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Vicinal surfaces with terraces of alternating stress develop inhomogeneous distributions of terrace sizes
which sometimes leads even to the formation of double steps. Both vicinal Si�001� and vicinal Ge�001� are
typical examples for this behavior. However, vicinal surfaces of some alloys show this effect, too. It is well
established that average terrace sizes can be evaluated from the splitting of peaks in surface sensitive diffrac-
tion experiments. More parameters, however, are necessary to obtain an improved characterization of the
morphology of the vicinal surface. Therefore, we present a detailed analysis of diffraction patterns from
alternating vicinal surfaces to extract more statistical data, e.g., standard deviations of the terrace size distri-
butions, step rms widths, step correlation lengths, and kink densities. This analysis considers both profiles of
�split� diffraction peaks and the profile of the diffuse scattering. In addition, the diffraction analysis is applied
to vicinal Ge�001� to characterize the morphology in full detail.
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I. INTRODUCTION

Stepped surfaces are of special interest in both fields of
crystal growth and catalysis. Burton et al. already empha-
sized the enormous importance of atomic steps for the
growth of crystals in their fundamental paper in the early
1950s.1 They pointed out that atomic steps offer ideal sites
for the accommodation of single atoms so that the nucleation
barrier, which exists on singular surfaces, is bypassed. There-
fore, vicinal surfaces are often used if films of homogeneous
thickness have to be formed �see Refs. 2 and 3 for reviews�.
Atomic steps and kinks are also preferred sites of adsorption,
chemical reaction, and catalysis due to their higher coordi-
nation compared to sites on terraces.4

Experimental techniques such as scanning probe micros-
copy and surface diffraction are well developed to character-
ize vicinal surfaces with equivalent terraces �homogeneous
surfaces�. In this field, significant attention has especially
been paid to the transition from well ordered vicinal surfaces
with long range order of atomic steps to a rough state where
vicinal surfaces lose long range order �see the review by
Lapujoulade5 and the cited literature therein�.

The just mentioned vicinal surfaces with equivalent ter-
races will be called homogeneous vicinal surfaces in the fol-
lowing. In contrast to these surfaces, some vicinal surfaces of
semiconductors, e.g., Si�001� and Ge�001�, typically show
inequivalent terraces due to rotated surface reconstructions,
where the atomic steps are identical to the domain bound-
aries. Vicinal surfaces of some alloys also exhibit inequiva-
lent terraces due to the different chemical compositions �see
Refs. 6 and 7 and the cited literature therein�. Therefore,
these surfaces will be called inhomogeneous.

For both vicinal Si�001� surfaces and vicinal Ge�001� sur-
faces with miscut toward the �110� direction, the different
alignments of dimer rows parallel or perpendicular to atomic
steps, in combination with the internal stress due to dimer-
ization, lead to an anisotropic interaction between steps
�compressive and tensile stress, see reviews by Zandvliet8,9�

while vicinal Si�001� surfaces with miscut toward the �1̄10�
direction tend to the formation of facets. Therefore, there
exist A and B terraces of inequivalent size for the first type of
vicinal surfaces. The different structures of SA and SB steps
yield additional energy contributions. Depending on the
angle of miscut, it has been reported that these vicinal sur-
faces undergo a transition to vicinal surfaces with pure DB
double steps. First, the formation of DB double steps has
been reported by Wierenga et al. from experiments for both
Si�001� and Ge�001� by scanning tunneling microscopy
�STM�.10 Alerhand et al.11,12 explained the creation of double
steps as first order transition depending on the angle of mis-
cut �and temperature�. Later, Bartelt et al.13 pointed out that
there exists a range of coexistence between single and double
steps. The critical angle of miscut is approximately 4° and 6°
for Si�001� and Ge�001�, respectively.9

On the one hand, step pairing has been reported for alloys
such as Cu83Pd17 and Cu3Au, too, which have been studied
by STM, surface x-ray diffraction �SXRD�, and He atom
scattering.6,7 On the other hand, some vicinal metal surfaces,
e.g., W�430�, form double steps at high temperatures as
proven by electron diffraction by Dey et al.14 This effect has
been attributed to a lower energy for the formation of kinks
for double height steps compared to single height steps.

