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Abstract. We study the C �-closure A of the algebra of all operators of order and
class zero in Boutet de Monvel’s calculus on a compact connected manifold X with bound-
ary qX 3j. We find short exact sequences in K-theory

0 ! Ki

�
CðX Þ

�
! KiðA=KÞ !p K1�i

�
C0ðT �X �Þ

�
! 0; i ¼ 0; 1;

which split, so that KiðA=KÞGKi

�
CðXÞ

�
lK1�i

�
C0ðT �X �Þ

�
. Using only simple K-

theoretic arguments and the Atiyah-Singer index theorem, we show that the Fredholm
index of an elliptic element in A is given by

ind A ¼ indt

�
pð½A�Þ

�
;

where ½A� is the class of A in K1ðA=KÞ and indt is the topological index, a relation first
established by Boutet de Monvel by di¤erent methods.

Introduction

Boutet de Monvel’s calculus is a pseudodi¤erential calculus on manifolds with
boundary. It comprises the classical di¤erential boundary value problems as well as the
parametrices to elliptic elements, even their inverses whenever they exist [2]. If the underly-
ing manifold is compact, elliptic operators in the calculus define Fredholm operators be-
tween appropriate Hilbert spaces. Boutet de Monvel established an index theorem for that
case: He showed that there is a map which associates to each elliptic operator an element in
the K-theory of the cotangent bundle over the interior of the manifold and that the Fred-
holm index is the composition of that map with the (Z-valued) topological index map.

The crucial step is the construction of the above map from elliptic operators to
K-theory, for which Boutet de Monvel uses elaborate considerations, combining homotopy
arguments within the algebra with classical (vector-bundle) K-theory. In this article we will
show that this map can be obtained relying only on basic knowledge of the structure of the
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algebra and relatively simple constructions in K-theory for C �-algebras (which were not yet
available in 1971). Boutet de Monvel’s map is neither obvious nor trivial. The point is that
we are able to represent it as a composition of various standard (yet non-trivial) maps in
K-theory.

To be more specific, let X be a compact n-dimensional manifold with boundary qX ,
embedded in a closed manifold ~XX of the same dimension ( ~XX could e.g. be the double of X ).
By X � we denote the interior of X . We assume that X is connected and qX is nonempty.

Given a pseudodi¤erential operator P on ~XX , we define the truncated pseudodi¤eren-
tial operator Pþ : CyðXÞ ! CyðX �Þ as the composition rþPeþ, where eþ is extension by
zero from X to ~XX and rþ is the restriction to X �. In general, the functions in the range of
Pþ will not be smooth up to the boundary. One therefore assumes that P satisfies the trans-

mission condition, a condition on the symbol of P which ensures that both Pþ and ðP�Þþ,
the truncated operator formed from the formal adjoint of P, map smooth functions on X to
smooth functions on X .

An operator in Boutet de Monvel’s calculus is a matrix

A ¼ Pþ þ G K

T S

� �
:

CyðX ;E1Þ CyðX ;E2Þ
l ! l

CyðqX ;F1Þ CyðqX ;F2Þ
ð1Þ

acting on sections of vector bundles E1, E2 over X and F1, F2 over qX . Here, P is a pseu-
dodi¤erential operator satisfying the transmission condition; G is a singular Green opera-
tor, T is a trace operator, K is a potential (or Poisson) operator, and S is a pseudodi¤eren-
tial operator on qX . All these operators are assumed to be classical; i.e. their symbols have
polyhomogeneous expansions in the respective classes. For details, the reader is referred to
the monographs by Rempel and Schulze [8] or Grubb [4] as well as to the short introduc-
tion [11]. We will need the following facts:

The operators G, K, and T are regularizing in the interior of X . In a collar neighbor-
hood of the boundary, they can be viewed as operator-valued pseudodi¤erential operators
along the boundary. In particular, they have an order assigned to them. The singular Green
and the trace operators also have a class (or type) d A N0, related to the order of the deriv-
atives appearing in the boundary condition.

The composition of two operators of the form (1) is defined whenever the vector bun-
dles serving as the range of the first operator form the domain of the second. The composi-
tion AA 0 of an operator A 0 of order m 0 and class d 0 with an operator A of order m and class
d results in an operator of order m þ m 0 and classemaxðm 0 þ d; d 0Þ. In particular, the
composition of two operators of order and class zero is again of order and class zero.

For E1 ¼ E2 ¼ E and F1 ¼ F2 ¼ F , the operators of order and class zero thus
form an algebra A. Moreover, they extend to bounded operators on the Hilbert space
H ¼ L2ðX ;EÞlL2ðqX ;FÞ. In fact, A is a �-subalgebra of LðHÞ, closed under holomor-
phic functional calculus, cf. [10]. We use here the definition of order and class in [8] and
[11] which di¤ers slightly from that in [4]. It allows us to use the L2-space over the bound-
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ary instead of H�1=2 and gives us better homogeneity properties of the boundary symbols.
In view of the fact that both the kernel and the cokernel of an elliptic operator in A consist
of smooth functions, the choice is irrelevant for index theory.

