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Frustration-induced supersolids in the absence of intersite interactions
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We discuss a mechanism for the realization of supersolids in lattices in the absence of intersite interactions
that surprisingly works as well at unit filling. This mechanism, that we study for the case of the sawtooth
lattice, is based on the existence of frustrated and unfrustrated plaquettes. For sufficiently large interactions
and frustration the particles gather preferentially at unfrustrated plaquettes breaking spontaneously translational
invariance, resulting in a supersolid. We show that for the sawtooth lattice the supersolid exists for a large region
of parameters for densities above half filling. Our results open a feasible path for realizing supersolids in existing
ultracold atomic gases in optical lattices without the need for long-range interactions.
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I. INTRODUCTION

Supersolids have attracted large interest since they were
proposed [1,2] due to their, apparently counterintuitive, coexis-
tence of both crystalline order and superfluidity. Superfluidity
on top of the crystalline order is explained by the creation
and delocalization of zero point defects (such as vacancies or
interstitials) in a strongly interacting system. The search for
the elusive supersolid remains a challenge [3–5]. The claimed
evidence of supersolidity in helium [6] was subsequently
explained by the shear modulus stiffening of solid 4He [4,7].

Supersolidity may occur as well in lattices due to intersite
interactions. Lattice supersolidity has attracted an active
theoretical interest as well [8]. Ultracold gases in optical
lattices provide an interesting system for the realization of
lattice supersolids. However, the requirement of sufficiently
large intersite interactions reduces the possible scenarios for
supersolidity to gases with long-range interactions, including
dipolar gases [8,9] and Rydberg-dressed atomic gases [10,11].
These systems, however, present difficulties due to inelastic
collisions in polar molecules [12] and short lifetimes in
Rydberg gases. An alternative to polar gases is provided by ex-
periments with condensates in optical cavities, where infinitely
long-range interactions between the condensed atoms are
induced by two-photon processes. These interactions drive the
Dicke phase transition that results in self-organized supersolids
[13]. Although these experiments are realized in the absence of
optical lattices, the self-organized supersolids spontaneously
break a discrete spatial symmetry, hence resembling the case
of lattice supersolids.

Long-range interactions are, however, not necessary for the
realization of lattice supersolids. Recent studies on frustrated
lattices with flat bands, such as kagome lattices [14] and
Creutz ladders [15,16], have discussed the possibility of
observing supersolids without intersite interactions. In the case
of the Creutz ladder, supersolidity at incommensurate densities
results from effective next-to-nearest neighbor hopping in the
vicinity of the two flat band regions and the doping of a valence
bond crystal.

In this paper we discuss a mechanism that leads to robust
lattice supersolidity in the absence of intersite interactions. The
mechanism is based on the existence of frustrated and unfrus-
trated plaquettes. In this sense, although we study the specific
case of a sawtooth lattice, we expect that supersolids may also

be realized in other lattice geometries fulfilling this property.
Supersolidity follows from the preferential occupation of
unfrustrated plaquettes, which results in spontaneously broken
translational symmetry. Sawtooth lattices and other frustrated
geometries may be realized using lattice shaking [17] and
similar laser arrangements as those recently employed for
creating variable lattice geometries [18–20]. Hence our results
open a feasible path for realizing supersolidity in existing
atomic gases without the need of long-range interactions.

The structure of the paper is as follows. In Sec. II we
introduce the sawtooth model studied in the paper. Section III
discusses the noninteracting regime. Section IV is devoted to
the ground state phase diagram, both at unit filling and away
from unit filling. In Sec. V we introduce a simple model that
allows an intuitive understanding of the supersolid mechanism.
Section VI discusses the roton instability responsible for the
superfluid-to-supersolid transition. In Sec. VII we comment
on the experimental realization of the sawtooth model and on
the signatures of the supersolid phase. Finally, we summarize
our conclusions in Sec. VIII.

II. MODEL

We consider bosons in the sawtooth lattice as shown in
Fig. 1(a), which is characterized by a hopping rate t ′ < 0 along
the lower leg and a hopping rate t > 0 along the rungs. The
change in sign of t ′, which may be achieved experimentally by,
e.g., lattice shaking [17], introduces geometric frustration, a
key ingredient below. The lower and upper legs have different
coordination numbers, and hence constitute two distinct
sublattices, which we denote as A and B. For a sufficiently
deep lattice, the system is described by the Bose-Hubbard
model (BHM):

H = −t
∑

i

(a†
i bi + b

†
i ai+1 + H.c.)