For Si�001� and Ge�001�, STM investigations additionally
show that SA steps and SB steps have very different mor-
phologies. While SA steps are very straight with the forma-
tion of only very few kinks, SB steps are rough and many
kinks are formed. This effect can be attributed to the differ-
ent stiffnesses of both SA steps and SB steps. It has recently
been discussed how alternating stiffness of steps influences
the terrace size distribution.15

The repulsive interaction between steps, which stabilizes
vicinal surfaces, can be suppressed by adsorbates. Therefore,
step bunches and facets can be formed after adsorption.16,17

Here, metal adsorbates are of special importance for Si�001�
�see Ref. 17 and literature cited herein�.
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As pointed out for vicinal surfaces of metals by Giesen,18

it may be difficult to characterize the statistics of atomic
steps �kink density, rms width, correlation length� by STM if
atomic processes at steps as attachment or detachment of
atoms from kinks are very fast compared to the time of re-
cording STM micrographs. STM micrographs show frizzy
steps under these circumstances. Therefore, diffraction ex-
periments seem to be better suited to characterize the statis-
tical behavior of vicinal surfaces under these aspects.

The splitting of peaks, which are singular peaks for non-
vicinal singular surfaces, into two components has been re-
ported in early low energy electron diffraction �LEED� stud-
ies on vicinal surfaces of UO2�111� by Ellis and
Schwoebel19 and Ge�111� by Henzler20 in the late 1960s. The
Ewald construction for diffraction from perfect vicinal sur-
faces has been described in Refs. 21 and 22. The authors
analyzed the data with respect to the terrace size and the step
height. Early LEED studies on vicinal Si�001� �Refs. 23–25�
already clarified the existence of double steps for large
angles of miscut prior to the STM studies mentioned above.

This analysis assumed perfect vicinal surfaces with iden-
tical terrace sizes, straight steps, and identical step heights.
This assumption, however, is only valid if the surface steps
repulsively interact and for very low temperature without
any significant entropic contributions. It is clear that, at least,
meandering of steps and variations of terraces sizes become
significant at higher temperatures �see the roughening transi-
tion for homogeneous vicinal surfaces mentioned above�.

In a former paper, we developed a detailed statistical
analysis of the diffraction pattern with respect to rms width,
correlation length, and kink density of meandering noncol-
liding steps for homogeneous vicinal surfaces.26 We cross-
checked the theory with results from kinetic Monte Carlo
simulations applied to the thermal roughening of vicinal sur-
faces. In this paper, we will extend the formerly developed
diffraction analysis to the case of inhomogeneous vicinal sur-
faces. First, we consider alternating kinds of terraces �cf. A
and B terraces of Si�001� or Ge�001��. Second, the influence
of terrace size fluctuations is also taken into account, which
has been neglected in our previous report. Third, we study
the effect of step meandering on the diffraction experiment.
In addition, we will apply our analysis to vicinal Ge�001�
surfaces with nonequivalent A and B terraces, which appear
due to alternating compressive stress and tensile stress on
adjacent terraces. Finally, we will discuss our model in the
context of other reports on diffraction from vicinal surfaces.

II. THEORY

A. Basics

Vicinal surfaces consist of terraces which form “stair-
cases.” In the following, we assume that the staircase as-
cends in the �positive� x direction and that the terraces are
separated by monatomic steps with step height d. In the fol-
lowing, Rn,m denotes the position of the ascending step which
confines the nth terrace for the positive x direction �see Fig.
1 for a cross section�. The descending step of the nth terrace
in the negative x direction is denoted by Rn−1,m. Of course,
the latter step is the ascending step of the �n−1�th terrace.

The height of the nth terraces is nd. The additional index m
denotes the y dependence of the fluctuating position of the
nth step in the y direction �see below�.

For a vicinal surface, the diffracted wave is described by

��K� � = �
n,m

Fn
eiKxRn−1,m − eiKxRn,m

1 − eiKxa eiKyameiKzdn. �1�

Here, Kx, Ky, and Kz denote the x, y, and z component of the

scattering vector K� =kf
� −ki

� , where ki
� and kf

� are the wave
vectors of the incoming beam and the diffracted beam, re-
spectively. a and d denote the lateral lattice constant and the
vertical lattice constant �step height, see above�. For reasons
of simplicity, we assume that the unit cells of the terraces
have square symmetry so that we can use a Cartesian coor-
dinate system. Surfaces of other symmetries do not influence
the following considerations concerning diffraction peak
profiles but the peak positions.

