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Motivated by recent experiments on circular dichroism in the photoelectron momentum distributions from
strong-field ionization of chiral molecules [C. Lux et al., Angew. Chem. Int. Ed. 51, 5001 (2012); C. S. Lehmann
et al., J. Chem. Phys. 139, 234307 (2013)], we investigate the origin of this effect theoretically. We show that it
is not possible to describe photoelectron circular dichroism with the commonly used strong-field approximation
due to its plane-wave nature. We therefore apply the Born approximation to the scattering state and use this as a
continuum-state correction in the strong-field approximation. We obtain electron distributions for the molecules
camphor and fenchone. In order to gain physical insight into the process, we study the contributions of individual
molecular orientations.
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I. INTRODUCTION

The response of atoms and small molecules to strong,
ultrafast laser pulses has been studied extensively over the
last years. Impressive progress has been made in the theo-
retical understanding of phenomena such as above-threshold
ionization and high-harmonic generation. This is not only
due to the ever-increasing power of computing resources
which are used to improve approximations for the quantum
mechanical treatment of systems with growing complexity, but
also due to the great success of theories such as the strong-field
approximation (SFA) [1–5]. While there is still a great interest
in the details of strong-field ionization of small systems [6,7],
ionization of larger molecules receives increasing attention [8],
since the photoelectron angular distributions (PADs) carry
important structural information on the molecules. PADs
of polyatomic molecules have been calculated successfully
within the framework of the SFA [9–11], and can nowadays be
efficiently measured using velocity-map imaging [12,13]. For
example, velocity-map imaging has been used to track molec-
ular rotation on a subpicosecond time scale [14]. Although
PAD measurements often seek to measure molecular-frame
PADs [15–17], also PADs of randomly oriented molecules can
show interesting features, in particular when the molecules
are chiral. One-photon ionization of chiral molecules with
a circularly polarized XUV beam can lead to a forward-
backward asymmetry in the photoelectron emission [18,19]
with respect to the propagation direction of the light beam. This
phenomenon is known as photoelectron circular dichroism
(PECD). The asymmetry changes its sign upon changing
the enantiomer or the rotation direction of the light field.
Thus, the effect does not occur in racemic samples of chiral
molecules, i.e., 1:1 mixtures of different enantiomers. A
similar behavior is familiar from the conventional dichroism
effect in the photoabsorption cross section. However, unlike
the conventional dichroism, where the relative difference in
the photoabsorption of the enantiomers is small and relies
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on an asymmetry in the magnetic dipole element, the PECD
can be described within the electric-dipole approximation
and can reach the order of magnitude of the electron yield
itself [18]. Asymmetries of up to 20% have been measured
in the photoionization of randomly oriented chiral molecules
with synchrotron radiation [20–23]. This makes the PECD a
promising tool in the research of chiral molecules, e.g., for
chiral recognition in the gas phase. Such applications can
have a great impact on a plethora of research areas, including
even biological and pharmaceutical research, since many
chemical processes in living beings are chirality dependent.
For example, the homochirality of life, i.e., the fact that
all amino acids in living beings are of L type and that the
ribose sugars of nucleic acids are of D type, has yet to be
understood [24]. Deeper investigation of the PECD may shine
light on this puzzle [25].

Recently, it has been experimentally discovered that the
PECD does not only occur in single-photon ionization by XUV
radiation, but also in few-photon transitions from strong UV
laser pulses [26,27]. In these experiments, a difference of up
to about 15% between the forward and backward direction has
been found for the organic molecules camphor and fenchone.
The possibility to perform such an experiment with a table-top
laser system instead of synchrotron radiation is a major step
forward to using the PECD in applications. In contrast to the
single-photon case, which is already understood and where
usable predictions are possible [28,29], the multiphoton case
is much more difficult [27].

In this article, we present a theoretical study that computes
the PECD for chiral molecules in multiphoton ionization.
Despite the complexity of the problem, our approach does
not require any fitting parameters and is nonperturbative in the
sense that it can treat ionization processes with an arbitrarily
high number of photons. The article is split into three parts.
In the first part, we demonstrate that the PECD effect requires
a non-plane-wave treatment of the electronic continuum by
proving that the SFA yields vanishing asymmetry between
forward and backward emission of photoelectrons, i.e., the
SFA fails at describing PECD. Therefore, a more sophisticated
approximation is necessary, which at the same time keeps the
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numerical effort acceptable. Due to the required orientation
averaging and the lack of symmetry in the system, this is not
a simple task. In the second part of this paper, we develop an
extension of the SFA, in which we use the Born approximation
known from scattering theory to obtain a correction to the
plane-wave continuum states. With this technique, we compute
the PECD effect for pure enantiomeric gases of the molecules
camphor and fenchone for three-, four-, and five-photon
ionization induced by a circularly polarized UV field. In the
last part, we use the same method to determine the dichroism of
individual molecular orientations of camphor and fenchone. In
this way, we investigate the contributions of these orientations
to the total PECD effect.

