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Abstract. In many cases, the uncertainty of output quan-
tities may be computed by assuming that the distribution
represented by the result of measurement and its associated
standard uncertainty is a Gaussian. This assumption may
be unjustified and the uncertainty of the output quantities
determined in this way may be incorrect. One tool to deal
with different distribution functions of the input parameters
and the resulting mixed-distribution of the output quantities
is given through the Monte Carlo techniques. The resulting
empirical distribution can be used to approximate the the-
oretical distribution of the output quantities. All required
moments of different orders can then be numerically deter-
mined. To evaluate the procedure of derivation and evalua-
tion of output parameter uncertainties outlined in this paper,
a case study of kinematic terrestrial laserscanning (k-TLS)
will be discussed. This study deals with two main topics:
the refined simulation of different configurations by tak-
ing different input parameters with diverse probability func-
tions for the uncertainty model into account, and the statisti-
cal analysis of the real data in order to improve the physical
observation models in case of k-TLS. The solution of both
problems is essential for the highly sensitive and physically
meaningful application of k-TLS techniques for monitoring
of, e. g., large structures such as bridges.

Keywords. Monte Carlo simulation, kinematic terrestrial
laserscanning, uncertainty modeling.

1 Introduction

The main tasks of an engineer include design, produce,
and test of structures devices, and processes. These tasks
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will be involved with mathematical and physical model-
ing of the different phenomena. In the constructed math-
ematical/physical model some information about constants
parameters and functional variables are needed. Uncertain-
ties evolve into his modeling together with these informa-
tion. The sources of uncertainties result from the data or the
measurements, from the statistical evaluation of the model
and from the physical model.

The Guide to the Expression of Uncertainty in Mea-
surement (GUM) is the standard reference in uncertainty
modeling in engineering and mathematical science, cf. [6].
GUM groups the occurring uncertain quantities into Type
A and Type B. Uncertainties of Type A are determined with
the classical statistical methods, while Type B is subject
to other uncertainties like knowledge about an instrument.
Whereas the uncertainties of Type A can be estimated based
on the measurement itself, the estimated uncertainties of
Type B are based on expert knowledge, e.g., the technical
knowledge about an instrumental error source.

The extension of GUM [7] recommends the propaga-
tion of uncertainties using a probabilistic approach. Within
the mentioned approach the propagation of uncertainties
is numerically treated by Monte Carlo (MC) techniques.
The difference between the GUM [6] and the extension of
GUM [7] in case of nonlinearity and/or non-Gaussianity
will not significantly differ in the first and the second cen-
tral moments but rather in the estimate of the confidence
region, which is reflected in the non-Gaussian PDF of
the output quantities. The acceptance of MC techniques
has significantly increased during the last decade. Conse-
quently, it’s widely used within many scientific disciplines.
[5] suggested to use MC simulations instead of the treat-
ment of the combined uncertainties by applying the law of
error propagation (LOP). [15] recommended a MC based
method to evaluate the measurement uncertainties in non-
linear models. [9] suggested the determination of the uncer-
tainty according to GUM by a Bayesian confidence interval
using MC simulation. The approach has been explained
in detail and applied to the results of terrestrial laserscan-
ning (TLS). Furthermore, the approach has been extended
in [10] to evaluate uncertainties of correlated measurements
by another application in TLS. In [11] the 2D case of kine-
matic TLS was studied where repeated profile scans are
observed from a fixed station with a high repetition fre-
quency for monitoring purposes. The focus was put on a
refined modeling of the uncertainty of both the observations
and the derived positions of the profile points. MC simula-
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tion techniques were applied to provide numerical results
for discussion and validation.

The paper is organized as follows: First we will describe
the general idea of MC techniques to describe measurement
uncertainties in the context of GUM. The application exam-
ple to kinematic TLS is given and discussed in the following
sections.

2 UNCERTAINTY MODELING WITH MONTE
CARLO TECHNIQUES

In MC techniques, both, the random and the systematic
components of the uncertainty, are treated as having a ran-
dom nature. Please note that not the systematic component
itself is modelled as random, it is the knowledge about the
systematic component for which a probability distribution
is introduced [8].