In Eq. �1�, Fn is the form factor of the “surface atoms” of
the nth terrace. Since most of the surface sensitive diffraction
techniques probe not only the atoms of the surface layer but
also atoms of layers below the surface �depending on the
penetration depth�, the form factor includes the scattering by
these atoms and multiple scattering effects which are impor-
tant for electron diffraction �column approximation�.27

Diffraction techniques do not directly measure the ampli-

tude and phase of the wave ��K� � of the diffracted wave but

its intensity I�K� �= ���K� ��2. For reasons of simplicity, we as-
sume that all surface atoms �more accurately speaking, all
columns� have the same form factor F. In principle, the ef-
fect of different form factors F can be included in the calcu-
lation. The results, however, are very complicated for inten-
sities of diffraction peaks, while the analysis of diffraction
spot profiles is not affected. Therefore, form factor effects
are beyond the scope of this report. The intensity of the
diffracted beam,

I�K� � = �F�2G�K� � , �2�

separates into the modulus square of the form factor and the
lattice factor

G�K� � = 	�
n,m

eiKxRn−1,m − eiKxRn,m

1 − eiKxa eiKyameiKzdn	2

. �3�

It is convenient to separate the fluctuating position of the
nth step, Rn,m, into the average position Rn and the pure
fluctuating part un,m with �un,m�m=0, namely,

z

(n+1)d
nd

(n-1)d

R Rn-1,m n,m x

Fn

FIG. 1. Schematic drawing of a cross section of a vicinal sur-
face, which ascends in the positive x direction to clarify the nomen-
clature. The mth row is presented. The nth terrace �emphasized by
dark dots� at height z=nd is confined by the ascending step at
position Rn,m and the descending step at position Rn−1,m.
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Rn,m = Rn + un,m. �4�

Herewith, one obtains the lattice factor

G�K� � =
1 − cos�Kzd�
1 − cos�Kxa��n

��n+n�,n��Kx��n+n�,n��Kx,Ky��n�e
iKzdn,

�5�

with

�n+n�,n��Kx� = eiKx�Rn+n�−Rn�� �6�

and

�n+n�,n��Kx,Ky� = �
m

�eiKx�un+n�,m+m�−un�,m���m�e
iKyam. �7�

Here, the brackets �¯�m� denote averaging with respect to
m�.

Furthermore, we assume that correlations of fluctuations
between adjacent steps are negligible. This assumption is
reasonable if the average distance between steps �average
terrace size� is much larger than the step fluctuations. Corre-
lations of fluctuations, however, may exist for step atoms of
the same step due to the stiffness of steps. Therefore, if
n�0, the averaging with respect to m� in Eq. �7� can be
rearranged to

�eiKx�un+n�,m+m�−un�,m���m� = �n+n��Kx��n�
* �Kx� , �8�

with the characteristic function �Fourier transform� of the
step fluctuation distribution

�n�Kx� = �eiKxun,m��m� = �
u

Pn�u�eiKxu. �9�

Here, Pn�u� denotes the probability that the fluctuation of the
nth step has the value u.

Although we had to assume n�0 here to obtain Eq. �8�,
this result can be extended to the case of n=0. Following the
considerations of Pukite et al.28 for fluctuations of one di-
mensional surfaces, for this case �n=0�, the averaging part of
Eq. �7� is

�eiKx�un,m+m�−un,m���m�=�
u,u�

Pn�u + u��Pn�u��eiKxu

+�
u,u�

Pn�u + u��Pn�u���n,m�u��1 − eiKxu� .

�10�

The functions �n,m�u� introduced in Eq. �10� depend on the
details of the correlations of the fluctuations �e.g., distribu-
tion of kink-kink distances�. These details are not important
at this point. They will be discussed in more detail in Sec.
II C. Despite the ambiguity of the functions �n,m�u�, the val-
ues of these functions are fixed for two points, namely, the
boundary conditions �n,0�u�=1 and �n,m�u�=0 for m→�.

Inserting Eqs. �8� and �10� into Eq. �7�, one obtains

�n+n�,n��Kx,Ky�=�n+n��Kx��n�
* �Kx���Ky�

+�n,0�
m

�
u�

Pn��u +u��Pn��u���n,m�u�eiKyam,

�11�

with Poisson function

��Ky� = �
ny

�
Ky −
2	

a
ny� . �12�

Here, ��Ky� and �n,n� denote the delta function and the Kro-
necker delta, respectively. On the one hand, the second part
of Eq. �11� describes the diffuse scattering, which will be
discussed later. On the other hand, the first part of Eq. �11�
only contributes intensity if Ky = 2	

a ny, which is one of the
lateral Laue conditions of surface diffraction. This part will
be discussed here in more detail since it leads to the well-
known splitting of diffraction spots due to the vicinality of
the surface.