Standard reductions—recalled in Section 1.1—allow to reduce any index problem to
the case where the operator is an element of the algebra A, so that we can apply operator-
algebraic methods. This is a central point of the paper.

Let us have a closer look at the structure of A. In a generalization of the classical
Lopatinskij-Shapiro condition, the ellipticity of an element A A A is governed by the in-
vertibility of two symbols, namely the pseudodi¤erential principal symbol, sðAÞ, and the
principal boundary symbol, gðAÞ, which take values in certain C �-algebras over S �X and
S �qX , respectively, cf. Section 1.2.

The maps s and g are �-homomorphisms on A. Extending the classical results by
Gohberg and Seeley, Rempel and Schulze ([8], 2.3.4.4, Theorem 1, based on work by
Grubb and Geymonat [5]) showed that

inf
C AK

kA þ Ck ¼ maxfksðAÞk; kgðAÞkg; for all A A A;ð2Þ

where K denotes the ideal of the compact operators on H, and the norms on the right-hand
side are the supremum norms on S �X and S �qX , respectively.

We shall now denote by A the closure (equivalently, the C �-closure) of A in the to-
pology of LðHÞ. It follows from (2) that s and g have continuous extensions to A; we de-
note them by the same letters. An element of A is compact, if and only if both symbols are
zero. Moreover, it is a Fredholm operator if and only if it is elliptic, i.e., both symbols are
(bundle) isomorphisms.

Boutet de Monvel showed that, given an elliptic element A in A, one can find a
homotopy through elliptic elements in A, connecting Al Id to an operator of the

form
P 0
þ 0

0 Q 0

� �
, where P 0 is a pseudodi¤erential operator whose principal symbol is

an isomorphism of E (independent of x) in a neighborhood of the boundary. Through
the usual di¤erence bundle construction, the principal symbol of P 0 therefore defines
an element ½P 0� of KðT �X �Þ. Boutet de Monvel then associated to A the class
½P 0� þ Thomð½Q 0�Þ, where ½Q 0� is the class in KðT �qXÞ defined by the principal symbol of
Q 0 and Thom : KðT �qXÞ ! KðT �X �Þ is the Thom map, also called Gysin homomor-
phism, or Umkehrmap. Moreover, he showed that the composition of that map with the
topological index map KðT �X �Þ ! Z gives the index of A.

Fedosov [3] then proved that this implies the formula

ind A ¼
Ð

T �X

ch
�
sðAÞ

�
TðXÞ þ

Ð
T �qX

ch 0�gðAÞ
�
TðXÞ:ð3Þ

Here TðX Þ is the di¤erential form given by the Todd class of the tangent bundle (or its
restriction to the boundary), ch sðAÞ is the Chern character associated with the K-class in-
duced by the pseudodi¤erential principal symbol sðAÞ, and ch 0 gðAÞ is a di¤erential form
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constructed from the K-class of the boundary symbol; it is given by a formula analogous to
that for the usual Chern character.

In order to establish this formula, Fedosov referred to Boutet de Monvel’s work and
showed two facts: (i) the formula is invariant under homotopies within the class of elliptic
boundary value problems in the calculus and (ii) whenever the principal symbol of P is an
isomorphism in a neighborhood of the boundary in X , independent of the covariable x, and
the boundary symbol is an isomorphism over the full ball bundle B�ðqXÞ, then the above
formula reduces to the classical formula of Atiyah and Singer.

Our approach to the index theorem is based on a careful analysis of the boundary
symbol map. Indeed, since the kernel of g contains the compact operators, we have a natu-
ral short exact sequence

0 ! ker g=K ! A=K !g im gGA=ker g ! 0:ð4Þ

What is mainly needed for the understanding of our proof of the index theorem is the struc-
ture of ker g and im g. Both were determined in [7], Section 3 for the case of trivial one-
dimensional bundles E and F . We shall review these computations in Section 1 for the
case of general bundles.

In Section 2, we recall a basic construction from K-theory, namely how a commuta-
tive diagram of short exact sequences of C �-algebras

0 ���! A ���! B ���! C ���! 0x???f

x???g

x???h

0 ���! A 0 ���! B 0 ���! C 0 ���! 0

yields a commutative grid of C �-algebras involving A 0, B 0, C 0, the mapping cones, and the
suspensions of A, B, and C. We then apply this in Section 3 to the above sequence (4),
linked to the sequence

0 ! C0ðX �Þ ! CðXÞ ! CðqX Þ ! 0:

As a first result, we obtain

Theorem 1. We have natural short exact sequences

0 ! Ki

�
CðX Þ

�
! KiðA=KÞ !p K1�i

�
C0ðT �X �Þ

�
! 0;ð5Þ

i ¼ 0; 1, which split; i.e. we have (not necessarily natural) isomorphisms

KiðA=KÞGKi

�
CðX Þ

�
lK1�i

�
C0ðT �X �Þ

�
:

This strengthens the results of Melo, Nest, and Schrohe [7], Corollaries 12 and 19,
where the corresponding statements were derived for i ¼ 0 under an additional hypothesis
and for i ¼ 1 using Boutet de Monvel’s index theorem.
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In Section 4 we then prove the index theorem:

Theorem 2. The index of a Fredholm operator A in A is given by

ind A ¼ indt

�
pð½A�Þ

�
;ð6Þ

where ½A� is the K1-class of A in A=K, p is the map in (5) and

indt : K0

�
C0ðT �X �Þ

�
GK 0ðT �X �Þ ! K 0ðptÞGZ

is the topological index. Moreover, p½A� ¼ indðAÞ, where ind denotes the map defined by

Boutet de Monvel in [2], Theorem 5.21.