The GUM suggests in some cases to select the proba-
bility distribution function (PDF) of the input quantities as
rectangular, triangular, and trapezoidal [6]. In these cases,
it is hard/impossible to obtain the estimate of the uncer-
tainty for the output quantity in a closed mathematical form.
An alternative to modeling and propagating uncertainties is
propagating distributions by MC simulations of the obser-
vation model from (1):

y = f(p1, p2, . . . pn) = f(p). (1)

Here y represents a random output quantity and
p1, p2, . . . , pn are the n random inputs.

2.1 MC Approach to Evaluate Uncertainty

The MC techniques are of great importance for uncertainty
evaluation. With a set of generated samples the distribution
function for the value of the output quantity y in (1) will be
numerically approximated. In general, the functional rela-
tions between the basic influence parameters, referring to
(1), the observations and the parameters of interest are non-
linear, and the normal distribution is not the adequate prob-
ability density function. In such case, MC simulation is a
suitable way to approximately derive the stochastic prop-
erties of the quantities of interest (output quantities). It
is assumed that the functional model is completely formu-
lated relating the output quantities with the input quanti-
ties: the observations and the basic influence parameters,
respectively. It is further assumed that the probability den-
sities of the considered input quantities are a priori known.
Then, a sample vector of the input quantities can be drawn
repeatedly using random number generators. Random num-
bers are generated on a computer by means of deterministic
procedures. In particular, rectangular distributed random
numbers are generated, which may then in turn be trans-
formed into random numbers of random variables having

other distributions, for instance, into numbers of a normally
distributed random variable [3].

For each input sample vector the corresponding values
of the output quantities are calculated by using the cor-
responding functional relation. The set of output sample
vectors yields an empirical distribution which can be used
to approximate the correct random distribution of the out-
put quantities. All required measures (expectation values,
variances and covariances) as well as higher order cen-
tral moments such as skewness and kurtosis can then be
derived. To sum up, MC approaches to estimate the uncer-
tainty include the following steps:

• Step 1: A set of random samples, which have the size
n, is generated from the PDF for each random input
quantity p1, p2, . . . , pn. The sampling procedure is
repeated M times for every input quantity.

• Step 2: The output quantities y be will then calculated
by:

y(i) = f(p
(i)
1 , p

(i)
2 , . . . p(i)n ) = f(p(i)), (2)

where i = 1, . . . ,M are the generated samples of the
random input quantity p.

• Step 3: Particularly relevant estimates of any statistical
quantities can be calculated as the expected value of
the output quantity:

Ê (f(p)) = Ê(y) =
1
M

M∑
i=1

f(p(i)), (3)

the estimate of the variance of the output quantity [1]:

D̂(y) =
1
M

M∑
i=1

(
f(p(i))− Ê(f(p)

)
... (4)

(
f(p(i))− Ê(f(p)

)T
.

and the skewness of univariate output quantities
y(1), y(2), . . . , y(M)

ŝk(y) =
1

(M − 1)ŝ3

M∑
i=1

(
f(p(i))− Ê(f(p)

)3
(5)

where Ê (f(p)) is the mean value of the output quan-

tities (see (3)), s is its standard deviation s =

√
D̂(y)

(refer to (5) and (6)), and M is the number of gener-
ated samples. The skewness for a normal distribution
is zero, and any symmetric data should have a skew-
ness near zero, see, e. g., [12].
For univariate output quantities the kurtosis can be
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estimated by

k̂u(y) =
1

(M − 1)ŝ4

M∑
i=1

(
f(p(i))− Ê(f(p)

)4
.

(6)
The kurtosis for a standard normal distribution is 3.

Figure 1 shows a diagram with the main steps of uncer-
tainty modeling with a different treatment of the random
and systematic uncertainties.

In [9] and [10] the above mentioned MC algorithm in
case of TLS uncertainty assessment have been discussed.
[2] apply it to k-TLS vertical profile scans and they combine
it with a deterministic approach based on fuzzy sets. Here,
only MC techniques will be considered but it is extended
to the discussion of the properties of the derived time series
and of their validation using real k-TLS observation data.

Figure 1. Treatment of uncertainty components in MC
approach.