In the following, we assume the lateral Laue condition of
zero order �Ky =0�. Therefore, only the first Brillouin zone is
considered. The result, however, can be easily applied to
Brillouin zones of higher order if one adds reciprocal lattice
vectors.

Under these conditions, Eq. �5� is

G�K� � =
1 − cos�Kzd�
1 − cos�Kxa�


�
n

��n+n�,n��Kx��n+n��Kx��n�
* �Kx��n�e

iKzdn.

�13�

If we further specify the conditions to the case of two alter-
nating types of terraces and steps, named A and B, Eq. �13�
can be rearranged to

G�K� � =
1 − cos�Kzd�
1 − cos�Kxa� �

X,Y=A

B

�X�Kx��Y
*�Kx��XY�Kx� , �14�

where X and Y can be both A or B depending on whether the
pair of terraces which interferes are of type A-A or B-B �both
terraces must be separated by an odd number of terraces; n of
Eq. �13� is even� or A-B or B-A �both terraces must be sepa-
rated by an even number of terraces; n of Eq. �13� is odd�.
Therefore, four summands contribute to the lattice factor.
The phase correlation �XY�Kx� is defined via

�XY�Kx� = �
n

��n+n�,n�
XY �Kx��n�e

iKzdn, �15�

where �n+n�,n�
XY �Kx� is defined via Eq. �6� in the way that only

terraces of types X and Y, respectively, are considered.
Therefore, as mentioned before, n is even if both X and Y are
of the same type while n is odd if X and Y are of opposite
type.

Further simplifications can be obtained if we assume that
the sizes of adjacent terraces are not correlated, which is well
established in diffraction profile analysis.28–31 Thus, the
phase correlations, which enter Eq. �14�, are
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�AA = �BB =
1

2

1 + �A�Be−2iKzd

1 − �A�Be−2iKzd
+ c.c.� ,

�AB = �BA
* =

1

2

 �BeiKzd

1 − �A�Be−2iKzd
+

�A
*e−iKzd

1 − �A
*�B

*e2iKzd
� ,

�16�

where �A and �B denote the Fourier transforms �characteris-
tic functions� of the terrace size distributions PA�
� and
PB�
� of A terraces and B terraces, respectively.

B. Vicinal surfaces with straight steps

Equation �14� describes the general case of alternating
types of terraces. However, it is still rather complicated.

Therefore, first, we consider straight steps without fluctua-
tions so that �A�Kx�=�B�Kx��1. In addition, it is assumed
that the terrace size distributions of both A terraces and B
terraces are well peaked. Therefore, both characteristic func-
tions �A and �B can be approximated by the second order
cumulant approximation31

�A,B = exp
iKx
A,B −
1

2
Kx

2�A,B
2 � . �17�

Here, 
A and 
B denote the average terrace size of A and B
terraces, respectively. �A and �B denote the standard devia-
tions of the terrace size distributions. It should be noted that
Eq. �17� is exact for Gaussian distributions and a good ap-
proximation for well peaked distributions ��A,B�
A,B, see
Ref. 31�.

Inserting Eq. �17� into Eq. �14� yields

1 − cos�Kxa�

1 − cos�Kzd�
G�K� � = 2

sinh
Kx
2

2
��A

2 + �B
2�� + sinh
Kx

2

2
�A

2�cos�Kx
B + Kzd� + sinh
Kx
2

2
�B

2�cos�Kx
A + Kzd�

cosh
Kx
2

2
��A

2 + �B
2�� − cos�Kx�
A + 
B� + 2Kzd�

. �18�

Further simplifications can be obtained if the inverse lattice

factor G−1�K� � is developed as Taylor approximation of sec-
ond order with respect to Kx to describe the peak profile as
Lorentzian:

G�K� � =
G0�K0�

�2�K0� + �Kx − K0�2 , �19�

with phase dependent peak position

K0 = K0�Kz� = 2
	� − Kzd


A + 
B
, �20�

where � denotes the order of the diffraction peak with re-
spect to the periodicity 
A+
B of the vicinal surface. Fur-
ther, the half-width is

��K0� =
1

2

�A
2 + �B

2


A + 
B
K0

2, �21�

and the peak “intensity” is given by

G0�K0� = 4
1 − cos�Kzd�
a2�
A + 
B�2 ���A

2 + �B
2� + �A

2 cos�K0
B + Kzd�

+ �B
2 cos�K0
A + Kzd�� . �22�

Equations �20�–�22� are valid if K0 is in the first Brillouin
zone ��K0 � �	 /a�. If higher order spots are considered, K0

denotes the deviation from the lateral Bragg conditions Kx
=2	nx /a.

