → PGLn gives rise to an action of G on Pn−1. By the first part of the lemma, the
line bundle OPn−1(1) admits a G-linearization. Therefore, we obtain an action on the
n-dimensional vector space H0(Pn−1,OPn−1(1)), which is the required lift to a represen-
tation G → GLn. �

The algebraic groups of primary interest in this paper (namely, Ga, Gm and semi-
direct products Ga �Gm) all have trivial Picard groups [15, Remark 7.3]. Note also that,
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Equivariant compactifications of two-dimensional algebraic groups 153

in general, the choice of linearization is not unique if G admits non-trivial characters
(see [15, (7.3)]).

Next, we obtain a criterion to help determine whether certain morphisms to projective
space are equivariant.

Lemma 2.4. Let X be a normal variety together with the action of an algebraic
group G. Let L be a line bundle on X that is generated by its global sections such that
W = H0(X, L) is finite dimensional and that admits a G-linearization. Let V ⊂ W be
a base-point free linear series. Then, if ϕ : X → P(V ) denotes the associated morphism,
the following are equivalent.

(1) V ⊂ W is invariant under the action of G.

(2) The composed morphism X → P(V ) ⊂ P(W ) is G-equivariant.

(3) P(V ) ⊂ P(W ) is invariant under the action of G.

Proof. The proof that (1) implies (2) can be found in [15, § 7.3]. To show that (2)
implies (3), first note that if we let Y = ϕ(X), then P(V ) is the only linear subspace
of P(W ) of dimension n = dimV + 1 that contains Y . Indeed, choose a basis s0, . . . , sn

for V and suppose that H ⊂ P(W ) is another such subspace. Then, H ∩ P(V ) is a linear
subspace of dimension at most n − 1 containing Y , which implies that there is a linear
relation between s0, . . . , sn, giving a contradiction. Therefore, as the G-equivariance of ϕ

implies that gP(V ) contains Y for all g ∈ G, we see that gP(V ) = P(V ), i.e. P(V ) ⊂ P(W )
is invariant under the action of G. This proves (3).

Finally, we show that (3) implies (1). The fact that P(V ) ⊂ P(W ) is invariant under
the action of G implies that for any line E ⊂ V we have gE ⊂ V for all g ∈ G. Applying
this to the line spanned by each s ∈ V , we deduce that gs ∈ V for all g ∈ G, which
proves (1). �

Note that, as (3) in Lemma 2.4 is independent of the choice of G-linearization on L,
we see that (1) is also independent of the choice of G-linearization. We next consider how
the property of being an equivariant compactification of a homogeneous space behaves
with respect to birational morphisms.

Lemma 2.5. Let G be a connected algebraic group and let X be an equivariant
compactification of a homogeneous space for G. Let π : X̃ → X be the blow-up of X at
a subvariety V ⊂ X that is invariant under the action of G. Then, X̃ is an equivariant
compactification of a homogeneous space for G in such a way that π is a G-equivariant
morphism.

Proof. From the universal property of blow-ups [17, Corollary II.7.15], we obtain a
morphism G× X̃ → X̃. It is easy to see that this gives the required action (see the proof
of [14, Lemma 3]). �

Lemma 2.6. Let G be a connected algebraic group and let X be a smooth equiv-
ariant compactification of a homogeneous space for G. Let π : X → Y be a birational
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154 U. Derenthal and D. Loughran

morphism to a normal projective variety Y . Then, Y is an equivariant compactification
of a homogeneous space for G in such a way that π is a G-equivariant morphism.

Proof. For equivariant compactifications of G, see [22, Proposition 1.3]. The exact
same proof works for equivariant compactifications of homogeneous spaces for G, as the
fact that the stabilizer of a general point is trivial is not used in the proof. �

Combining these results we obtain the following.

Proposition 2.7. Let G be a connected algebraic group, let S be a singular projec-
tive normal surface and let π : S̃ → S be a minimal desingularization. Then, S is an
equivariant compactification of a homogeneous space for G if and only if S̃ is, in which
case π is a G-equivariant morphism.

Proof. The proof of this lemma is essentially the same as the proof of [14, Lemma 4].
The fact that S is normal implies that the singular locus consists of a finite set of
singularities. As G is connected, each of these singularities must be fixed under the
action of G. Since the map π is given by successively blowing up these singularities, on
applying Lemmas 2.5 and 2.6 we deduce the result. �

Note that as the G-equivariant morphisms in Lemmas 2.5, 2.6 and Proposition 2.7 are
birational, they preserve the order of the stabilizer of each point in the open dense orbit.

2.2. Semidirect products Ga � Gm

We now turn our attention to semi-direct products of Ga and Gm. Note that one may
write all such groups in a fairly simple way. Namely, a semi-direct product Ga�Gm is given
by a homomorphism Gm → Aut(Ga) = Gm. Since homomorphisms Gm → Gm are given
by t �→ td for any integer d, any such semi-direct product has the form Gd = Ga �φd

Gm

with φd(t)(b) = tdb. The group law on Gd is given by

(b, t) · (b′, t′) = (b + tdb′, tt′).