II. PECD IN THE STRONG-FIELD APPROXIMATION

We assume the laser field E(t) to be circularly polarized
in the (x,y) plane of the laboratory coordinate system, i.e.,
Ez(t) = 0. The PECD effect in this situation would manifest
itself in an asymmetry of the momentum distribution when
comparing forward (kz > 0) and backward (kz < 0) emis-
sion of photoelectrons from a sample of randomly oriented
molecules. A mirror transformation of the system at the
polarization plane does not change the sense of electric field
rotation as a function of time but changes all molecules
into their enantiomers. In the electric-dipole approximation,
changing the enantiomer therefore implies that the sign of
asymmetry is inverted as well. If we consider only sufficiently
long multicycle pulses, the photoelectron distributions from
randomly oriented molecules are cylindrically symmetric
about the z axis. In this case, due to the random orientation,
a preferred direction is defined solely by the propagation
direction of the laser field. Rotating the propagation direction
of the field by 180◦ must therefore rotate also the electron
distribution by 180◦. From the viewpoint of a single molecule,
this is equivalent to switching from left- to right-circular
polarization in the electric-dipole approximation. Thus, the
sign of the asymmetry changes its sign upon switching the
sense of polarization. The SFA momentum distribution after
strong-field ionization, also known as Keldysh-Faisal-Reiss
momentum distribution [1–3], averaged over all orientations,
reads (atomic units and length gauge are used throughout this
paper)

wSFA(k) =
∫

d3R
∣∣∣∣−i

∫ ∞

−∞
dt〈k + A(t) | r · E(t)

∣∣ψR
0

〉
eiS(t)

∣∣∣∣
2

.

(1)

In this equation, k is the electron momentum defined in
the laboratory frame, ψR

0 is the rotated orbital from which
ionization takes place, and A(t) = − ∫ t

dt ′ E(t ′) corresponds
to the electric field E(t) of the laser pulse. The scalar function
S(t) is the action

S(t) = Ipt + 1

2

∫ t

dt ′[k + A(t ′)]2 (2)

with the molecular ionization potential Ip. The bra 〈k + A(t)|
represents a plane wave with momentum k + A(t). The
integral over all possible molecular orientations is indicated
by the integration

∫
d3R, where R is the rotation matrix for

an active rotation about the Euler angles (η,ξ,χ ) in the zyz

convention [30]. Expanding the absolute square in Eq. (1) and
rearranging the order of integration leads to the expression

wSFA(k) = 1

(2π )3

∫
dt

∫
dt ′

∫
d3r

∫
d3r ′ e−i[k+A(t)]r

× [r · E(t)]eiS(t)ei[k+A(t ′)]r′
[r′ · E(t ′)]e−iS(t ′)

×
∫

d3RψR
0 (r)ψ∗R

0 (r′). (3)

To determine the orientation average on the right-hand side
of Eq. (3), we use the partial-wave expansion ψ0(r) =∑

l,m alm(r)Ylm(r̂) of the initial state and the Wigner-D-matrix
Dl

m′m(R) to rotate the angular momentum eigenstates (see,
e.g., Refs. [30,31]):

ψR
0 (r) =

∞∑
l=0

+l∑
m,m′=−l

alm(r)Ylm′(r̂)Dl
m′m(R). (4)

Here, r̂ denotes the angular coordinates (ϑ,ϕ) and r = |r|.
Using this in conjunction with the orthonormality relation of
the Wigner-D-matrix, we have∫

d3RψR
0 (r)ψ∗R

0 (r′)

=
∞∑
l=0

+l∑
m,m′=−l

8π2

2l + 1
alm(r)a∗

lm(r ′)Ylm′(r̂)Y ∗
lm′(r̂′). (5)

Inserting this back into Eq. (3), and considering E(t)⊥e3 as
well as A(t)⊥e3, we find the following expression for the
momentum distribution:

wSFA(k) = 1

π

∑
l,m,m′

1

2l + 1

∫
dtdt ′d2r12d

2r ′
12 e−i[k+A(t)]r12

× [r · E(t)]eiS(t)ei[k+A(t)]r′
12 [r′ · E(t ′)]e−iS(t ′)

×
∫

dzdz′alm(r)a∗
lm(r ′)Ylm′(r̂)Y ∗

lm′(r̂′)e−ik3zeik3z
′
.