Equation �20� predicts that the position of the diffraction
peaks shifts linearly with vertical scattering vector Kz. This is
expected also for regularly stepped vicinal surfaces without
disorder and with perfect periodicity 
A+
B. The diffraction
peaks are delta functions for well ordered vicinal surfaces
�see Refs. 21 and 22�. For disordered vicinal surfaces, how-
ever, Eq. �21� shows that the half-width of the peaks varies
quadratically with the peak position. Therefore, the peaks
become broader and broader the more their positions deviate
from the Bragg conditions of the nonvicinal surface �Kx

=2	nx /a�. The broadening also depends on the standard de-
viations �A and �B, respectively. Therefore, it is possible to
characterize the terrace size distributions �average terrace
size and standard deviation� from recording diffraction peaks
at various scattering conditions. This will be demonstrated in
the following.

The open dots of Fig. 2 show the diffracted intensity
which is exactly calculated from Eq. �14� if the distribution
of terrace sizes is governed by gamma distributions

PA,B�
� � 
MA,B



A,B
�MA,B−1

exp
−
MA,B



A,B
� , �23�

with MA,B= �
A,B /�A,B�2. The solid lines of Fig. 2 show
Lorentzians which are best fitted to the diffracted intensity
peaks �see Eq. �19��. Obviously, the diffraction peaks are
described well by Lorentzians.

The lowest curve is calculated for scattering phase
S=Kzd /2	=0.05. Therefore, the peak of zero order is the
strong peak at the center �of the Brillouin zone�. The other
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peaks of this curve are due to �positive and negative� first
order. By increasing the phase S, all peaks shift to the left
due to the inclination of the vicinal surface. Therefore, an-
other peak appears at the right side of the figure. This peak is
the second order diffraction peak.

At once, it is clear that the intensity of the peak of zero
order decreases with increasing phase while its half-width
increases. The behavior of the peak of �positive� first order,
which moves toward the center of the Brillouin zone, is the
opposite. Its intensity increases and its half-width decreases
since its position moves toward Kx=0.

More insight is obtained if the peaks are fitted to Lorent-
zians. Figure 3 presents the fitted parameters �open symbols�
which are the integrated peak intensity and the full width at
half maximum �FWHM�. For the FWHM �bottom of Fig. 3�,
the solid lines show the quadratic dependence predicted by
Eq. �21�. The integrated intensity �top of Fig. 3� can be de-
scribed well by

G0
int = 2�G0 �

1 − cos�Kzd�
1 − cos�Kxa�

�2 + cos�Kx
A + Kzd�

+ cos�Kx
B + Kzd�� , �24�

which is identical to the intensity from regularly stepped
vicinal surfaces. In addition, the linear dependence of the
peak position on the scattering phase �not presented here�
can be verified from the data, too. Deviations from this be-
havior, however, can be observed if the terrace size distribu-
tion becomes very broad due to higher order components of
the characteristic functions �A and �B �not shown here, see
Ref. 31 for nonvicinal surfaces�.

On the one hand, Eq. �24� shows that for in-phase condi-
tions, where S=Sin is an integer �equivalent to the “Bragg
condition” Kzd=2	Sin�, the intensity of the lattice factor
vanishes for all peaks except the peak which crosses the

�nonvicinal� Bragg rod �Kx=0, first Brillouin zone�. The non-
vanishing peak has even order �=2Sin. The integrated inten-
sity of the lattice factor has to equal 1 since the intensity of
the lattice factor integrated over one Brillouin zone equals
1.32 On the other hand, the intensity of all peaks does not
vanish for the out-of-phase conditions Sout=Sin+ 1

2 . Here, a
peak of odd order ��=2Sin+1� crosses the �nonvicinal�
Bragg rod. This peak has the integrated intensity

G0
int = 

A − 
B


A + 
B
�2

. �25�

The well-known behavior of homogeneous vicinal surfaces
is regained from Eq. �25� since this peak vanishes for homo-
geneous vicinal surfaces �
A=
B�.

Equation �21� predicts a quadratic behavior of the peak
width not only with respect to the vertical scattering vector
Kz but also with respect to both standard deviations �A and
�B. Figure 4 presents diffraction intensity for S=0.25 if the
standard deviation �A is changed while �B is kept constant.
Following Eqs. �20�–�22�, both the peak of zero order and
the peak of first order have equal distance to the center of the
Brillouin zone and the same half-width. The intensity of both
peaks, however, differs under these scattering conditions
�see Fig. 3 �top� for S=0.25�.