+ t ′
∑

i

(a†
i ai+1 + H.c.) + U

2

∑
ν∈{A,B},i

nν
i

(
nν

i − 1
)
, (1)

where a
†
i (b†i ) and ai (bi ) are creation and annihilation operators

for bosons at site i of leg A (B), and nA
i = a

†
i ai (nB

i = b
†
i bi )

is the number operator at site i of leg A (B). Contactlike
interactions lead to the on-site interaction term, characterized
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FIG. 1. (Color online) Sawtooth lattice discussed in the paper.
The V-shaped plaquettes are unfrustrated, whereas the �-shaped
plaquettes are frustrated, since we assume t > 0 and t ′ < 0. The
presence of frustrated and unfrustrated plaquettes is crucial for the
supersolid mechanism discussed in the paper.

by the coupling constant U . Henceforth we consider all
the physical quantities in units of t = 1 which makes them
dimensionless.

III. NONINTERACTING REGIME

At first, it is convenient to study the noninteracting regime
(U = 0). In that case model (1) may be diagonalized in
momentum (k) space (note that due to the broken sub-
lattice symmetry, k ∈ [−π/2,π/2]): Ĥ = ∑

k[Eα(k)α†
kαk +

Eβ(k)β†
kβk], where the first (α) and second (β) energy bands

are characterized by the dispersion Eα,β(k) = −t ′ cos 2k ∓
2t[cos2 k + (t ′/2t)2 cos2 2k]1/2 and the bosonic operators
αk = cos θkak + sin θkbk and βk = − sin θkak + cos θkbk , with
tan 2θk = (2t/t ′) cos k/ cos 2k. The lowest band becomes flat
at |t ′| = t/

√
2 as shown in Fig. 2. When |t ′| < t/

√
2 there is

a single minimum in the lowest band, whereas two minima
occur when |t ′| > t/

√
2.

As recently shown [14], for the interacting case the flat
band results in a solid phase at lattice filling ρ = 1/4, but
the solid order breaks upon doping due to the proliferation
of domain walls. In addition, at |t ′| = t/

√
2 the minimum

of Eα(k) changes from k = 0 to k = π/2. As a result, for
noninteracting bosons a transition occurs from a superfluid
phase at k = 0 (SF0) to a superfluid phase at k = π/2 (SFπ/2).
Since απ/2 = aπ/2, in the SFπ/2 the B leg is depopulated.

IV. GROUND-STATE PHASE DIAGRAM

The ground-state phase diagram is obtained by means
of numerical density matrix renormalization group (DMRG)
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FIG. 2. (Color online) Single particle dispersion for Model (1)
with U = 0 for different values of |t ′|/t .
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FIG. 3. (Color online) Phase diagram of model (1) for ρ = 1 as
a function of |t ′|/t and U/t (see text).

calculations [21–23]. For our calculation we consider up to
L = 160 sites, with maximally four particles per site, retaining
up to 500 states in the density matrix. In order to obtain the
signature of possible quantum phase transitions in the system,
we compute the corresponding order parameters. Particularly
relevant is the density structure factor

S(k) = 1

L2

∑
i,j

eik(i−j )〈ninj 〉, (2)

where 〈ninj 〉 is the density-density correlation between sites i

and j .
In order to quantify the critical point for the SF0 to the

Mott-insulator (MI) transition discussed below, we calculate
the Luttinger parameter K , which is the power-law exponent
of the decay of the single particle correlation function �r =
〈a†

i aj 〉. However, in order to obtain the value of K we evaluate
the structure factor S(k) in the long wavelength limit (k → 0),
since in this limit [24]

S(k) ∝ K|k|/2π. (3)

We also compute the single particle gap to characterize the
gapped MI phase as

EG = μ+ − μ−, (4)

where μ+ (μ−) is the chemical potential for adding (removing)
one particle. Finally, the momentum distribution function

N (k) = 1

L

∑
i,j

eik(i−j )〈a†
i aj 〉 (5)

is particularly interesting as a possible experimental signature
of the supersolid phase discussed below. In the following
subsections we discuss the ground-state phase diagram at unit
filling and away from unit filling.