(6)

Here, the subscript label “12” denotes coordinates x,y,x ′,y ′
in the plane of polarization and the subscript label “3” the
components along the propagation direction of the field. The
vanishing PECD can now be shown directly with a symmetry
argument regarding Eq. (6): If we compare forward (k3 > 0)
and backward emission (k3 < 0) by changing the sign of
k3 in Eq. (6), we observe that the substitution k3 → −k3

affects only the exponential functions on the very right of
Eq. (6). Here, the change in sign can be undone by substituting
z → −z and z′ → −z′. The sign of the z and z′ coordinates
appears besides the exponential functions only in the spher-
ical harmonics Ylm′(r̂)Y ∗

lm′(r̂′). The product of two spherical
harmonics with identical quantum numbers is invariant under
this transformation. This means that the orientation-averaged
momentum distributions in the forward direction and in the
backward direction are equal. Consequently, we conclude
that any dichroism effect in the PAD calculated with SFA
will disappear after orientation averaging, rendering the SFA
useless for this particular problem.
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FIG. 1. (Color online) HOMO orbitals of the molecules camphor
(a) and fenchone (b) as obtained from GAUSSIAN [32]. The CO bond
points upwards.

III. PECD WITH SCATTERING WAVES

To overcome the limitations inherent in the SFA, we replace
the plane-wave continuum state in Eq. (1) with the Born
approximation,

ψ
(−)
k (r) = 1

(2π )3/2

[
eikr − 1

2π

∫
d3r ′ e

−ik|r−r′|

|r − r′| V (r′)eikr′
]

,

(7)

known from scattering theory. We use the same Volkov phase
factor eiS(t) as in the plane-wave SFA, although it is not strictly
valid for our corrected continuum states. This leads us to
the following continuum-state-corrected SFA (ccSFA) as a
replacement for the SFA momentum distribution in Eq. (1):

wccSFA(k) =
∫

d3R
∣∣∣∣−i

∫ ∞

−∞
dt

〈
ψ

(−)R
k+A(t)

∣∣r · E(t)
∣∣ψR

0

〉
eiS(t)

∣∣∣∣
2

.

(8)

Note that the continuum state ψ
(−)R
k+A(t) is now orientation

dependent, since the potential V depends on the molecular
orientation R. As the initial orbital ψR

0 for our numerical
computations, we use the highest occupied molecular orbital
(HOMO) obtained with the quantum chemistry software
GAUSSIAN [32] using the Becke three-parameter Lee-Yang-
Parr (B3LYP) method [33,34] and a 6-31+G* basis set [see
Figs. 1(a) and 1(b)]. The potential V in Eq. (7) is the Kohn-
Sham potential using the electron density from GAUSSIAN.
The integral in Eq. (7) converges for all k if r2V (r) → 0 for
r → ∞. This is true for most practically used Kohn-Sham
potentials. For the PECD effect, we conjecture that only the
short-range part of V is important, since it is this part that
carries signatures of the chiral structure of the molecule. For
the results shown in this paper, we use the exchange-only
local density approximation (LDA) functional to determine
the potential V . We have also performed calculations with the
full LDA functional and a generalized gradient functional [35]
computed with LIBXC [36]. However, the choice of exchange-
correlation potential has only little influence on the results. The
values for Ip required in Eq. (8) via S(t) for camphor (8.7 eV)
and fenchone (8.6 eV) are taken from the literature [22,37].

Figure 2 illustrates exemplary results for the PECD of (R)-
camphor irradiated with a left-circularly polarized (LCP) 20-
cycle sin2-shaped pulse at a wavelength of 398 nm and an
intensity of 2.5 × 1013 W/cm2. The polarization is defined as

FIG. 2. (Color online) Illustration of the PECD effect in cam-
phor. On the left, a cut (ky = 0) through a momentum distribution
at an arbitrary orientation of camphor is shown. In the middle, the
corresponding orientation-averaged distribution is shown, and on the
right the difference between forward and backward emission is shown
in units relative to the average amplitude on the inner (three-photon)
ring. The LCP [as defined in Eq. (9)] laser pulse propagates from left
to right, as indicated by the arrow.

from the point of view of the receiver, i.e.,

ELCP(t) = E0(t)(cos ωt, sin ωt,0). (9)

Here, we use 100 points to sample ξ and 80 points for η

and χ , respectively. To overcome the ionization potential of
camphor, absorption of three photons is required. The resulting
forward-backward asymmetry takes a maximum value of only
about ±1% relative to the average yield of the momentum
distribution on the three-photon ring compared to the ≈±10%
found in Refs. [26,27]. The nodal structure is in agreement with
the results found experimentally [26], although the overall
PECD is of opposite sign. The calculated PECD image for
(R)-fenchone (not shown) for the given laser parameters yields
a slightly stronger PECD effect in our calculation and has no
nodes within the forward and backward hemispheres. This is in
agreement with the experiment, which found a stronger PECD
effect in fenchone molecules as well [26].