The dots in Fig. 4 show the diffracted intensity which is
exactly calculated from Eq. �14� for surfaces without fluctu-
ating steps. The solid lines are best fits of Lorentzians to the
diffracted intensity. The agreement is excellent except for
very small standard variations �see curve for �A /
A=1/15�.
Both peaks become broader with increasing standard devia-
tion �A while the peak intensity decreases. The integrated
peak intensity, however, is almost constant, as Fig. 5 demon-
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strates. In addition, Fig. 5 proves the quadratic dependence
of the FWHM of the peaks on the standard deviation �A. The
FWHM of both peaks is equal, as Eq. �21� predicts for these
scattering conditions. Finally, both peaks shift slightly to the
center of the Brillouin zone for very large standard devia-
tions �A �see Ref. 31 for peak splitting of diffraction from
nonvicinal surface at the out-of-phase condition�. This latter
behavior is not described by Eq. �20� since higher order com-
ponents of the characteristic function �A are responsible for
this behavior.

Finally, the diffraction peak analysis for vicinal surfaces
without fluctuating steps can be summarized as follows. On
one hand, the average size 
A and 
B of both terraces of type
A and terraces of type B, respectively, can be obtained from
the distance between the diffraction peaks and from the re-
sidual �scaled� intensity of the peak at out-of-phase condition
which is at the nonvicinal Bragg condition �peak of odd or-
der�. On the other hand, the combined standard variance
�A

2 +�B
2 can be obtained from the phase dependence of

the FWHM of the peaks. Additional scaling arguments have
to be assumed to extract separately the standard deviations
�A and �B. Here, one typical scaling argument may be
�A /
A=�B /
B. This scaling will be used for the analysis of
diffraction patterns obtained from vicinal Ge�001�, as pre-
sented below.

C. Influence of step meandering

Up to now, it has been assumed that the steps are straight
and do not show any fluctuations. Here, we would like to

extend the diffraction peak analysis with respect to additional
meandering of steps. Following the steps of calculations for
the diffraction condition Ky =2	ny /a, which led from Eq.
�14� to the peak analysis of Eqs. �19�–�22� for vicinal sur-
faces without fluctuating steps, one recovers Eqs. �19�–�21�
also for vicinal surfaces with fluctuating steps. Equation �22�,
however, has to be modified:

G0�K0� = 2
1 − cos�Kzd�
a2�
A + 
B�2 ���A

2 + �B
2���A

2 + �B
2�

+ 2�A�B��A
2 cos�K0
B + Kzd�

+ �B
2 cos�K0
A + Kzd��� . �26�

Here, we assumed that the distribution of step fluctuations
is symmetric so that their characteristic functions �A�Kx� and
�B�Kx� are real functions, e.g., Gaussians. Therefore, it is
expected that step fluctuations decrease the intensity of the
diffraction peaks if their position is not at nonvicinal Bragg
conditions �Kx�2	nx /a�. The peak profiles, however, are
not influenced by fluctuations. Therefore, this may be called
a static Debye-Waller factor.33
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Figure 6 presents diffraction peaks of zero order and of
first order for S=0.25 with and without step fluctuations.
Please note the linear scale of the intensity. It has been as-
sumed that the distributions of the step fluctuations �A and
�B are Gaussians while the terrace size distributions follow
gamma distributions. Obviously, as expected, the main dif-
ference between both sets of peaks is the intensity while the
position and the half-width of the peaks do not depend on the
step fluctuations.

A detailed study has been performed on diffraction
peaks calculated for S=0.25 varying the step roughness
wA=��uA

2� and wB=��uB
2� of both types of steps, A and B,

while the terrace size distributions are kept constant. It has
been additionally supposed that the step roughness scales
with the average terrace width of both types of terraces
�wA /
A=wB /
B� for reasons of simplicity. The analysis of
the diffraction peaks is presented in Fig. 7. On the one hand,
both the FWHM and the position of the peaks are constant if
the step roughness is increased. The integrated intensity,
however, decreases with increasing step roughness. The solid
lines demonstrate that the attenuation of the peak intensity is
described well by Gaussians although the Gaussian form is
only exact if the fluctuation of both types of steps is identical
�wA=wB, see Eq. �26��.