As in the classical case, Fedosov’s arguments yield the cohomological form (3) of the
index theorem.

1. Elliptic operators and symbols in Boutet de Monvel’s calculus

1.1. A normal form for the index problem. Suppose we are given a Fredholm opera-
tor A in Boutet de Monvel’s calculus of order m and class d acting on sections of vector
bundles over X as in (1).

There exist order and class reducing invertible operators in the calculus. By invertibil-
ity, composition with those does not change the index. Therefore, we can always achieve
that order and class are zero.

Moreover, we can always assume that X is connected. If it is not, then the spaces
CyðX ;E1Þ; . . . , decompose as direct sums corresponding to the decomposition in con-
nected components, and the operator A becomes a matrix M with respect to this decom-
position. By definition of the Boutet de Monvel calculus, the o¤-diagonal entries are
smoothing operators, thus compact. The index is therefore unchanged if we replace M by
the diagonal matrix equal to the diagonal of M. But then it is clear that the index is addi-
tive, and the individual entries correspond to the connected components of X .

We can also assume that E1 ¼ E2 ¼ E and F1 ¼ F2 ¼ F . Indeed, if an elliptic Boutet
de Monvel operator between ðE1;F1Þ and ðE2;F2Þ exists, we have in particular an interior
elliptic pseudodi¤erential operator Q between E1 and E2. By definition, its symbol defines
an isomorphism between p�E1 and p�E2, where p : S �X ! X is the projection of the unit
cotangent sphere bundle. Since X has a non-empty boundary, p : S �X ! X has a section,
see e.g. [7], Proposition 9, or use that the Euler class of the cotangent bundle is trivial. Re-
stricting the symbol isomorphism to this section, we get a bundle isomorphism between E1

and E2.

Next we choose a complement ~EE to E such that E l ~EE ¼ N, the N-dimensional triv-
ial bundle. We can take N so large that, over qX , the bundles F1 and F2 are also embedded
in the restriction of N and consider the operator
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~AA ¼ id 0

0 A

� �
:

CyðX ; ~EEÞ CyðX ; ~EEÞ
l l

CyðX ;EÞ ! CyðX ;EÞ
l l

CyðqX ;F1Þ CyðqX ;F2Þ

which has the same index as A.

We then recall that there are elliptic operators Rj, j ¼ 1; 2, of order and class zero in
Boutet de Monvel’s calculus such that

Rj ¼
GFj

pFj
� g0

� �
: CyðX ;NÞ !

CyðX ;NÞ
l

CyðqX ;FjÞ

is a Fredholm operator of index zero, [2], Theorem (5.12). Here g0 is restriction to the
boundary; pFj

is projection onto the subbundle Fj. Composing ~AA from the left with a para-
metrix to R2 and from the right with R1 we obtain an operator with the same index as A

which is an endomorphism of CyðX ;NÞ.

1.2. Symbols. We consider an operator A as in (1), with E1 ¼ E2 ¼ E, F1 ¼ F2 ¼ F .
The pseudodi¤erential principal symbol sðAÞ of A is defined to be the principal symbol of
P, restricted to S �X . The principal boundary symbol of A is a smooth section from S �qX

into the endomorphisms of

p�
q

�
L2ðRþÞnEjqX

�
l p�

qF G
�
L2ðRþÞn p�

qEjqX

�
l p�

qF ;ð7Þ

where pq : S �qX ! qX is the canonical projection. It is best described for a trivial one-
dimensional bundle and in local coordinates ðx 0; xn; x

0; xnÞ for T �X in a neighborhood
of the boundary. Here, G acts like a pseudodi¤erential operator along the boundary,
with an operator-valued symbol taking values in regularizing operators in the normal
direction. One way to write this operator-valued symbol is via a so-called symbol kernel
~gg ¼ ~ggðx 0; x 0; xn; ynÞ. For fixed ðx 0; x 0Þ, this is a rapidly decreasing function in xn and yn

which acts as an integral operator on L2ðRþÞ. It satisfies special estimates, combining the
usual pseudodi¤erential estimates in x 0 and x 0 with those for rapidly decreasing functions in
xn and yn. The singular Green symbol g of G is defined from the symbol kernel via Fourier
and inverse Fourier transform:

gðx 0; x 0; xn; hnÞ ¼ Fxn!xn
F yn!hn

~ggðx 0; x 0; xn; ynÞ:

It has an expansion into homogeneous terms; the leading one we call g0. Inverting the
operation above, we associate with g0 a symbol-kernel ~gg0ðx 0; x 0; xn; ynÞ which is rapidly
decreasing in xn and yn for fixed ðx 0; x 0Þ. We denote by g0ðx 0; x 0;DnÞ the (compact) op-
erator induced on L2ðRþÞ by this kernel. Similarly, K and T have symbol-kernels
~kkðx 0; x 0; xnÞ and ~ttðx 0; x 0; ynÞ; these are rapidly decreasing functions for fixed ðx 0; x 0Þ.
The symbols k and t are defined as their Fourier and inverse Fourier transforms.
They have asymptotic expansions with leading terms k0 and t0. Via the symbol-kernels
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~kk0 and ~tt0 one defines k0ðx 0; x 0;DnÞ : C ! L2ðRþÞ as multiplication by ~kk0ðx 0; x 0; �Þ, while
t0ðx 0; x 0;DnÞ : L2ðRþÞ ! C is the operator j 7!