A. Unit filling

Figure 3 shows the ground-state phase diagram of model (1)
at unit filling, ρ = 1. As discussed above, in the noninteracting
limit the system exhibits two gapless superfluid phases, SF0

and SFπ/2. In addition to these phases, the system opens,
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FIG. 4. (Color online) Extrapolated gap EG as a function of
|t ′|/t . The inset shows the exponential to power-law decay of the
single particle correlation function �r at the MI-SS boundary. Only
odd r is shown to avoid oscillations.

as expected, a MI phase at small U , which at the flat-band
point is maintained all the way down to vanishing U . The
second additional phase is, in contrast, rather unexpected. As
we discuss below, this phase is a supersolid (SS), which rather
surprisingly occurs at ρ = 1 and in the absence of intersite
interactions.

In the following we discuss in detail the different phases
for the case U/t = 3. In Fig. 4 we plot the thermodynamic
limit values of the single-particle gap [Eq. (4)]. The MI
region is characterized by a finite gap, whereas EG → 0 in
all other regions. The smooth gap opening at small |t ′|/t

marks the Berezinskii-Kosterlitz-Thouless (BKT) SF0-to-MI
transition, characterized by a Luttinger parameter K = 2 [24].
By performing a finite size scaling of K computed using
Eq. (3), we obtain that the transition for SF0 to MI phase
occurs at |t ′|/t � 0.1 [see Fig. 5(a)]. The BKT transition is
further confirmed by the scaling of the momentum distribution,
N (k = 0) ∝ L1− 1

2K [25–27]. In Fig. 5(b) we show that the
values of N (k = 0)L−3/4 for different lengths (L = 80, 120,
160) intersect at the transition point |t ′|/t � 0.1.

In contrast, the sudden vanishing of EG for larger |t ′|/t (at
|t ′|/t = 1.4 in Fig. 4) does not match with a BKT transition.
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FIG. 5. (Color online) (a) Extrapolated values of K (black
squares) with respect to |t ′|/t for U/t = 3. The K = 2 line (red
dashed) is drawn to find the critical point for the SF0-MI transition.
(b) Scaled momentum distribution N (k)L−3/4 for different lengths as
a function of |t ′|/t for U/t = 3.
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FIG. 6. (Color online) Number fluctuation between odd and even
sites of the A and B legs; the inset shows 	n and 	D .

The gapped to gapless transition is, however, confirmed by
the single-particle correlation function �r = 〈a†

i ai+r〉, which
decays exponentially in the MI and algebraically for |t ′|/t >

1.4 (inset of Fig. 4). This transition is likely to be a weak first
order transition which could not be confirmed in our numerics.

The superfluid region opening at the large |t ′|/t side of the
MI turns out to be a SS phase. Figure 6 shows the average
density avgA

odd,even (avgB
odd,even) at even and odd sites in the A

(B) leg. The difference of densities at both legs is not surprising
due to the asymmetry between the legs. More interesting is the
behavior within a given leg. Whereas avgB

odd = avgB
even for

all |t ′|/t , avgA
odd �= avgA

even in the SS region (1.4 < |t ′|/t <

3.1 in Fig. 6) indicating a clear density modulation in this
region. The spontaneously broken translational symmetry
along the A leg is characterized by the amplitude 	n =
avgA

odd − avgA
even of the odd-even modulation (inset of Fig. 6).

The broken symmetry translates as well in a difference of bond-
kinetic energy 	D = avgD

odd − avgD
even, where avgD

odd,even =
1
L

∑
i∈Aodd,even

(b†i−1ai + a
†
i bi+1 + H.c.), which is finite in the

SS region (inset of Fig. 6). The finite 	D relates to the V -type
dimerization discussed below. The end of the SS region and
the onset of the SFπ/2 phase is marked by the vanishing of both
	n and 	D and the depopulation of the B leg.

The SS phase can be further confirmed by a finite peak
in S(k) at nonzero wave vector k. However, we note that the
sawtooth lattice breaks a trivial translational symmetry due to
which S(k) shows a peak at k = ±π . Therefore, the presence
of the SS phase in the system is revealed by a finite peak
in the structure factor at k = ±π/2, confirmed by extrapolation
to the thermodynamic limit. In Fig. 7 (top) we show, for U/t =
3, the extrapolated value of S(k = π/2), which is finite in the
region 1.4 < |t ′|/t < 3.1, i.e., the SS phase. The extrapolation
of S(k = π/2) is shown in detail in Fig. 7 (bottom).