If step fluctuations decrease the intensity of the peaks for
the lateral Bragg conditions Ky =2	ny /a, this intensity has to
appear somewhere else in the Brillouin zone since the entire
diffracted intensity within one Brillouin zone is independent
of the surface morphology.32 Therefore, the loss of peak
intensity is compensated by the intensity due to diffuse
diffraction.

The diffuse scattering Gdif f�K� � for diffraction from homo-
geneous vicinal surfaces �A terraces and B terraces are of the
same type� with uncorrelated step fluctuations has previously
been described by Ref. 26. In this report, it has been assumed
that the average terrace width is equal for all terraces. How-

ever, since the diffuse scattering is governed only by corre-
lation of step fluctuations within the same step �see Eq. �11��,
the former result can be easily extended to the case of two
different types of steps discussed here:

Gdif f�K� � = Gdif f
�A� �K� � + Gdif f

�B� �K� � , �27�

where Gdif f
�A,B��K� � are the diffuse lattice factors due to

fluctuating steps of type A and fluctuating steps of type B,
respectively.

It has been reported that the profile of the diffuse scatter-
ing parallel to the steps �Ky direction� has Lorentzian shape if
the kink-kink distance is governed by a geometric distribu-
tion �noninteracting or weakly interacting kinks�.26 Perpen-
dicular to the steps �Kx direction�, it is governed by the char-
acteristic function of the step roughness. This result has to be
applied to both parts of the diffuse scattering due to fluctu-
ating steps of type A and of type B. Both parts of the diffuse
scattering are described by

Gdif f
�A,B��K� � = �1 − �A,B�Kx��

1 − cos�Kzd�
1 − cos�Kxa�

2�A,B�Kx�
�A,B

2 �Kx� + Ky
2 ,

�28�

with

�A,B�Kx� =
2wA,B

2

�A,Ba2

1 − cos�Kxa�
1 − �A,B

2 �Kx�
. �29�

Here, �A,B denote the correlation lengths of step fluctuation
within steps of type A and of type B, respectively. Therefore,
on one hand, the half-widths of both parts of the diffuse
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scattering close to the Bragg condition Kx=0 are governed
by �A,B

�in� =�A,B
−1 . On the other hand, it has been shown for

the lateral out-of-phase condition Kx= ±	 /a �Brillouin
zone boundary� that the half-width is �A,B

�out�=2/
A,B
kink

�4wA,B
2 /�A,Ba2. Here, 
A,B

kink denote the average kink distances
for steps of types A and B, respectively.

Therefore, the parameters �step roughnesses wA,B, correla-
tion lengths �A,B, kink densities� that characterize the step
fluctuations can be only obtained from the diffuse diffraction.
The step roughness, however, also influences the intensity of
the peaks �see Eq. �26��. Therefore, intensities have to be
recalibrated in principle if they are used to characterize the
step size distribution �see Sec. II B�.

III. EXAMPLE: VICINAL Ge(001)

Here, the diffraction analysis developed in the previous
section will be applied to diffraction experiments performed
on vicinal Ge�001� surfaces. Surfaces of Ge crystals were
prepared with miscuts of 2.7° and 5.4° with respect to the

�001� crystal plane and inclined toward the �1̄1̄0� direction,
respectively. Details of the preparation of the sample are pre-
viously described.34 Diffraction patterns have been recorded
with a high resolution spot profile analysis LEED instrument
under ultrahigh vacuum conditions �base pressure of
10−8 Pa�.

Taking into account the monatomic step height of 1.40 Å
and supposing equivalent terraces, the surfaces have average
terrace sizes of 29.9 Å and 14.9 Å, respectively, which are
equivalent to average terrace sizes of 7.48 and 3.74 lateral
lattice constants �a=4.00 Å�, respectively. As discussed be-
fore, adjacent terraces are not equivalent due to the formation
of dimer rows on the �001� surface of Ge, which exist in two
90° rotated domains �see Fig. 8 for a schematic drawing�.
Different terraces show either 2
1 or 1
2 reconstruction
due to the diamond lattice of Ge. On one hand, A terraces are
1
2 reconstructed where the large side of the unit cell of the
superstructure is perpendicular to the descending SA step. On
the other hand, B terraces are 2
1 reconstructed where the
large side of the unit cell of the superstructure is parallel to

the descending SB step. The average size 
A of A terraces is
smaller than the average size 
B of B terraces due to the
interaction between atomic steps, which is caused by the
stress induced by the surface reconstruction. In addition, the
different atomic structures of the SA and SB steps lead to the
formation of rough steps with many kinks �SA step� and
smooth steps with negligible kink formation �SB step�. On
the one hand, these prerequisites have to be considered if
diffraction patterns from vicinal Ge�001� surfaces are ana-
lyzed. On the other hand, we will demonstrate in the follow-
ing that the analysis of the diffraction pattern may provide
detailed data concerning the morphology of such compli-
cated vicinal surfaces as vicinal Ge�001� surfaces �and
equivalent surfaces� are.