Ð
~tt0ðx 0; x 0; �Þj.

We denote by p0 and s0 the principal symbols of P and S, respectively. The boundary
symbol gðAÞ of A in ðx 0; x 0Þ is then defined by

gðAÞðx 0; x 0Þ ¼ p0ðx 0; 0; x 0;DnÞþ þ g0ðx 0; x 0;DnÞ k0ðx 0; x 0;DnÞ
t0ðx 0; x 0;DnÞ s0ðx 0; x 0Þ

� �
:

Two things are important to note:

(i) Except for p0ðx 0; 0; x 0;DnÞ all entries in gðAÞðx 0; x 0Þ are compact.

(ii) The boundary symbol is ‘twisted’ homogeneous of degree zero in the sense that

kl�1 0

0 id

� �
gðAÞðx 0; lx 0Þ kl 0

0 id

� �
¼ gðAÞðx 0; x 0Þ; l > 0;

with the L2ðRþÞ-unitary kl given by kl f ðtÞ ¼
ffiffiffi
l

p
f ðltÞ.

1.3. Kernel and range of the boundary symbol map. The algebra A contains the ideal
I given by the C �-closure of all elements of the form

jPcþ G K

T S

� �

with j, c in Cy
c ðX �Þ and G, K , T , S of negative order and class zero. Clearly, I is con-

tained in the kernel of g. More is true:

Theorem 3. The kernel of the boundary symbol map g is equal to I. The quotient I=K
is isomorphic to C0ðS �X �;End p�EÞ with isomorphism induced by the principal symbol. Here

p�E is the pull-back of E under the projection p : S �X � ! X �.

Proof. This is immediate from the considerations for the case of trivial bundles [7],
Theorem 1. r

In order to make the computation of the range of g more transparent, let us first con-
sider the localized situation with E and F trivial one-dimensional. We write g as a 2 � 2-
matrix with entries gij, i; j ¼ 1; 2.

Let p be a classical pseudodi¤erential symbol of order zero on Rn. For fixed ðx 0; x 0Þ,
p0ðx 0; 0; x 0; xnÞ is a symbol of order zero on R. The transmission property assures that the
values of p in xn ¼ þy and xn ¼ �y coincide. The operator

p0ðx 0; 0; x 0;DnÞþ ¼ rþ op p0ðx 0; 0; x 0; xnÞeþ : L2ðRþÞ ! L2ðRþÞ

in the upper left corner g11 then is a Toeplitz type operator. In fact, it is unitarily equivalent
to the usual Toeplitz operator Tf with symbol f ðzÞ ¼ p0

�
x 0; 0; x 0; iðz � 1Þ=ðz þ 1Þ

�
. Thus
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the image of the upper left corner under the boundary symbol map is a subalgebra of
CðS �qX ;TÞ, where T denotes the Toeplitz algebra.

All other entries in the matrix for gðAÞðx 0; x 0Þ are compact, so that the boundary sym-
bol is, for fixed ðx 0; x 0Þ, a so-called Wiener-Hopf operator on L2ðRþÞlC. One might con-
jecture that the range of the boundary symbol map consisted of all sections with values in
Wiener-Hopf operators. It came as a surprise (and turned out to be a crucial fact) in [7] that
this is not the case. It is the range of the upper left corner g11 which is slightly smaller than
expected: Let us denote by T0 the subalgebra of those Toeplitz operators whose symbol
vanishes in z ¼ �1 (corresponding to xn ¼GyÞ. The range of g11 contains as an ideal all
sections of S �qX with values in T0, but the only sections of the form gðx 0; x 0Þn IdL2ðRþÞ it
contains are those where g is independent of x 0, thus a function on qX , not S �qX . We
therefore get a split short exact sequence of C �-algebras

0 ! CðS �qX ;T0Þ ! im g11 ! CðqXÞ ! 0:

Let us now go over to the case of general bundles, considering the entries in the ma-
trix for gðAÞðx 0; x 0Þ separately, writing ~EE and ~FF instead of p�

q ðEjqX Þ and p�
qF :

(i) The boundary symbol t0ð� ; � ;DnÞ is a continuous section from S �qX to
Hom

�
L2ðRþÞn ~EE; ~FF

�
given by integration against the symbol kernel of t0, hence a section

of B
�
L2ðRþÞ;C

�
nHomð ~EE; ~FFÞ. The construction in [7], Lemma 4 shows that all elements

in that space are obtained that way.