We keep this notation throughout this paper. Note that we have obvious isomorphisms
Gd

∼= G−d and G0 ∼= Ga × Gm.
Later, we will require some information about stabilizers of generically transitive

actions. For this it is useful to know which finite subgroups can occur.

Lemma 2.8. Any finite subgroup of Gd is conjugate to one of the form

μn → Gd, ζ �→ (0, ζ),

for some n ∈ N. Such a subgroup is normal if and only if n | d, in which case
Gd/μn

∼= Gd/n.

Proof. Let H ⊂ Gd be a finite subgroup. Restricting the exact sequence

0 → Ga → Gd → Gm → 1
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Equivariant compactifications of two-dimensional algebraic groups 155

to H, we see that H injects into Gm. Indeed, H ∩ Ga = 0, since Ga has no non-trivial
finite subgroups as K has characteristic 0. Therefore, there exists n ∈ N such that
H ∼= μn as an algebraic group; in particular, H is cyclic and generated by a semi-simple
element. Such an element is conjugate to one in the maximal torus T = {(0, t) : t ∈ Gm}
by [6, Theorem III.10.6]. This completes the proof of the first part of the lemma.

A simple calculation shows that μn is not normal if n � d. If n | d, then the map

Gd → Gd/n, (b, t) �→ (b, tn)

has kernel μn and gives the required isomorphism. �

Note that it follows from Lemma 2.8 that if we wish to classify generically transitive
actions of Gd on a certain surface S for every d ∈ Z, we may reduce to the case where the
action is faithful. Indeed, as Gd and S have the same dimension, the stabilizer of a general
point is finite, and hence the kernel of the action is a finite normal subgroup. Quotienting
out we obtain a faithful generically transitive action of Gd/n on S for some n | d.

3. Actions on the projective plane

We now classify the generically transitive actions of Gd on P2. We begin with a lemma
on three-dimensional representations of Ga.

Lemma 3.1. Let f : Ga → GL3 be a faithful representation whose image consists only
of upper triangular matrices. There then exist α1, α2, α3 ∈ K not all 0 such that

f(b) =

⎛
⎜⎜⎝

1 α1b α2b +
α1α3

2
b2

0 1 α3b

0 0 1

⎞
⎟⎟⎠ .

Proof. By assumption, we have

f(b) =

⎛
⎜⎝

f1,1(b) f1,2(b) f1,3(b)
0 f2,2(b) f2,3(b)
0 0 f3,3(b)

⎞
⎟⎠ ,

where all the fi,j(b) are polynomial expressions in b. For this to define an action we must
have that

fi,i(b) · fi,i(b′) = fi,i(b + b′) (3.1)

for i = 1, 2, 3, i.e. each fi,i defines a homomorphism fi,i : Ga → Gm. Such a homomor-
phism must be trivial; hence, we have fi,i(b) = 1 for each b ∈ Ga and i = 1, 2, 3.

Next, differentiating the map f gives an injection of Lie algebras df : g → gl3, where
g denotes the Lie algebra of Ga. The morphism df sends a generator of g to a nilpotent
matrix ⎛

⎜⎝
0 α1 α2

0 0 α3

0 0 0

⎞
⎟⎠ ,
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156 U. Derenthal and D. Loughran

where α1, α2, α3 ∈ K, at least one of which is non-zero. On exponentiating this map, we
obtain the result. �

The following lemma is the key step in the classification of the generically transitive
actions on P2 up to equivalence. It is used later in our study of such actions on generalized
del Pezzo surfaces.

Lemma 3.2. Let d ∈ Z and let ρ : Gd → PGL3 be a faithful representation whose
image consists of only upper triangular matrices. There then exist an element g ∈ Gd

and k1, k2 ∈ Z not both 0 and α1, α2, α3 ∈ K not all 0 such that

ρ(g−1(b, t)g) =

⎛
⎜⎜⎝

tk1 α1bt
k2 α2b +

α1α3

2
b2

0 tk2 α3b

0 0 1

⎞
⎟⎟⎠ .

Moreover, the following four conditions must hold:

• α1 = 0 or k1 = k2 + d,

• α2 = 0 or k1 = d,

• α3 = 0 or k2 = d,

• α1α2α3 = 0.