In order to investigate the influence of the absorbed photons
above threshold, we calculate the PECD for camphor and
fenchone for three-, four-, and five-photon ionization. In order
to make these calculations numerically more efficient we use
here and in all following results the same laser frequency
and intensity as stated above, but now as a cw laser field
with E0(t) = const. The cw field enforces exact invariance
of the orientation-averaged momentum distribution under
rotation about the field propagation axis, i.e., the distribution
is cylindrically symmetric and independent of the azimuthal
angle φ. In Eq. (8), we make use of the time-translation
symmetry with respect to the period T = 2π/ω of the cw
field. Using this symmetry, Eq. (8) takes the simpler form [5]

wccSFA
cw (k) = ω2

∞∑
N=1

δ2

(
k2

2
+ Ip + Up − Nω

)
wN (θ ), (10)

wN (θ )=
∫

d3R
∣∣∣∣−i

∫ T

0
dt

〈
ψ

(−)R
kN k̂+A(t)

∣∣r · E(t)
∣∣ψR

0

〉
eiS(t)

∣∣∣∣
2

,

(11)

with Up = E2
0/2ω2 being the ponderomotive potential for

circular polarization and N the number of absorbed photons.
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FIG. 3. (Color online) Legendre coefficients b2n+1 for the
molecules (a) camphor and (b) fenchone according to Eq. (12). Shown
are the values for three-photon ionization (red, solid), four-photon
ionization (green, crossed), and five-photon ionization (blue, striped),
which are normalized such that the coefficient b0 (the total ionization
yield) is one for each case. A LCP cw field of 398 nm wavelength
and an intensity of 2.5 × 1013 W/cm2 have been used.

The vector k̂ = k/kN is the unit vector pointing in the direction
of k given by its spherical coordinates (θ,φ) with θ being the
angle between the laser propagation axis and the velocity of
the photoelectron and φ being the azimuth. kN is the absolute
value of momentum corresponding to the absorption of N

photons. The reduced momentum distributions wN (θ ) can be
decomposed into series of Legendre polynomials Pj (cos θ ):

wN (θ ) =
∞∑

j=0

bj,NPj (cos θ ). (12)

In perturbation theory, the highest contributing Legendre
polynomial is of order jmax = 2N [8]. The decomposition
of the PADs of camphor and fenchone for three-, four-, and
five-photon ionization and for a LCP cw field is shown in
Fig. 3. For every photon number N , the PECD effect can be
cast into a single number AN describing twice the difference
between forward and backward emission of photoelectrons
relative to the yield per hemisphere [38]. By integration of
Eq. (12) over the forward and the backward hemisphere, one
obtains

AN = 2b1,N − 1
2b3,N + 1

4b5,N − 5
32b7,N + 7

64b9,N − · · · .

(13)

The even polynomials do not contribute to AN , since they
are symmetric with respect to θ → π − θ . Thus only the
coefficients of odd polynomials are shown in Fig. 3. We
observe that for an increasing number of photons, also the

TABLE I. Total PECD AN according to Eq. (13) for the data
shown in Fig. 3 for N -photon ionization of camphor and fenchone
with the normalization b0 = 1.

N Camphor Fenchone

3 −0.41% −1.74%
4 1.92% −4.71%
5 2.91% −0.74%

number of contributing Legendre polynomials increases, as
predicted by perturbation theory. At the same time, the
strength of the PECD increases for camphor, while for
fenchone the maximum PECD is obtained for four-photon
ionization (see Table I). Comparing our results with the
experimental findings [26,27] for three-photon ionization, we
conclude that quantitative agreement is not achieved, since
the measured asymmetries of about 10% are not reproduced.
However, qualitative agreement is achieved in the sense that
the third coefficient dominates the distribution for camphor
but not for fenchone. Experimentally, the opposite direction
of asymmetry has been found for three-photon ionization.
The fact that camphor and fenchone exhibit the same sign of
asymmetry for three-photon ionization is in accordance with
the experiments.