(ii) Similarly, the range of the closure of the boundary symbol map for the
Poisson operators of order zero consists of all continuous sections from S �qX to
B
�
C;L2ðRþÞ

�
nHomð ~FF ; ~EEÞ.

(iii) The boundary symbols of zero order pseudodi¤erential operators along the
boundary are their principal symbols, thus certain elements of CðqX ;End ~FFÞ, and in fact,
all elements in this space are obtained as such symbols.

(iv) The continuous sections from S �qX into p�
q

�
T0 nEndðEjqX Þ

�
GT0 nEnd ~EE

are contained as an ideal in the range of g11 (the upper left corner of g) by a bundle valued
analog of [7], Lemma 5, while, as in [7], Lemma 6,

im g11 XCðS �qX ;End ~EEÞ ¼ CðqX ;End EjqX Þ:

Here, we consider the elements of CðqX ;End EjqX Þ and CðS �qX ;End ~EEÞ as elements of
C
�
S �qX ;End

�
L2ðRþÞn ~EE

��
by acting as the identity on L2ðRþÞ. We conclude that we

get a split short exact sequence of C �-algebras

0 ! CðS �qX ;T0 nEnd ~EEÞ ! im g11 ! CðqX ;End EjqX Þ ! 0:

We can now define the subbundle ~WW0 of endomorphisms of (7), consisting of all
2 � 2 matrices w ¼ ðwijÞi; j¼1;2 with w11 A T0 nEnd ~EE, w12 A B

�
C;L2ðRþÞ

�
nHomð ~FF ; ~EEÞ,

w21 A B
�
L2ðRþÞ;C

�
nHomð ~EE; ~FFÞ, and w22 A End ~FF . We obtain:
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Theorem 4. The image of g fits into the following split exact sequence of C �-algebras:

0 ! CðS �qX ; ~WW0Þ ! im g ! C
�
qX ;EndðEjqX Þ

�
! 0:ð8Þ

We note that ~WW0 is the bundle valued analog of the algebra W0 in [7]; for E ¼ F ¼ C

both coincide. Strong Morita equivalence (as discussed in [7], Section 1.5) together with the
fact that T0 has vanishing K-theory therefore implies (cf. [7], Lemma 7):

Lemma 5. Ki

�
CðS �qX ; ~WW0Þ

�
¼ 0, i ¼ 0; 1.

The split in (8) is implemented by the C �-algebra homomorphism

b : C
�
qX ;EndðEjqX Þ

�
! im g; g 7! g

f 0

0 0

� �� �
;

where f is any continuous section in CðX ;End EÞ with f jqX ¼ g. We then conclude as in
[7], Corollary 8:

Corollary 6. The induced homomorphism is an isomorphism

b� : Ki

�
C
�
qX ;EndðEjqX Þ

��
! Kiðim gÞ ¼ KiðA=IÞ:

2. K-theory preliminaries

Definition 7. Let A be a C �-algebra. The cone over A is the C �-algebra
CA :¼ f f : ½0; 1� ! A j f ð1Þ ¼ 0g.

Since CA is a contractible C �-algebra, its K-theory vanishes. The suspension of A is
given by SA :¼ f f A CA j f ð0Þ ¼ 0g.

Definition 8. If f : B ! A is a C �-algebra homomorphism, the mapping cone Cf is
defined to be Cf :¼ fðb; fÞ A BlCA; f ðbÞ ¼ fð0Þg.

Projection onto B defines a short exact sequence

0 ! SA !îi Cf !q B ! 0:ð9Þ

The assignment of this exact sequence to each C �-algebra homomorphism f defines a func-
tor between the corresponding categories (whose morphisms consist of commutative dia-
grams of homomorphisms or of exact sequences, respectively). This functor is exact; i.e.
we have:

Lemma 9. Assume that the following is a commutative diagram of short exact

sequences of C �-algebras:

0 ���! A ���! B ���! C ���! 0x???f

x???g

x???h

0 ���! A 0 ���! B 0 ���! C 0 ���! 0:
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Then we get an induced commutative grid of short exact sequences of C �-algebras:

0 0 0x???
x???

x???
0 ���! A 0 ���! B 0 ���! C 0 ���! 0x???

x???
x???

0 ���! Cf ���! Cg ���! Ch ���! 0x???
x???

x???
0 ���! SA ���! SB ���! SC ���! 0x???

x???
x???

0 0 0:

Lemma 9 can be proven by a diagram chase, using that the maps CB ! CC and
SB ! SC are surjective (the exactness of S is proven in [9], Proposition 10.1.2).

Lemma 10. The exact sequence (9) induces six-term cyclic exact sequences in

K-theory, whose connecting mappings KiðBÞ ! K1�iðSAÞ become, under the canonical iso-

morphisms K1�iðSAÞ !G KiðAÞ, the mappings induced by f .