Proof. Let U = {(b, 1) : b ∈ Ga} denote the normal subgroup of Gd isomorphic to Ga,
and let T denote the maximal torus T = {(0, t) : t ∈ Gm}. The first step of the proof
is to analyse the behaviour of ρ when restricted to U and T . Note that, by Lemma 2.3,
there exists a lift of ρ to a faithful representation f : Gd → GL3 that takes the form

⎛
⎜⎝

f1,1(b, t) f1,2(b, t) f1,3(b, t)
0 f2,2(b, t) f2,3(b, t)
0 0 f3,3(b, t)

⎞
⎟⎠ ,

where all the fi,j(b, t) are polynomial expressions in b, t, t−1. For this to define an action,
the following relations must hold:

fi,i(b, t) · fi,i(b′, t′) = fi,i(b + tdb′, tt′) (3.2)

for i = 1, 2, 3. Applying Lemma 3.1 we see that fi,i(b, 0) = 1. Therefore, it follows
from (3.2) that each fi,i defines a homomorphism fi,i : T → Gm, so we must have
fi,i(b, t) = fi,i(0, t) = tki for some ki ∈ Z and i = 1, 2, 3. Note that we may obvi-
ously choose the lift f so that k3 = 0. Moreover, we claim that at least one of k1 and
k2 is non-zero. Indeed, otherwise, f restricted to T would give a map T → GL3 whose
image is unipotent. As T ∼= Gm, such a map must be trivial, which contradicts the fact
that f is faithful.
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Next, we find a maximal torus of Gd that has diagonal image under f . Let D3 ⊂ GL3

denote the subgroup of diagonal matrices and let H = D3 ∩ f(Gd), which is a closed
algebraic subgroup of both D3 and f(Gd). Since one of the ki is non-zero, we see that H

is not finite. Thus, if we let H0 denote the connected component of the identity of H, it
follows that H0 is an algebraic torus of dimension 1, as it is a connected one-dimensional
algebraic subgroup of D3 ∼= G3

m. So, H0 defines a maximal torus in f(Gd), and, pulling
back via f , we obtain a maximal torus in Gd with diagonal image. However, as any
two maximal tori are conjugate (see, for example, [6, Theorem III.10.6]), there exists
an element g ∈ Gd such that f(g−1Tg) consists of diagonal matrices. Moreover, by the
above we may assume that f(g−1(0, t)g) = diag(tk1 , tk2 , 1).

Next, note that the map b �→ f(g−1(b, 1)g) is a faithful representation of Ga that
consists of upper triangular matrices. Hence, applying Lemma 3.1 and using the fact
that f(g−1(b, t)g) = f(g−1(b, 1)g)f(g−1(0, t)g), we see that there exist α1, α2, α3 ∈ K

not all 0 such that f(g−1(b, t)g) is given by

⎛
⎜⎜⎝

tk1 α1bt
k2 α2b +

α1α3

2
b2

0 tk2 α3b

0 0 1

⎞
⎟⎟⎠ .

One can check that this defines a homomorphism if and only if

α1(tk1 − td+k2) = α2(tk1 − td) = α3(tk2 − td) = 0 (3.3)

for all t ∈ K∗. This gives the list of conditions in the lemma. To finish the proof, it
suffices to note that if α1α2α3 �= 0, then (3.3) implies that k1 = k2 = d = 0, which does
not give a faithful representation. �

We are now ready to classify the faithful generically transitive actions of Gd on P2. We
first define the actions that we are interested in. Let d ∈ Z and let k ∈ Z \ 0. We define
a generically transitive action of Gd on P2 by

τd,k(b, t) =

⎛
⎜⎝

tk 0 0
0 td b

0 0 1

⎞
⎟⎠ .

The following facts are easy to check. We use the coordinates (x:y:z) on P2.

• The stabilizer of a general point has order |k|.

• The representation is faithful if and only if gcd(|k|, |d|) = 1.

• The boundary divisor consists of the two lines {x = 0} and {z = 0}.

• If k �= d, the only fixed points are (1:0:0) and (0:1:0). If k = d, then the fixed points
are exactly the points on the line {z = 0}.
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Note that τd,k is not equivalent to τd,k′ for any |k| �= |k′|, as the stabilizers of a general
point are different in each case. Also, τd,k is not equivalent to τd,−k for d �= 0, as these have
inequivalent action on the line {z = 0}. One easily sees, however, that τ0,k is equivalent
to τ0,−k on applying the automorphism (b, t) �→ (b, t−1) of G0 = Ga × Gm. We also have
another faithful generically transitive action of Gd on P2 given by

ρd(b, t) =

⎛
⎜⎝

t2d btd b2/2
0 td b

0 0 1

⎞
⎟⎠

for any d �= 0. Here again it is easy to check the following.

• The stabilizer of a general point has order 2|d|.

• The boundary divisor consists of the line {z = 0} and the conic {y2 = 2xz}.

• The only fixed point is (1:0:0).

Note that the boundary divisor for ρd does not have strict normal crossings, as the conic
lies tangent to the line. Also, it is easy to see that ρd is not equivalent to τd,k for any
kd �= 0, as there is no automorphism of P2 that swaps a line and a conic. Our main
theorem in this section is that any faithful generically transitive action of Gd of P2 is of
the above form, up to equivalence.