3 APPLICATION OF THE MONTE CARLO-
APPROACH TO K-TLS

3.1 Object and Setup

In this section a short numerical example for the approach,
presented in Section 2, is shown. The aim of the applica-
tion is to detect the vertical displacements of a bridge under
load, e.g., due to car traffic or train crossings. For this rea-
son, a laserscanner of type Zoller+Fröhlich Imager 5006
scanner was placed beneath the bridge which is located in
the southern part of Germany. [11] give a detailed descrip-
tion of the bridge, of the loading tests with different trucks,
of the applied observation procedures and of the derived

Figure 2. Bridge and scanner.

data; see Figure 3 for a graphical representation of the
object and the location of the laser scanner. The horizontal
section in along-track direction of the bridge (y-axis) con-
sidered here has a length of 20 m with a shortest distance
between scanner and bridge of about 9.5 m. [16] show new
analysis results of the k-TLS observations. Moreover, they
compare these results with strain gauge observations and
with numerical simulations based on finite-element mod-
els. Note that the consistency of all three kinds of data is
better than 1 mm. Here, the unloaded state of the Auto-
bahn bridge is studied which was repeatedly observed in
order to get a reference geometry for the analysis of the
load-induced deformations. For the observation of the ver-
tical profiles a repetition rate of 12.5 profiles per second was
used while the repetition frequency of the distance measure-
ments was 500 kHz. For the vertical angle this yields an
increment of 10 mgon. There are 7216 points per epoch
within the observed section; 500 profiles representing the
unloaded state were considered in total.

The profile data were processed according to the proce-
dure outlined in Section 2. In order to prepare a meaningful
model for the MC simulations the observed and processed
data were roughly checked regarding the level of variance
and with respect to possible quantities of influence. Within
this analysis also an effect in the original data was detected
which seems to be due to a different temporal resolution
of distance and vertical angle observation; it is indicated in
Figure 3. This effect has been modeled accordingly for the
simulations.

3.2 SIMULATION OF K-TLS PROFILES

The functional model, which was used in [2], has been
established for the simulations. The time series of the verti-
cal height z of every point of the bridge can be expressed in
the local coordinate system of the laserscanner by the fol-
lowing equation:

z = d · cos(ζ), ζ = ζ0 + ∆ζ (7)

with d the observed distance between laser scanner and
object point which induces a constant and a distance-
proportional effect, ζ0 the observed zenith angle with a con-
stant angular effect, and ∆ζ the discretization term which
is induced by the angular increment of the vertical servo-
motor. In this study seven uncertainty components were
modeled:
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Figure 3. Two zooms into a representative profile scan – y-coordinate (along bridge) and z-coordinate (height with
inflated scale); upper figure: section directly above the laser scanner in a spatial distance of about 9.5 m with orthogo-
nal angle of incidence; lower figure: section in a spatial distance of about 17 m with oblique angle of incidence.

• Uncertainty of the distance (p1, Type A), and their
additional constant (p2, Type B),

• distance depending term for the uncertainty of the dis-
tance measurement (p3, Type B, see [9]),

• incidence angle of the measured distance under the
bridge (p4, Type B),

• uncertainty of the zenith angle (p5, Type A) and the
vertical index error (p6, Type B),

• vertical resolution for the zenith angle (the step width
of the motor) (p7, Type B).

The uncertainties and the PDF for the input quantities
pi, i ∈ {1, . . . , 7} are given in Table 1.

The symbols µ and σ2 in Table 1 denote the expectation
value and the variance of the random variable, respectively;
the uniform and the triangular distribution are defined by
the lower bound pil and the upper bound piu of the interval
with positive values of the density function. The assump-
tions for the uncertainties of p1 , p5 and p6 are based on the
technical data from the manufacturer and for the uncertain-
ties of p2 , p3 and p4 on [14] and for p7 on [13].

In the following, the results of three different MC simu-
lation runs are shown and discussed which were calculated
for the bridge section described in Section 3.1. In all simu-
lations 100,000 samples were drawn for each random quan-
tity; the obtained values were processed according to the
model described in equation (1). 100,000 MC runs are gen-
erated as necessary to obtain the estimates of the statistical
moments of the PDF with at least three significant digits.