More precisely, this lemma states that the two diagrams

K1ðBÞ ���!d0
K0ðSAÞx???¼

x???YA

K1ðBÞ ���!f�
K1ðAÞ

and

K0ðBÞ ���!d1
K1ðSAÞx???¼

x???bA

K0ðBÞ ���!f�
K0ðAÞ

commute, where d0 and d1 denote, respectively, the index and the exponential mappings [9],
9.1.3 and 12.1.1, induced by (9), YA is the isomorphism defined in [9], 10.1.3, and bA is
the Bott isomorphism [9], 11.1.1. This follows by applying naturality of the long exact se-
quences in K-theory to the diagram

0 ���! SA ���! Cf ���! B ���! 0???y
???y

???yf

0 ���! SA ���! CA ���! A ���! 0:

Lemma 11. If f : B ! A is a surjective C�-homomorphism, then the map

j : ker f C x 7! ðx; 0Þ A Cf induces a K-theory isomorphism, which fits into the commutative

diagram

���! Kiþ1ðBÞ ���! KiðSAÞ ���!îi� KiðCf Þ ���!q�
KiðBÞ ���!x???¼

x???diþ1

x???j�

x???¼

���! Kiþ1ðBÞ ���!f�
Kiþ1ðAÞ ���! Kiðker f Þ ���! KiðBÞ ���!
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where the upper row is the cyclic exact sequence induced by (9), and the lower one is that

induced by

0 ! ker f ! B !f A ! 0:

Proof. This result is certainly well known. For the sake of completeness, and since
we did not find a convenient reference, we sketch the arguments. One proves that j� is a K-
theory isomorphism using that K�ðCAÞ ¼ 0 in the cyclic exact sequence associated to the
short exact sequence

0 ! ker f !j
Cf ! CA ! 0

induced by projection of Cf onto the second coordinate. The boundary map diþ1 is
well known to be an isomorphism. It remains to establish commutativity. The commuta-
tivity of the left rectangle is part of Lemma 10. The right rectangle commutes by natu-
rality of the K-theory functor, since q � j ¼ ði : ker f ,! BÞ. The argument for the middle
square is a little more involved. Observe that j�1

� îi�diþ1 defines another homomorphism
Kiþ1ðAÞ ! Kiðker f Þ which is, by the naturality of all constructions, natural and makes
the K-theory sequence of the short exact sequence of C �-algebras exact.

However, homomorphisms with this properties are defined uniquely (up to a univer-
sal sign) [12], Exercise 9.F, therefore the diagram is commutative up to this sign. The spe-
cial exact sequence 0 ! SA ! CA ! A ! 0 shows that this sign is þ1. r

3. K-theory of Boutet de Monvel’s algebra

In order to keep the notation simple, we shall write C0ðX �Þ, CðX Þ; and CðqXÞ
instead of C0

�
X �;EndðEjX �Þ

�
, CðX ;End EÞ, and C

�
qX ;EndðEjqX Þ

�
. Identifying a contin-

uous function f on X � or X with the operator
f 0

0 0

� �
A A, where f acts by multiplica-

tion, we have natural maps

m0 : C0ðX �Þ ! I and m : CðX Þ ! A

and thus a commutative diagram of exact sequences:

0 ���! I=K ���! A=K ���!p A=I ���! 0x???m0

x???m

x???b

0 ���! C0ðX �Þ ���! CðX Þ ���!r CðqX Þ ���! 0:

(We do not distinguish between the isomorphic C �-algebras A=I and the image of g.)
From Lemma 9 we obtain the commutative grid
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0 0 0x???
x???

x???
0 ���! C0ðX �Þ ���! CðXÞ ���!r CðqX Þ ���! 0x???

x???
x???

0 ���! Cm0 ���! Cm ���! Cb ���! 0x???
x???

x???
0 ���! SðI=KÞ ���! SðA=KÞ ���!Sp

SðA=IÞ ���! 0x???
x???

x???
0 0 0:

ð10Þ

These six short exact sequences induce six cyclic long exact sequences in K-theory which we
want to analyze next. By Corollary 6, b induces an isomorphism in K-theory. From
Lemma 10 and the cyclic exact sequence of 0 ! SðA=IÞ ! Cb ! CðqX Þ ! 0 we therefore
conclude that K�ðCbÞ ¼ 0. From this in turn we deduce, using the cyclic exact sequence of
0 ! Cm0 ! Cm ! Cb ! 0, that Cm0 ! Cm induces an isomorphism in K-theory.

We therefore get the following commutative diagram of cyclic exact sequences of
K-theory groups, again using Lemma 10 and the natural isomorphisms K1�iðSAÞGKiðAÞ:

���! Ki

�
CðX Þ

� ���!m�
KiðA=KÞ ���!b K1�iðCmÞ ���!x??? i�

x??? f

x???G

���! Ki

�
C0ðX �Þ

� ���!m0�
KiðI=KÞ ���!a K1�iðCm0Þ ���! :

ð11Þ

According to Theorem 3, the principal symbol provides an isomorphism
I=KGC0ðS �X �Þ, and m0 becomes the pull back homomorphism p� under this isomor-
phism. Since X is connected and qX 3j, there is a nonvanishing section of the cotangent
bundle (see e.g. [7], Proposition 9, for a proof of this well-known fact), which yields a map
C0ðS �X �Þ ! CðX �Þ. Therefore m0� has a split s (which is not necessarily natural). Con-
sequently, a also has a split s 0. Define now s 00 :¼ i� � s 0 � f�1 : K1�iðCmÞ ! KiðA=KÞ. An
easy diagram chase shows that s 00 is a split of b. Consequently, our long exact sequence
yields natural short exact sequences

0 �! Ki

�
CðX Þ

� �!m�
KiðA=KÞ �!b K1�iðCmÞ �! 0;

which have a (not necessarily natural) split. In particular, each element in KiðA=KÞ can be
written as the sum of two elements, one in the range of m� and one in the range of s 00, thus
in the range of i�.