Theorem 3.3. Let d �= 0. Any faithful generically transitive action of Gd on P2 is
equivalent to either τd,k for a unique k �= 0 with gcd(|k|, |d|) = 1 or ρd. Any faithful
generically transitive action of G0 on P2 is equivalent to τ0,1.

Proof. The action of Gd on P2 gives rise to a faithful representation ρ : Gd → PGL3.
As Gd is solvable, it follows from the Lie–Kochin theorem [6, Corollary III.10.5] (applied
to a lift of ρ obtained via Lemma 2.3) that we may conjugate by an element of PGL3

to obtain an equivalent action whose image consists of only upper triangular matrices.
This corresponds to the fact that the action on P2 leaves (1:0:0) and {z = 0} invariant.
Therefore, applying Lemma 3.2, we see that up to equivalence ρ(b, t) takes the form

⎛
⎜⎜⎝

tk1 α1bt
k2 α2b +

α1α3

2
b2

0 tk2 α3b

0 0 1

⎞
⎟⎟⎠ .

We now proceed by considering the various possibilities on the αi given by Lemma 3.2.
First, if α1α2 �= 0, then we see that k2 = 0, k1 = d and α3 = 0. This action is not
generically transitive for any d; indeed, it preserves the lines y = λz for any λ ∈ K.

Next, consider the case where α1α3 �= 0 and, hence, α2 = 0. Lemma 3.2 then implies
that k1 = 2d and k2 = d and, therefore, d �= 0. We claim that this action is equivalent
to ρd. Indeed, the conic {α1y

2 = 2α3xz} is invariant under the action. The automorphism
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Equivariant compactifications of two-dimensional algebraic groups 159

of P2 given by x �→ α3x/α1 moves this conic to the conic {y2 = 2xz} and gives rise to
an equivalent action given by

⎛
⎜⎝

t2d α3bt
d (α3b)2/2

0 td α3b

0 0 1

⎞
⎟⎠ .

On performing the automorphism (b, t) �→ (b/α3, t) of Gd, which rescales b, we obtain ρd.
Thus, we may assume that α1α3 = 0 and that ρ takes the form

⎛
⎜⎝

tk1 α1bt
k2 α2b

0 tk2 α3b

0 0 1

⎞
⎟⎠ .

If α2α3 �= 0, then Lemma 3.2 tells us that k1 = k2 = d and α1 = 0. Clearly, this action
is not faithful unless d = 1, in which case it gives

⎛
⎜⎝

t 0 α2b

0 t α3b

0 0 1

⎞
⎟⎠ .

The boundary here consists of the lines {z = 0} and {α2y = α3x}. Hence, as before,
we may perform an automorphism of P2 that moves the line {α2y = α3x} to the line
{x = 0} to obtain an action equivalent to τ1,1.

Thus, we have reduced to the case where α1α2 = α1α3 = α2α3 = 0. In particular, only
one of the αi can be non-zero, and we may even assume that αi = 1, since applying the
automorphism (b, t) �→ (b/αi, t) of Gd gives an equivalent action. This leaves the three
cases ⎛

⎜⎝
tk 0 0
0 td b

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

td 0 b

0 tk 0
0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

td+k btk 0
0 tk 0
0 0 1

⎞
⎟⎠ .

The first action is τd,k, by definition, whereas the second action is seen to be equivalent
to τd,k on performing the automorphism of P2 that swaps x and y. As for the third one,
we note that in PGL3 we have

⎛
⎜⎝

td+k btk 0
0 tk 0
0 0 1

⎞
⎟⎠ =

⎛
⎜⎝

td b 0
0 1 0
0 0 t−k

⎞
⎟⎠ ,

which is easily seen to be equivalent to τd,−k on performing the automorphism of P2 that
swaps y and z. �
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4. Actions on generalized del Pezzo surfaces

4.1. Recap on del Pezzo surfaces

We now recall various facts that we need on del Pezzo surfaces, which can be found,
for example, in [10,11,19]. As before, we work over an algebraically closed field K of
characteristic 0.

A generalized del Pezzo surface S̃ is a non-singular projective surface whose anticanon-
ical class −KS̃ is big and nef. A normal projective surface S with ample anticanonical
class −KS is called an ordinary del Pezzo surface if it is non-singular and a singu-
lar del Pezzo surface if its singularities are rational double points. Ordinary del Pezzo
surfaces and minimal desingularizations of singular del Pezzo surfaces are generalized
del Pezzo surfaces, and, conversely, every generalized del Pezzo surface arises in this way
(see [10, Proposition 0.6]).

The degree of a generalized del Pezzo surface S̃ is the self-intersection number
(−KS̃ ,−KS̃) of its anticanonical class. The degree of a singular del Pezzo surface S

is defined to be the degree of its minimal desingularization. For n ∈ N, a (−n)-curve
(or simply a negative curve) on a non-singular projective surface is a rational curve with
self-intersection number −n. On generalized del Pezzo surfaces, only (−1)- or (−2)-curves
may occur (see [10, p. 29]). Moreover, a generalized del Pezzo surface is ordinary if and
only if it contains no (−2)-curves.