The same results were numerically proven in [9]. Three dif-
ferent class widths were selected for the simulations: one /
five / ten observation values per class and epoch. As repre-
sentative value for each class and epoch the respective arith-
metic mean of the single class values was used; this is rea-
sonable because of the yet small class widths. Thus, only a
minor spatial filtering was applied but not a temporal filter.
The temporal sequences of these representative class values
define the time series or data series, respectively, which are
analyzed further.

Due to the unloaded state of the bridge all profiles can be
considered as stationary. Therefore three central moments
of the underlying probability density functions are deter-
mined empirically: standard deviation (of the single value),
skewness and kurtosis. Note that expectation value and
standard deviation are necessary and sufficient in order to
uniquely define a normal distribution. The skewness of a
normally distributed random variable equals 0, and the kur-
tosis equals 3 (In order to refer the kurtosis of an arbitrary
density to the normal distribution the value 3 can be sub-
tracted; then the kurtosis of the normal distribution equals
0). Hence, skewness and kurtosis are well-suited to detect
violations of the normal distribution assumption.

Simulation I: For this simulation, the three input quanti-
ties (p1, p3 and p5) were considered for uncertainty mod-
eling: the constant and distance-proportional effect of the
distance observation, and the constant angular effect of the
zenith angle observation. The input quantities for Simula-
tion I are defined in the left three columns of Table 2. The
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pi Er. Com. PDF PDF Type
p1 random p1 ∼ N(µp1 , σ

2
p1

) normal
p2 systematic p2 ∼ T (p2l, p2u) triangular
p3 random p3 ∼ N(µp3 , σ

2
p3

) normal
p4 random p4 ∼ N(µp4 , σ

2
p4

) normal
p5 random p5 ∼ N(µp5 , σ

2
p5

) normal
p6 systematic p6 ∼ T (p6l, p6u) triangular
p7 systematic p7 ∼ U(p7l, p7u) uniform

Table 1. Uncertainties for the input quantities.

three central moments of the empirical distributions of the
respective representative class values obtained as results of
the Simulation I are presented in Figure 4.

Simulation II: For the second simulation the same input
quantities were used as in the first simulation; in addition,
the uncertainty induced by the angular increment of the
vertical servo-motor (p7) was modeled. The three central
moments of the empirical distributions derived as results of
the Simulation I are presented in Figure 5.

Simulation III: For the last simulation all input quanti-
ties described in Table 1 were used; the result is shown
in Figure 6.

Looking at the standard deviations shown in Figure 4 and
Figure 5, the distance-proportional effect on the standard
deviations of the representative profile points is obvious.
Moreover, the square-root law σx/

√
n for the standard devi-

ation of the mean value x with respect to the standard devi-
ation of the single values by the number n of sample values
can clearly be seen. In addition, the skewness is insignif-
icant in both simulations. The difference lies in the kurto-
sis. Whereas in Figure 4 the normal distribution assumption
seems to hold, it is clearly violated in Figure 5. The assump-
tion of a Gaussian distribution in Figure 6 is not obvious.
Therefore, the rigorous mathematical assessment of the dis-
cussion about this assumption has to be referred to a suitable
hypothesis test. For this purpose the Kolmogorov-Smirnov-
Test (KS-Test) is used. The KS-Test is a form of minimum
distance estimation used to compare a data set with a refer-
ence probability distribution. The test quantifies a distance
between the empirical distribution function of the data set
and the cumulative distribution function of the reference
distribution. By modifying the KS-Test it can serve as a
goodness of fit test, see, e. g. [4]. In the case of testing for
normality of the distribution, the samples are standardized
and compared with a standard normal distribution. As a
result of the performed hypothesis, we were able to approve
that only in Simulation I the normal distribution holds.

Due to the convolution different probability distributions
(normal, triangular and uniform, respectively) the resulting

distributions of Simulation II and III are not normal dis-
tribution, this can be validated by means of the KS-Test.
Moreover (especially for Simulation II), the kurtosis values
decrease from 3 (which is valid for observations directly in
vertical direction and which does not contradict to the nor-
mal distribution assumption) to about 2 in a horizontal dis-
tance of about 20 m. There are two effects which superpose
each other: one from the uniform distribution and the other
from the (non-linear) cosine function. In case of increas-
ing the class width, the effect on the kurtosis is significantly
mitigated possibly due to the central limit theorem of prob-
ability theory.