It remains to identify K1�iðCmÞGK1�iðCm0Þ. For this, recall the natural short exact
sequence for the ball—or disc—completion of the cotangent bundle, extended to a commu-
tative diagram

228 Melo, Schick and Schrohe, Boutet de Monvel’s index theorem

Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 11.02.16 09:38



0 ���! C0ðT �X �Þ ���! C0ðB�X �Þ ���!r C0ðS �X �Þ ���! 0

p�r0

x???@

x???¼

C0ðB�X �Þ ���!p�r0
C0ðS �X �Þ

r0

???y@

???y¼

C0ðX �Þ ���!p�¼m0
C0ðS �X �Þ:

ð12Þ

Here, p� denotes pull back from the base to the total space of the bundle, and r and r0 de-
note restriction to the boundary of the disc bundle, or the zero section of the disc bundle,
respectively;@ denotes homotopy equivalences of C �-algebras. Again we have omitted the
bundles from the notation.

We get induced short exact mapping cone sequences

0 ���! SC0ðS �X �Þ ���! Cr ���! C0ðB�X �Þ ���! 0x???¼

x???ðp�r0Þ� @

x???p�r0

0 ���! SC0ðS �X �Þ ���! Cðp�r0Þ ���! C0ðB�X �Þ ���! 0???y¼ @

???yðr0Þ� @

???yr0

0 ���! SC0ðS �X �Þ ���! Cm0 ���! C0ðX �Þ ���! 0:

ð13Þ

The corresponding cyclic exact K-theory sequences together with the 5-lemma imply
that the induced maps between the mapping cones induce isomorphisms in K-theory.

Finally, since r is surjective and ker r ¼ C0ðT �X �Þ, Lemma 11 yields the commutative
diagram

K0

�
SC0ðS �X �Þ

� ���! K0ðCrÞ

G

x??? G

x???j�

K1

�
C0ðS �X �Þ

� ���!d K0

�
C0ðT �X �Þ

�ð14Þ

where the lower horizontal arrow is the index mapping for the first row in (12), and the
upper horizontal is induced by the first row in (13).

The composition of all these maps gives a natural way to identify KiðCmÞ with
Ki

�
C0ðT �X �Þ

�
. This already finishes the proof of Theorem 1. A more detailed explanation

of this step will be needed below, in the proof of Theorem 2.

4. Index theory

We consider the commutative diagram
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K1

�
CðX Þ

� ���!m�
K1ðA=KÞ ���!b K0ðCmÞx???

x???i�

x???G

K1

�
C0ðX �Þ

� ���!m0�
K1ðI=KÞ ���!a K0ðCm0Þ

a

x???G

x???G

K0

�
SC0ðS �X �Þ

� ���! K0

�
Cðp�r0Þ

�
???y¼

???yG

K0

�
SC0ðS �X �Þ

� ���! K0ðCrÞ

c

x???G

x???G

K1

�
C0ðS �X �Þ

� ���!d K0

�
C0ðT �X �Þ

�???yindt

Z

ð15Þ

where the first two rows are portions of (11). The second, third and fourth rows in (15) are
portions of the cyclic sequences associated to (13) (notice that, if we use the isomorphism
I=KGC0ðS �X �Þ as an identification, then the first column in (10) is equal to the last row
in (13)), while the fourth and fifth rows are just (14). Note that the composed isomorphism
c�1a�1 : K1ðI=KÞ ! K1

�
C0ðS �X �Þ

�
in the left row is exactly the map induced by the inte-

rior symbol.

Definition 12. The map p in (5) is the composition of all the maps (reverting arrows
of isomorphisms when necessary) in the right column in (15), except indt, with the map b

from K1ðA=KÞ to K0ðCmÞ in the first row.

Remark 13. The definition of p uses the inverse of the isomorphism
K0ðCm0Þ ! K0ðCmÞ, which we can not write down explicitly—our argument which proves
that the map is an isomorphism is actually rather indirect.

Equivalently, the problem can be restated as replacing a given invertible element of
A=K by the sum of elements in the images of m� and i�, respectively, representing the
same element in K1. That this is possible is based on the same indirect argument which
shows that K0ðCm0Þ ! K0ðCmÞ is an isomorphism, cf. the argument right after (11). Nev-
ertheless, we will see below, in our proof of Fedosov’s index formula (3), that this represen-
tation is actually very useful.