A theorem of Demazure (see [10, Proposition 0.4]) states that any generalized del
Pezzo surface S̃ is isomorphic to either P2 (degree 9), P1 × P1, the Hirzebruch surface F2

(both of degree 8) or is obtained from P2 by a sequence

S̃ = S̃r
ρr−→ S̃r−1 → · · · → S̃1

ρ1−→ S̃0 = P2

of r � 8 blow-ups ρi : S̃i → S̃i−1 of points pi ∈ S̃i−1 not lying on a (−2)-curve on S̃i−1

for i = 1, . . . , r (with S̃ of degree 9 − r). The Picard group Pic(S̃) of a generalized del
Pezzo surface is a torsion-free abelian group of rank 10 − deg(S̃). For a generalized del
Pezzo surface S̃ of degree at least 3, the anticanonical linear system defines a birational
morphism π : S̃ → S ⊂ Pdeg(S̃) to a surface S. If S̃ is ordinary, then π is in fact a closed
immersion. Otherwise, π contracts precisely the (−2)-curves on S̃ to the singularities of
S, and S is a singular del Pezzo surface with minimal desingularization S̃.

The singularity type of a singular del Pezzo surface S is defined to be the dual graph
of the configuration of (−2)-curves on the minimal desingularization S̃. These graphs are
always Dynkin diagrams and are labelled by (sums of) An for n � 1, Dn for n � 4,
E6, E7, E8. Moreover, in each degree, there are only finitely many possibilities for the
configurations of the negative curves that may occur on generalized del Pezzo surfaces;
these types can be distinguished by the ADE-types of the Dynkin diagrams for the
(−2)-curves and the number of lines. The latter can be left out in most cases. Exceptions
are two A3-types (with four, respectively, five, lines) in degree 4 and two A1-types (with
three, respectively, four, lines) in degree 6; all other exceptions have degree 1 and 2 and
are not relevant for us. For some types there are infinitely many isomorphism classes, but
for all types that turn out to be equivariant compactifications of homogeneous spaces for
Ga � Gm we see that there is precisely one such surface up to isomorphism.
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4.2. Actions on generalized del Pezzo surfaces

We now consider the classification of those generalized del Pezzo surfaces that admit
a generically transitive action of Gd for some d, with the aim of proving Theorem 1.1. It
turns out that such surfaces must satisfy a special geometric condition.

Lemma 4.1. Let S̃ be a generalized del Pezzo surface that is an equivariant compact-
ification of a homogeneous space for Gd for some d. Then,

#{negative curves on S̃} � rk Pic S̃ + 1.

Proof. First note that if S̃ ∼= P1 × P1 or S̃ ∼= F2, then there is at most one negative
curve and the inequality trivially holds. So, we may assume that S̃ is obtained from P2 by
a sequence of r blow-ups. To prove the inequality in this case, it suffices to show that the
boundary of the action consists of r+2 = rk Pic S̃ +1 irreducible curves. Indeed, let E be
a negative curve on S̃. By Lemma 2.3, the line bundle OS̃(E) admits a Gd-linearization;
in particular, the divisor class of E is invariant under the action of Gd. As E is the unique
effective curve in its divisor class, we see that E itself is invariant under the action of Gd,
and therefore E must lie on the boundary. The fact that the boundary consists of r + 2
irreducible curves then gives the required inequality.

To prove the claim we proceed by induction. Let X be a smooth projective equivariant
compactification of a homogeneous space for Gd that contains a (−1)-curve E, and let
π : X → Y be the map given by contracting E. Note that we may assume that Y is an
equivariant compactification of a homogeneous space for Gd and that π is Gd-equivariant
by Lemma 2.6. As π is an isomorphism outside E, we see that X has exactly one more
boundary component than Y . Applying this inductively to S̃, we see that the boundary of
the action on S̃ consists of r + n irreducible curves, where n is the number of irreducible
curves on the boundary of the action on P2. However, by the classification given in
Theorem 3.3, we know that n = 2. This proves the claim and, hence, completes the proof
of the lemma. �

From the classification of generalized del Pezzo surfaces that can be found in [13], for
example, it is straightforward to write the list of surfaces that satisfy the condition of
Lemma 4.1. These are shown in Figure 1.

We note that, for each of the types of degree at most three given in Figure 1, there
exists a unique surface over K with that type, up to isomorphism. Indeed, for the surfaces
of degree 3 this follows from the classification given in [8]. This also implies uniqueness
for all surfaces of degree greater than 3, except perhaps for the quartic del Pezzo surface
of type A3 with four lines. However, we also have uniqueness in this case on noting that
such a surface is obtained by contracting a unique (−1)-curve on a del Pezzo surface of
degree 3 and type A4. There, again, exists a unique surface of this type by [8]. Note that
this result does not hold for some of the lower degree surfaces in Figure 1; for example,
there are infinitely many generalized del Pezzo surfaces of degree 2 and type D6 up to
isomorphism (see [23, Theorem 5.7]).