B. Away from unit filling

At this point we consider incommensurate filling. This
discussion is particularly relevant, since the presence of an
overall harmonic trap, typical of experiments on atoms in op-
tical lattices, results in an inhomogeneous density distribution.
In Fig. 8 we depict our results for U/t = 2. In addition to the
gapped density-wave phase at ρ = 0.25 at the flat-band point
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FIG. 7. (Color online) (Top) Scaled structure factor S(k = π/2)
with respect to |t ′|/t for U/t = 3.0. (Bottom) Finite-size scaling of
S(k = π/2) for U/t = 3.0 and different |t ′|/t values.

[14], we obtain gapped phases at ρ = n/4 for all integer n � 1
(black lines and squares in Fig. 8). The gapped phases at these
densities are expected to occur at the large interaction limit.
The phases at ρ = (2n + 1)/4 with n > 1 are similar to the
phase at ρ = 1/4, being comparatively narrow due to small
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FIG. 8. (Color online) Phase diagram of the sawtooth chain as a
function of ρ and |t ′|/t for U/t = 2.0. Black lines with squares show
the gapped regions. The SS phase is bounded by the red circles. The
SFπ/2 phase occupies a large portion of the phase diagram below
the SS region and for |t ′|/t > 1/

√
2, also around ρ = 1. The region

bounded by magenta triangles shows a macroscopic jump in the
density. The brown dashed lines are two representative cuts at |t ′|/t =
1/

√
2 and 1.5 (see text). The red dot corresponds to the flat-band point

where |t ′|/t = 1/
√
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FIG. 9. (Color online) ρ(μ) for L = 40, U/t = 2, and |t ′|/t =
1/

√
2 (blue curve) and 1.5 (red curve).

interaction. On the contrary, the gapped phase at ρ = 1/2 is
a trivial insulator due to a filled band. Even more relevant is
the robustness of the SS phase, which extends over a large
parameter region, for densities ρ > 0.5.

We illustrate the behavior of the system for the case
of two representative values, |t ′| = 1/

√
2 and 1.5 (brown

dashed lines in Fig. 8). In Fig. 9, we plot ρ as a function
of the chemical potential μ for |t ′|/t = 1/

√
2. Due to band

flatness at that point, at a critical μ there exists a macroscopic
jump in the density up to ρ = 0.25. This macroscopic jump
exists for a small region around |t ′|/t = 1/

√
2. This region

is marked in the phase diagram by magenta triangles. At
ρ = 0.25 a gap appears marked by a plateau in ρ(μ). Then,
the system becomes a gapless and compressible superfluid.
Further increase in ρ induces additional gaps as discussed
above. In between the gapped plateaus the system is a
superfluid.

The dependence of ρ(μ) is very different for |t ′|/t = 1.5,
since for that value the band is not flat. As a result the system
starts at ρ → 0 in the SFπ/2 phase. In Fig. 9 we observe that
the curve ρ(μ) is continuous with two kinks at ρ � 0.8 and
1.2. These kinks correspond to the transition to the SS phase.
The abrupt growth of ρ in the SS phase shows that the SS
phase is highly compressible.

Finally, Fig. 10 shows S(k = π/2) for |t ′|/t = 1/
√

2 and
1.5. For |t ′|/t = 1.5, S(k = π/2) increases in the SS phase,
0.8 < ρ < 1.2. In contrast, for |t ′|/t = 1/

√
2, S(k = π/2)

remains small except at three peaks at ρ = 0.25,0.75, and
1.25. The two small peaks at ρ = 0.75 and 1.25 are due to
the presence of two small density-wave phases shown as black
squares in Fig. 8. The sharp peak at ρ = 0.25 corresponds to
the density-wave phase reported in Ref. [14].