To prove Theorem 2, namely that indt � p and the Fredholm index are equal on
K1ðA=KÞ, it is enough to show that they are equal on the image of m� and on the image
of i�. On the image of m�, both are zero: On one hand, the range of m� consists of
equivalence classes (modulo K) of invertible multiplication operators. Each of these has
index zero. On the other hand, the first row in (15) is exact, thus the range of m� is
mapped to zero. The commutativity of (15) then shows that all we have to prove is that
indt � d � c�1 � a�1 is the Fredholm index.

230 Melo, Schick and Schrohe, Boutet de Monvel’s index theorem

Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 11.02.16 09:38



For that let C denote the C �-closure of the algebra of all classical pseudodi¤erential
operators of order 0 on ~XX in the algebra of all bounded operators on L2ð ~XXÞ. The zero
extension on the orthogonal complement of L2ðXÞ in L2ð ~XXÞ defines a �-homomorphism
I11 ! C, where I11 denotes the ideal formed by the upper-left corners of I. That gives us
a commutative diagram of exact sequences:

0 ���! K ���! I11 ���! I11=K ���! 0???y
???y

???yi

0 ���! K ���! C ���! C=K ���! 0

ð16Þ

where we have denoted by the same symbol the compact ideal in the bounded operators on
L2ðX Þ and on L2ð ~XXÞ. The canonical injection of I11 into I induces an isomorphism be-
tween I11=K and I=K (see comments right before Theorem 1 in [7]). That isomorphism
and the naturality of the index mapping for (16) then imply that

K1ðI=KÞ ���! K0ðKÞGZ???yi�

???y¼

K1ðC=KÞ ���! K0ðKÞGZ

ð17Þ

commutes, where the horizontal arrows are the Fredholm-index homomorphisms for I and
for C.

For any closed manifold, the principal symbol induces an isomorphism between C=K
and the continuous functions on the cosphere bundle. This follows from the classical esti-
mate for the norm, modulo compacts, of a pseudo-di¤erential operator [6], Theorem A.4.
We therefore have K1ðC=KÞGK1

�
CðS � ~XX Þ

�
. Modulo this isomorphism, the Atiyah-Singer

index theorem [1] states that the Fredholm-index homomorphism for C is the composition
of the topological index ind

~XX
t : K0

�
C0ðT � ~XX Þ

�
! Z with the index mapping for the exact

sequence

0 ! C0ðT � ~XXÞ ! CðB� ~XXÞ ! CðS � ~XXÞ ! 0

(see e.g. [7], Proposition 15, for a proof that the classical di¤erence bundle construction in-
deed gives the C �-algebra K-theory index mapping for this sequence).

Now consider the commutative diagram of exact sequences

0 ���! C0ðT �X �Þ ���! C0ðB�X �Þ ���! C0ðS �X �Þ ���! 0???y
???y

???yi

0 ���! C0ðT � ~XX Þ ���! CðB� ~XXÞ ���! CðS � ~XX Þ ���! 0:

ð18Þ

By naturality of the index map, the following diagram commutes:
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K1

�
C0ðS �X �Þ

� ���!d K0

�
C0ðT �X �Þ

�
???yi�

???y~ii

K1

�
CðS � ~XX Þ

� ���! K0

�
C0ðT � ~XXÞ

� ���!ind
~XX

t
Z:

ð19Þ

The Atiyah-Singer index theorem and the commutativity of (17) imply that the composi-
tion of the two lower horizontal and the left vertical arrow in (19) gives the Fredholm in-
dex, hence that ind

~XX
t � ~ii � d is the Fredholm index for I. This proves (6) since, by definition,

indt ¼ ind
~XX

t � ~ii.

To show the last statement, p ¼ ind, look again at (15). As before, it is enough
to prove that ind � i� ¼ p � i� and ind � m� ¼ p � m�. Our diagram gives p � i� ¼ d and
p � m� ¼ 0, while ind � i� ¼ d and ind � m� ¼ 0 are proven in [7], Lemmas 16 and 17. This
shows Theorem 2.

It remains to check the validity of Fedosov’s index formula (3). His proof of homo-
topy invariance in [3], Proof of Theorem 2.4 in Chapter II, shows that the expression only
depends on the K1-class represented by the elliptic operator A in K1ðA=KÞ, because the
formula is clearly additive for the block sum addition. This can be considered to be the
heart of the proof of the formula, and we do not o¤er a new proof for it. Once we know
that Fedosov’s formula defines a homomorphism from K1ðA=KÞ, we can identify it easily
with the index map: It is clear that the formula is zero for multiplication operators, i.e. ele-
ments in the image of K1

�
CðXÞ

�
. Because of Theorem 2 (compare also the proof above), it

su‰ces to check Formula (3) for operators A supported in the interior. But for those, the
formula reduces to the classical Atiyah-Singer index formula. One can use the double of X

to get exactly the situation of Atiyah-Singer.

A detail hidden by the simplified notation—but needed for the naturality of the index
map—is the existence of a canonical isomorphism

K0

�
C0

�
T �X �;Endðp�EÞ

��
! K0

�
C0ðT �X �Þ

�
if E is not the zero bundle. This is well-known and comes, after a series of standard argu-
ments, from the fact that E is a direct summand of a trivial bundle and that the trivial line
bundle is a direct summand in a power of E.
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