Next, it follows from Lemma 2.6 that we need only consider the ‘extremal’ surfaces in
Figure 1, namely, if a surface is an equivariant compactification of (a homogeneous space
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Figure 1. Generalized del Pezzo surfaces S̃ in increasing degree with #{negative curves
on S̃} � rk Pic(S̃) + 1. Those in solid boxes are exactly the equivariant compactifications of
Gd for some d. Those in dashed boxes are exactly the equivariant compactifications of a homo-
geneous space for Gd for some d. Arrows denote blow-up maps (in degree at least 4, only maps
used in our proofs are included). The shorthand ‘l.’ stands for ‘lines’.

for) some Gd, then so is any surface that lies below it in Figure 1. Conversely, if a surface
is not an equivariant compactification of (a homogeneous space for) Gd, then no surface
in Figure 1 that lies above it is either.

We now proceed to classify the generically transitive actions of Gd on some of the
surfaces in Figure 1 up to equivalence for each d ∈ Z. We briefly outline the method that
we use. Suppose that ρ : S̃ → P2 is the composition of r � 6 blow-ups of P2, and that
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S̃ admits a generically transitive action of Gd for some d. Then, by Lemma 2.6, we obtain
a generically transitive action of Gd on P2 in such a way that ρ is Gd-equivariant. Also,
in every case we consider, we are able to choose ρ in such a way that the line {z = 0}
and the point (1:0:0) are images of negative curves on S̃. As the negative curves on S̃ are
invariant under the action (see the proof of Lemma 4.1), the line {z = 0} and the point
(1:0:0) must also be invariant under the action on P2, and hence the action has the form
given by Lemma 3.2.

Therefore, we are reduced to the following question: for which of the actions given in
Lemma 3.2 is the map ρ Gd-equivariant? This is equivalent to asking whether the inverse
of ρ is a Gd-equivariant birational map ρ−1 : P2 ��� S̃. Also, by Proposition 2.7, this is
again equivalent to asking whether or not π ◦ ρ−1 is Gd-equivariant, where π : S̃ → S

denotes the map to the associated singular del Pezzo surface. As r � 6, however, we see
that S ⊂ P9−r and, moreover, the map π ◦ ρ−1 is given by choosing a basis for some
linear series V ⊂ H0(P2,OP2(3)). We may, therefore, appeal to Lemma 2.4, and reduce
to determining whether or not V is invariant under the action of Gd on H0(P2,OP2(3)).

We now show this method in action by considering the extremal surfaces given in
Figure 1, beginning with the one such surface of degree 5.

Lemma 4.2. The quintic del Pezzo surface of type A4 admits a unique structure as
an equivariant compactification of a homogeneous space for G1 (but none for G0). It is
not an equivariant compactification of Gd for any d.

Proof. The quintic type A4 is defined by the equations

x2x4 − x2
1 = x3x4 − x0x1 = x0x2 − x1x3 = x1x2 + x2

0 + x4x5 = x2
2 + x0x3 + x1x5 = 0.

The associated rational map from P2 is given by

(x:y:z) �→ (xz2:yz2:y2z:xyz:z3: − (y3 + x2z)).

This is not defined at (1:0:0), and, moreover, the line {z = 0} is mapped to the singu-
larity (0:0:0:0:0:1). Therefore, the associated action on P2 must leave these subvarieties
invariant, hence is of the form given in Lemma 3.2. For it to be equivariant, the associated
linear series of cubic forms must be invariant of the action of Gd, by Lemma 2.4. One
can check that this happens if and only if 2k1 = 3k2 (this condition comes from the term
−(y3 + x2z)). So, for some k �= 0, we have that (k1, k2) = (3k, 2k). If two of α1, α2, α3

are non-zero, this leads to d = k = 0, and the action is not generically transitive. If only
α1 �= 0, we have d = k, and the action is equivalent to τd,−2d. If only α2 �= 0, we have
d = 3k, and the action is equivalent to τ3k,2k. If only α3 �= 0, we have d = 2k, and the
action is equivalent to τ2k,3k. In any case, the stabilizer of a general point has order at
least 2, and so the action is not generically free. �
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164 U. Derenthal and D. Loughran

We now consider the extremal surfaces of degree 4.

Lemma 4.3. For quartic generalized del Pezzo surfaces we have the following.

• The surface of type A3 +2A1 is an equivariant compactification of Gd for all d ∈ Z.

• The surface of type D4 admits a unique structure as an equivariant compactification
of G2 (but none for other Gd with d � 0).

• The surface of type A4 admits a unique structure as an equivariant compactification
of a homogeneous space for G1 (but none for G0). It is also not an equivariant
compactification of Gd for any d.