V. WEAK COUPLING LIMIT

An intuitive insight on the emergence of the SS is obtained
from the classical limit of model (1). We assume each site to
be in a coherent state with a well defined density and phase,
0 or π , corresponding to the two possible minima of Eα(k).
We consider a simplified model in which bj = η, a2j = ξ ,
and a2j+1 = χ , such that we allow for both a possible density
imbalance between the A and B legs and for an even-odd
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FIG. 10. (Color online) Structure factor S(k = π/2) for different
fillings ρ for L = 40, U/t = 2, and |t ′|/t = 1/
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1.5 (red squares).

asymmetry in the A leg. We may hence minimize the energy,
which without loss of generality may be calculated for a four-
site unit cell:

〈H〉 = − 4t(ξχ + χη) − 4t ′ξη

+ U (ξ 4 + 2χ4 + η4) − μ(ξ 2 + 2χ2 + η2) (6)

Within this approach the phase diagram splits into three
regions [Fig. 11(d)]. For |t ′|/t < 1/

√
2 the three coefficients

have the same sign, and the particles occupy both A and
B sites corresponding to the SF0 phase [Fig. 11(a)]. For
small U/t and |t ′|/t > 1/

√
2, the B sites depopulate (η =

0), the density is homogeneous in the A sites (|χ | = |ξ |),
and sign(χ ) �= sign(ξ ), corresponding to the SFπ/2 phase
[Fig. 11(b)]. A sufficiently strong repulsive interaction U/t >

(U/t)c redistributes population to the B sites. However, how
the particles redistribute in the A leg is crucially determined
by the existence of frustrated and unfrustrated plaquettes in the
sawtooth lattice. In order to minimize kinetic energy particles
favor the unfrustrated V-shaped plaquettes of the sawtooth
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FIG. 11. (Color online) Sketch of the SF0 (a), SFπ/2 (b), and SS
(c). The circle size is proportional to the local density, whereas ±
denote the sign. (d) Phase diagram in the weak-coupling limit as
function Uρ and |t ′|/t for a fixed (but arbitrary) filling. The SF0 to
the SS phase is shown as a solid line. The dotted and dashed lines
depict, respectively, the SFπ/2-SS transition line obtained from the
variational approach (6) and the roton instability. At t = 0 SS-order
vanishes (thick solid line) resulting in a highly degenerate ground
state, since particles may occupy the uncoupled B sites in an arbitrary
configuration.
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FIG. 12. (Color online) Densities of the classical model for
ρU = 2 and (a) t = 1 and t ′ = −0.5 and (b) t = 0.8 and t ′ = −1 as
a function of the chemical potential μ. The dotted (blue) line depicts
the average density of the B sites; the solid (black) and dashed (red)
lines show densities of odd and even A sites.

forming V-shaped dimers. As a result particles break the
translational symmetry spontaneously, preferably occupying
every second V plaquette [Fig. 11(c)], which leads to a density
modulation in the A sites that characterizes, as mentioned
above, the SS phase. Note that this simple picture also predicts
a finite 	D in the SS region, as observed in the numerics.

As discussed above, already the classical or weak-coupling
limit gives intuitive insight into the formation of the SS phase.
We provide in this section some additional details. In Fig. 12
we show typical densities as a function of μ, obtained using
model (6). While in the SF0 and SFπ/2 phases the A sites do not
exhibit any density modulation, when entering the SS phase
the avgA

even and avgA
odd curves separate from each other. The

amplitude of the modulation on the A sites in the limit μ 

t,|t ′|,U is given by ξ − χ = 2t√

Uμ
, suppressed with increasing

repulsion U . Within this approach the population of the B sites
in the SFπ/2 phase is strictly zero. We determine the SF0 to SS
transition as first-order, whereas the SFπ/2 to SS transition is
a second-order phase transition exhibiting a discontinuity in
second derivative of the ground-state energy.

VI. ROTON INSTABILITY

Insight on the nature of the SFπ/2-SS transition is obtained
in the limit in which U � Eβ(k) − Eα(k) for all k. In that case
we may project model (1) onto the lowest energy band:

H �
∑

k

Eα(k)α†
kαk+ U

2

∑
q,k,k′

f
k+q,k′−q

k,k′ α
†
k+qα

†
k′−qαk′αk (7)

with f
k3,k4
k1,k2

= ∏4
l=1 cos(θkl

) + ∏4
l=1 sin(θkl

). Note that, al-
though the on-site interactions are contactlike, the effective
interactions are momentum dependent.