4 VALIDATION OF THE SIMULATION RESULTS

In order to assess and to validate the simulation results,
actually observed profile data were processed and analyzed
as well in full accordance with the procedure applied for the
two simulation runs. Figure 7 shows the obtained results;
like in Section 3 the standard deviations, the skewness and
the kurtosis of the individual classes of height coordinates
are given. The standard deviations show again a clear
dependence on the horizontal distance between the scanner
and the profile points; this dependence is reduced when the
class width is increased. However, in contrast to the sim-
ulated data, the mentioned square-root law does not fully
apply – neither for small values of the y-coordinate nor for
large values. For small values the reduction of the variance
induced by averaging is smaller than expected, for large
value the reduction effect is larger than expected. Like in
the simulations, the skewness of the empirical distributions
of the individual classes does not significantly differ from
0; note that the visible variability of the values decreases
when y increases. Hence, the empirical distributions are
symmetric – independent of the class width. However, the
decrease of the kurtosis with respect to increasing values of
y is remarkable. On the one hand, there is a systematic and
significant decrease of the values from 3 (what is expected
in case of normal distribution) to a value slightly below 2.
This indicates clearly the violation of the normal distribu-
tion assumption. On the other hand however, this effect is
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Simulation I: without vertical increment
Input quantity PDF Num. value (std. dev)

p1 Normal 0.5 mm
p3 Normal 30 ppm
p5 Normal 10 mgon

Simulation II: with vertical increment
Input quantity PDF Num. value (std. dev)

p1 Normal 0.3 mm
p3 Normal 30 ppm
p5 Normal 5 mgon
p7 Uniform 20 mgon

Simulation III: with all input quantities
Input quantity PDF Num. value (std. dev)

p1 Normal 0.5 mm
p2 Triangular 0.4 mm
p3 Normal 30 ppm
p4 Normal 1 mm
p5 Normal 10 mgon
p6 Triangular 8 mgon
p7 Uniform 10 mgon

Table 2. MC simulation: input quantities for the uncertainty models (type of probability densities and numerical values
of the standard deviations).

Figure 4. Simulation I – without vertical motor increment uncertainty: analysis of the simulated k-TLS profiles for three
different class widths: standard deviations, skewness, and kurtosis.
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Figure 5. Simulation II – with vertical motor increment uncertainty: analysis of the simulated k-TLS profiles for three
different class widths: standard deviations, skewness, and kurtosis.

Figure 6. Simulation III - with all input quantities listed in Tab. 1: analysis of the simulated k-TLS profiles for three dif-
ferent class widths: standard deviations, skewness, and kurtosis.
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Figure 7. Real data: analysis of the observed k-TLS profiles for three different class widths: standard deviations, skew-
ness, and kurtosis.

mitigated in case of wider classes. Both effects were also
obtained in Simulation II shown in Figure 5 by modeling
of a uniformly distributed uncertainty component for the
angular increment of the vertical servo-motor. Note that the
visible variability of the values decreases when y increases.

Obviously, the real-data results fit quite well to the
results of Simulation II which could be obtained using a
rather basic uncertainty model with a few input parame-
ters only. In addition to the simulations there are some fur-
ther effects in the real data which could not be modeled up
to now. Looking, e. g., at the subfigures of Figure 7 in
total, some regions of horizontal distances y can be identi-
fied where the values of the central moments are obviously
disturbed. This holds in particular for the standard devia-
tions like, e. g., between 16 m and 17 m; there are also
some periodic characteristics. A following study is required
which aims at a refined statistical modeling and analysis of
the k-TLS profile time series.

5 CONCLUSIONS

In this paper the 2D case of kinematic TLS was studied
where repeated profile scans are observed from a fixed sta-
tion with a high repetition frequency for monitoring pur-
poses. The focus was put on a refined modeling of the
uncertainty of both the observations and the derived posi-
tions of the profile points. In order to take into account the

complete data processing chain, the strategy for generating
and analyzing time series was considered. MC simulation
techniques were applied to provide numerical results for
discussion and validation. It turned out that a rather small
number of input parameters for the uncertainty model are
required to obtain simulation results which fit quite well
to actually observed data. These real data were observed
on the occasion of loading tests at an Autobahn bridge in
southern Germany.