• The surface of type A3 +A1 admits a unique structure as an equivariant compact-
ification of G1 (but none for other Gd with d � 0).

• The surface of type A3 (four lines) is not an equivariant compactification of a
homogeneous space for Gd for any d.

Proof. Type A3 + 2A1. The surface S is defined by

x0x1 − x2
2 = x2

0 − x3x4 = 0.

Note that this surface is toric. For each d ∈ Z, the action of Gd is given by the represen-
tation

(b, t) �→

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
b2 t2d 2tdb 0 0
b 0 td 0 0
0 0 0 t 0
0 0 0 0 t−1

⎞
⎟⎟⎟⎟⎟⎠

,

which is easily checked to be generically free and generically transitive.

Type D4. The surface S can be defined by

x0x3 − x1x4 = x0x1 + x1x3 + x2
2 = 0.

The associated rational map from P2 is given by

(x:y:z) �→ (xz2:z3:yz2: − z(xz + y2): − x(xz + y2)).

The associated action on P2 must, therefore, fix {z = 0} and (1:0:0); hence, it has the
form given by Lemma 3.2. By considering the term z(xz + y2), we see that we must have
k1 = 2k2. Also, by considering the action on the final term, we see that for the linear
series to be invariant we must have α1 = α3 = 0 (this is due to the appearance of the
monomials y3 and xyz if α1 or α3 are non-zero). Therefore, we also have k1 = d. Such
an action may occur only when d is even, in which case it is equivalent to τd,−d/2. This
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is faithful if and only if |d| = 2. The action when d = 2 may be given explicitly via the
representation

(b, t) �→

⎛
⎜⎜⎜⎜⎜⎝

t2 b 0 0 0
0 1 0 0 0
0 0 t 0 0
0 −b 0 t2 0

−bt2 −b2 0 bt2 t4

⎞
⎟⎟⎟⎟⎟⎠

.

Type A4. The surface S can be defined by

x0x1 − x2x3 = x0x4 + x1x2 + x2
3 = 0.

The associated rational map from P2 is given by

(x:y:z) �→ (z3:xyz:xz2:yz2: − y(x2 + yz)).

The associated action on P2 must, therefore, fix {z = 0}, (1:0:0) and (0:1:0). This implies,
in particular, that α1 = 0. By considering the final term, we see that we must have
2k1 = k2 and α3 = 0 (due to a term of the form x2z if α3 �= 0). Such an action is,
therefore, equivalent to τd,2d for some d. This is faithful if and only if |d| = 1, in which
case the stabilizer of a generic point has order 2. Explicitly, the action for d = 1 is given
by

(b, t) �→

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 t3 0 bt2 0
b 0 t 0 0
0 0 0 t2 0
0 −2bt3 0 −b2t2 t4

⎞
⎟⎟⎟⎟⎟⎠

.

Type A3+A1. Note that we originally considered this surface in [14, § 5]. The equations
are given by

x1x3 − x2
2 = x0x3 + x2x4 + x2

0 = 0.

The associated rational map from P2 is given by

(x:y:z) �→ (xyz:y3:y2z:yz2: − xz(x + z)).

The action on P2 must fix {y = 0}, {z = 0} and (0:0:1). Hence, we must have α2 = α3 = 0.
The linear series is invariant if and only if k = −d, in which case this action is equivalent
to τd,d. This is faithful if and only if |d| = 1, and the action in the case d = −1 is given
in [14, § 5].

Type A3. This is given by the equations

x0x1 − x2
2 = (x0 + x1 + x3)x3 − x2x4 = 0.

This surface is described in [12, § 6.4]. The associated rational map from P2 is given by

(x:y:z) �→ (z3:x2z:xz2:xyz − z3:(x + y)(xy − z2)).
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The action on P2 must, therefore, fix (1:0:0), (0:1:0), (1: − 1:0) and the lines {x = 0},
{z = 0}. Using Lemma 3.2, we must have α1 = α2 = 0 and, moreover, k1 = k2 = d,
as there are three fixed points. Considering the term (x + y)(xy − z2), we deduce that
the linear series is invariant only if d = 0, which does not give a generically transitive
action. �

Finally, we consider the cubic surfaces.

Lemma 4.4. For cubic generalized del Pezzo surfaces we have the following.

• The surface of type E6 admits a unique structure as an equivariant compactification
of a homogeneous space for G2 (but none for G0 or G1).

• The surface of type A5 +A1 admits a unique structure as an equivariant compact-
ification of a homogeneous space for G1 (but none for G0).

Moreover, given any generically transitive action of Gd on these surfaces, any fixed point
that lies on a (−1)-curve must also lie on a (−2)-curve.