Starting from Eq. (7) and after expanding the interaction
part up to second order terms assuming condensation at
q = π/2, i.e., αq � √

N + α̃q , the total Hamiltonian may be
written up to constants as H � ∑

k>0 A(k)(α̃†
kα̃k + α̃

†
−kα̃−k) +

B(k)(α̃†
kα̃

†
−k + α̃kα̃−k) with

A(k) =Eα(k) + ρU [cos 2θq(cos 2θk − cos 2θq)

+ (1 + cos 2θq cos 2θk)]

B(k) =ρU (1 + cos 2θq cos 2θk). (8)
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and (from top to bottom) ρU = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.5278. At
k = 0 a rotonlike minimum develops, which touches zero at ρU �
0.5278.

This Hamiltonian may be readily diagonalized using
a Bogoliubov transformation βk = cosh γkα̃k − sinh γkα̃

†
−k

yielding the Bogoliubov spectrum of excitations, ε(k)2 =
(ẼA(k) + 2Uρ(1 + cos 2θk))ẼA(k) with ẼA(k) = EA(k) −
2t ′ + Uρ(cos 2θk − 1).

In Fig. 13 we depict the corresponding energy spectrum
emerging for finite ρU . As usual the spectrum exhibits a linear
(phononlike) dispersion for k close to π/2. Interestingly, for
finite ρU it acquires a local minimum at k = 0 that resembles
the roton dispersion minimum of superfluid He [28], and that
occurs, as for dipolar condensates [29], due to the momentum
dependence of the interactions. For a critical value of ρU the
rotonlike minimum reaches zero energy, becoming unstable,
marking the transition to the SS. As shown in Fig. 11(d) the
critical ρU for roton instability agrees well with the SFπ/2-SS
transition line obtained by the classical model. Hence, we can
conclude that the SFπ/2 is destabilized through roton instability
that leads to the SS phase.

VII. EXPERIMENTAL SIGNATURE

In the section we briefly discuss the possible signatures
of the SS phase in optical lattice experiments using ultracold
atoms. The sawtooth lattice can be created by suitably using a
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FIG. 14. (Color online) Sawtooth lattice formed by an incoherent
superposition between a kagome lattice [20] and an additional lattice
V (�r) = sin2 (

√
3

4 ky) + 1
4 sin2 (

√
3

2 ky) with k the laser wave number.
Darker regions mean lower potential.
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FIG. 15. (Color online) Momentum distribution N (k) in different
regions of the phase diagram shown in Fig. 3 for U = 3.

superlattice potential on top of the kagome lattice which has
been created recently [20] (see Fig. 14).

In order to obtain the signature of the SS phase we compute
the momentum distribution N (k) using Eq. (5). As expected,
in SF0 (SFπ/2) N (k) has a peak at k = 0 (k = π/2). However,
an intriguing feature appears in the SS phase which shows,
interestingly, peaks at k = 0 and k = π/2 as shown in Fig. 15.
We also plot the peak strengths as a function of |t ′|/t at k = 0
and k = π/2 in Fig. 16, which shows the transition from SF0-
MI-SS-SFπ/2 for U = 3 and ρ = 1. Hence, the appearance
of the SS phase may be directly monitored in time-of-flight
experiments from the multipeaked momentum distribution.

VIII. CONCLUSIONS

We have discussed a mechanism for the formation of
lattice supersolids for the particular case of a sawtooth
lattice. The mechanism is based on the selective population
of unfrustrated plaquettes in the presence of frustrated and
unfrustrated plaquettes, and hence we expect supersolids in
other lattices fulfilling that property. We have shown that the
supersolid exists for a broad range of lattice fillings, including

0 1 2 3
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30

40
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N(k=0) SS
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0
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FIG. 16. (Color online) N (0) (red squares) and N (π/2) (blue
circles) in different regions of the phase diagram shown in Fig. 3
at U = 3.
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various commensurate fillings, in particular unit filling. Inter-
estingly the supersolid may be revealed not only by in situ
measurements but by monitoring the momentum distribution
in time-of-flight measurements. Since frustrated lattices, in
particular sawtooth, may be realized using state of the art
techniques, our results hence open a feasible path for realizing
supersolids in existing experiments with ultracold atoms in
optical lattices, without the need for long-range interactions.
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