IV. INFLUENCE OF INDIVIDUAL MOLECULAR
ORIENTATIONS ON THE PECD EFFECT

In order to investigate the origin of the PECD effect, we
study the contributions of individual molecular orientations.
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FIG. 4. (Color online) Legendre coefficients b0 (a), b1 (b), b2 (c),
and b3 (d) for camphor in dependence of the molecular orientation
(η,ξ ). All values are given relative to the average yield b0,avg and
correspond to three-photon ionization. Note the different color scales
in the plots.
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FIG. 5. (Color online) Dichroism of each molecular orientation
(η,ξ ) of camphor, decomposed into the Legendre coefficients (a) b0,
(b) b1, (c) b2, and (d) b3. All values are given in relation to the
average yield b0,avg and correspond to three-photon ionization. Note
the different color scales in the plots.

This may help to understand the process more intuitively.
Here, we consider only three-photon transitions in camphor
and fenchone, for the same parameters as given in the previous
section. The relevant molecular orientations are given by the
Euler angles η and ξ , which rotate the molecule around the z

axis (laser propagation axis) and the y axis consecutively. We
integrate over the third Euler angle χ , so that the resulting
distribution is independent of the azimuthal angle φ and
decomposition into Legendre polynomials is possible for each
orientation (η,ξ ). The initial orientation η = ξ = 0 is chosen
for both camphor and fenchone such that the CO bond points
in the z direction. The first Legendre coefficients b0, b1, b2, and
b3 are shown for camphor as a function of η and ξ in Fig. 4. All
values are normalized to the average value b0,avg of b0. Note
that the zero-order Legendre coefficient b0 corresponds to the
ionization yield in the three photon channel. Not surprisingly,
the angular momentum distribution—and thus the Legendre
coefficients—depend strongly on the molecular orientation.
From Eqs. (11) and (12) it is obvious that the Legendre
coefficients for a sample of randomly oriented molecules
are just integrals of the Legendre coefficients for individual
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FIG. 6. (Color online) Same as Fig. 5, but for fenchone.

orientations with respect to the Euler angles η and ξ . Hence, the
large positive and negative Legendre coefficients in Figs. 4(b)
and 4(d) almost cancel each other. We can investigate the
dichroism of individual orientations (η,ξ ) by computing the
difference between the Legendre coefficients for LCP and
for right-circularly polarized (RCP) light for each molecular
orientation. The results are shown in Figs. 5 and 6 for camphor
and fenchone, respectively. From these figures, we observe that
the individual molecular orientations show a very pronounced
dichroism in the even as well as in the odd coefficients. The
(anti)symmetry visible in these pictures, is due to the following
(anti)symmetries in the Legendre coefficients:

bLCP
2j (η,ξ ) = bRCP

2j (η + π,π − ξ ), (14)

bLCP
2j+1(η,ξ ) = −bRCP

2j+1(η + π,π − ξ ). (15)

These relations can be easily verified using the time-dependent
Schrödinger equation in the dipole approximation. Hence, the
dichroism in the even coefficients vanishes already when we
sum each two opposing orientations (η,ξ ) and (η + π,π − ξ ).
Although this is not true for the odd coefficients, we see
areas with positive and negative dichroism that cancel each
other to some extent. By this, the dichroism of the oriented
molecules can easily reach 20%, whereas the total PECD
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as computed in the previous section amounts to only a few
percent. This in turn means that the PECD effect of a gas
of molecules will be strongly dependent on any form of
molecular alignment such as orientation-dependent resonant
enhancement of ionization [27], which may be a reason for the
large quantitative disagreement between our numerical results
and the measured PECD [26,27].

V. CONCLUSIONS

We have shown a possibility to calculate the PECD of chiral
molecules nonperturbatively. The commonly used SFA fails in
describing this effect, which leads to the conclusion that not
only the orbital from which ionization takes place is important,
but also the final scattering state of the emitted electron. This
is in accordance with findings in the single-photon PECD,
where an asymmetry occurs even with an achiral initial orbital,
indicating that the scattering state plays a vital role in the
process [39,40]. We have demonstrated that a rather simple

approximation for the scattering state is sufficient to yield a
nonzero PECD effect and thus to overcome a fundamental
limitation of the plain SFA. However, quantitative agreement
with the experimental data is not achieved. This may be due to
the Born approximation, which is only a first-order correction.
Additionally, we have neglected the influence of resonant
intermediate states that may influence the process, especially
if the resonance is orientation dependent. We have shown
that individual orientations exhibit a very strong dichroism
that is canceled to some extent by orientation averaging. This
suggests that any form of effective molecular alignment could
lead to a significant change in the total PECD. This will be the
subject of further research.
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