Proof. Type E6. This is defined by x3x
2
0 − x0x

2
2 + x3

1 = 0. It is the closure of the
image of P2 under the rational map

(x:y:z) �→ (z3:yz2:xz2:x2z − y3),

with (1:0:0) and {z = 0} in P2 fixed. The only questionable part of the linear series is
x2z − y3, which maps to an element of the linear series under the matrix in Lemma 3.2
if and only if 2k1 = 3k2 and α1 = α3 = 0. So, there exists an integer k with (k1, k2) =
(3k, 2k). This gives an action that is equivalent to τ2k,3k, which is faithful if and only if
|k| = 1. In this case, the stabilizer of a general point has order 3, so the action is not
generically free. The induced action on the surface in the case k = 1 is given by

(b, t) �→

⎛
⎜⎜⎜⎝

1 0 0 0
0 t2 0 0
b 0 t3 0
b2 2bt3 0 t6

⎞
⎟⎟⎟⎠ .

On the only line {x0 = x1 = 0}, the only fixed point is the singularity (0:0:0:1).

Type A5 +A1. This surface has equations x3
1 +x2x

2
3 +x0x1x2 = 0. The determination

of all actions of any Gd on this surface was given in [2, Lemma 4], but we re-prove this
result for completeness. The associated rational map is

(x:y:z) �→ (−z3 − x2y:yz2:y2z:xyz).

An associated action of Gd on P2 must fix the points (1:0:0), (0:1:0) and the lines {y = 0},
{z = 0}. In the form of Lemma 3.2, we must have α1 = α3 = 0 and k1 = d. The associated
linear series is invariant if and only if 2k1 = k2, in which case we obtain an action on P2

that is equivalent to τd,−2d. This action is faithful if and only if |d| = 1, in which case
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the stabilizer of a general point has order 2. The induced action on S in the case d = 1
is given by

(b, t) �→

⎛
⎜⎜⎜⎝

t4 −b2t2 0 −2bt3

0 t2 0 0
0 0 1 0
0 bt2 0 t3

⎞
⎟⎟⎟⎠ .

On the only lines {x1 = x2 = 0} and {x1 = x3 = 0}, the fixed points are the singularities
(0:0:1:0) and (1:0:0:0). �

Proof of Theorem 1.1. By Lemma 4.3, the quartic generalized del Pezzo surfaces
of types A3 + 2A1, D4 and A3 + A1 are equivariant compactifications of Gd for some d.
Therefore, all surfaces below them in Figure 1 also are, by Lemma 2.6. This is exactly
the first collection of surfaces given in the statement of Theorem 1.1.

Next, by Lemma 4.4 we see that the cubic surfaces of types E6 and A5 +A1 are equiv-
ariant compactifications of homogeneous spaces for Gd for some d. Again by Lemma 2.6,
we deduce that all surfaces below them in Figure 1 are also equivariant compactifications
of homogeneous spaces for Gd for some d. Also, by Lemmas 4.2 and 4.3, we know that the
quintic generalized del Pezzo surface of type A4 and the quartic generalized del Pezzo
surface of type A4 are not equivariant compactifications of Gd for any d. In particular,
this implies the same result for every surface lying above them in Figure 1 by Lemma 2.6.

To complete the proof of Theorem 1.1, it suffices to show that the remaining surfaces in
Figure 1 are not equivariant compactifications of homogeneous spaces for Gd for any d.
For the quartic surface of type A3 with four lines, this follows from Lemma 4.3. The
cubic del Pezzo surfaces of types D5 and A5 have one-dimensional automorphism groups
by [21, Table 3], so they cannot have a generically transitive action of any Gd. Surfaces
of type E7 and A7 of degree 2 are blow-ups of the cubic surfaces of type E6 and A5 +A1

in a point on one of the (−1)-curves outside the (−2)-curves. However, by Lemma 4.4,
there are no generically transitive actions fixing such points, and hence these surfaces
of degree 2 cannot have such an action. Finally, surfaces of type D6 + A1 and D6 in
degree 2 and type E8 in degree 1 are blow-ups of surfaces that have no generically
transitive action of Gd, so they also cannot have such an action. This completes the
proof of Theorem 1.1. �
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Mathématiques de Jussieu and supported by ANR PEPR. The authors thank Ivan
Arzhantsev, Pierre Le Boudec and the referee for their comments.

References

1. I. Arzhantsev, J. Hausen, E. Herppich and A. Liendo, The automorphism group
of a variety with torus action of complexity one, Moscow Math J. 14(3) (2014), 429–471.

2. S. Baier and U. Derenthal, Quadratic congruences on average and rational points on
cubic surfaces, preprint (arXiv:1205.0373, 2012).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S001309151400042X
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 16 Nov 2017 at 08:33:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S001309151400042X
https://www.cambridge.org/core


168 U. Derenthal and D. Loughran

3. V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné
des variétés algébriques, Math. Annalen 286(1) (1990), 27–43.

4. V. V. Batyrev and Yu. Tschinkel, Manin’s conjecture for toric varieties, J. Alg.
Geom. 7(1) (1998), 15–53.

5. V. V. Batyrev and Yu. Tschinkel, Tamagawa numbers of polarized algebraic varieties,
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