Further work has to address two main topics: the more
refined simulation of more complex configurations by tak-
ing more parameters for the uncertainty model into account,
and the rigorous and thorough statistical analysis of the real
data in order to improve the physical observation models
in case of k-TLS. The solution of both problems is essen-
tial for the highly sensitive and physically meaningful appli-
cation of k-TLS techniques for monitoring of, e. g., large
structures such as bridges.

References

[1] Alkhatib H., On Monte Carlo methods with applications to
the current satellite gravity missions, PhD thesis, Institute for
Geodesy and Geoinformation of University of Bonn, 2007.

[2] Alkhatib H., Neumann I. and Kutterer H., Uncertainty model-
ing of random and systematic errors by means of Monte Carlo
and fuzzy techniques, Journal of Applied Geodesy 3 (2009),
67–81.

Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 02.02.16 08:44



Estimation of Measurement Uncertainty of kinematic TLS Observation Process 133

[3] Gentle J. E., Random Number Generation and Monte Carlo
Methods, Wiley, Springer, 2nd edition, 2003

[4] Gibbons J. D. and Chakraborti S., Nonparametric statistical
inference, volume 198 of Statistics, Chapman & Hall/CRC
Press, Boca Raton and Fla, 5th edition, 2011.

[5] Hennes M., Konkurrierende Genauigkeitsmasse: Potential
und Schwäachen aus der Sicht des Anwenders, AVN 4 (2007),
136–146.

[6] ISO, Guide to the expression of uncertainty in measure-
ments (GUM), International Organization for Standardization,
Geneva, 1995.

[7] ISO, Evaluation of measurement data - Supplement 1 to the
Guide to the expression of uncertainty in measurement - Prop-
agation of distributions using a Monte Carlo method., Joint
Committee for Guides in Metrology, Bureau International des
Poids et Mesures, Geneva, 2007.

[8] Koch K. R., Introduction to Bayesian Statistics, Springer,
Berlin - Heidelberg - New York, 2nd edition, 2007.

[9] Koch K. R., Evaluation of uncertainties in measurements by
Monte Carlo simulations with an application for laserscan-
ning, J. Applied Geodesy 2 (2008), 67–77.

[10] Koch K. R., Determining uncertainties of correlated mea-
surements by Monte Carlo simulations applied to laserscan-
ning, J. Applied Geodesy 2 (2008), 139–147.

[11] Kutterer H., Alkhatib H., Paffenholz J.-A. and Vennegeerts
H., Monte-Carlo simulation of profile scans from kine-
matic TLS, in: Proceedings of the FIG Congress 2010,
http://http://www.?g.net/pub/?g2010/papers/
ts03d%5Cts03dkuttereralkhatibetal3795.pdf.

[12] Martinez W. L. and Martinez A. R., Computational statistics
handbook with MATLAB, volume 8 of Computer science and
data analysis series, Chapman & Hall/CRC, Boca Raton, 2nd

edition, 2008.
[13] Reshetyuk Y., Investigation and calibration of pulsed

time-of-flight terrestrial laser scanners, Licentiate thesis in
Geodesy, Sweden, 2006.

[14] Schulz T. and Ingensand H., Infuencing Variables, Precision
and Accuracy of Terrestrial Laser Scanners, in: Intergeo East,
Bratislava, Slovakia, 2004.

[15] Siebert B. R. L. and Sommer K.-D., Weiterentwicklung des
GUM und Monte-Carlo-Techniken, Technisches Messen 71
(2004), 67–80.

[16] Vennegeerts H., Liebig J. P., Hansen M., Neuner H., P., J.-
A., Grünberg J., and Kutterer H., Monitoring eines Brücken-
tragwerks Vergleichende Messungen mit einem terrestrischen
Laserscanner und Sensoren der Baumesstechnik, in: Wunder-
lich T., editor, Ingenieur-Vermessung 2010, Wichmann, Hei-
delberg, 2010.

Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 02.02.16 08:44

http://http://www.?g.net/pub/?g2010/papers/ts03d%5Cts03d kutterer alkhatib et al 3795.pdf
http://http://www.?g.net/pub/?g2010/papers/ts03d%5Cts03d kutterer alkhatib et al 3795.pdf


Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 02.02.16 08:44