For the sample with miscut of 5.4°, Fig. 9 presents the
scattering plane in reciprocal space which is opened by the
�110� vector �x direction� and �001� vector �z direction�. The
figure clearly shows the inclined surface rods due to the vici-
nality of the surface. These rods run through the Bragg
points of three dimensional �3D� diffraction which are de-
noted with 3D nomenclature, too. For instance, the Bragg
points �008� and �0012� denote the second and third in-phase
conditions �Sin=2 and Sin=3�, respectively, of surface dif-
fraction while the out-of-phase condition Sout=2.5 is denoted
by �0010�.

In addition, the broad vertical rods at ±50%Bz are caused
by 1
2 reconstructed A terraces. Here, %Bz denotes the
scaling of the lateral components of scattering vectors Kx and
Ky, respectively, to the size of the Brillouin zone �100%Bz
�2	 /a�. These rods are also the boundaries of the first Bril-
louin zone which has been primarily discussed in the previ-
ous section.
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We will analyze the surface rods due to vicinality in the
following. The vertical axis of Fig. 9 runs from the in-phase
condition S=2 to the in-phase condition S=3. Therefore, the
inclined diffraction rods visible in the first surface Brillouin
zone are of fourth ��=4� to sixth ��=6� orders as denoted in
Fig. 9. The equivalent points of crossing at Kx= ±100%Bz
differ for the surface rods in the adjacent Brillouin zones due
to the diamond lattice of the Ge sample. These points are at
S=2.25 �with 3D nomenclature �119� for the �10� rod and

�1̄1̄9� for the �1̄0� rod� and S=2.75 �with 3D nomenclature

�1111� for the �10� rod and �1̄1̄11� for the �1̄0� rod�.
Profiles of the diffraction peaks, which are recorded in the

�110� direction, are shown in Fig. 10. It is again obvious that

the diffraction peaks shift into the �1̄1̄0� direction with in-
creasing scattering phase S. The influence of the scattering
phase on both the intensity and the half-width of the peaks,
however, can be better judged here than in Fig. 9. Starting
from the bottom of Fig. 10 �S=1.75�, one sees the diffraction
peaks of orders �=3 �left� and �=4 �right�, respectively. In-
creasing the scattering phase S, the diffraction peak �=3
becomes broader and less intense while the diffraction peak
�=4 becomes sharper and more intense. At S=2 �in-phase
condition�, only the diffraction peak �=4 is visible while the
diffraction peak �=3 vanished. Beyond S=2, the diffraction
peak �=5 appears on the right side. First, this peak is broad.
However, it sharpens and becomes more intense if the scat-

tering phase S approaches S=2.5 �out-of-phase condition�.
Here, the �broad� diffraction peak �=6 also appears. Beyond
S=2.5, the interplay between intensity and half-width of the
diffraction peaks depending on the scattering phase S can be
observed again.

This behavior of phase dependent position and half-width
of the peaks is in full agreement with the theory developed in
this paper. Diffraction peaks are sharp if they cross Kx
=0%Bz, while their half-width increases the more the posi-
tion is shifted from the center of the Brillouin zone �see Eqs.
�20� and �21��. The half-width of the peaks at Kx=0%Bz is
only determined by the instrumental broadening �or other
defects as mosaics�.

The peak profiles of different diffraction orders have been
fitted by Lorentzians to specify the phase dependence of both
the intensity and the FWHM on the scattering phase. The
result for the FWHM is presented in Fig. 11. The FWHMs of
the peaks follow the parabolic dependence predicted by Eq.
�21�. The combined variance �A

2 +�B
2 =8.1a2 is obtained from

the curvature of the phase dependence of the FWHM for the
peaks of diffraction orders �=4 to �=6. As previously stated,
one can only proceed further in analyzing the data if one
takes into account an additional condition. We will assume
that the terrace size distribution scales with the average ter-
race size, namely, �A /
A=�B /
B.

Therefore, one has to evaluate the average terrace sizes 
A
and 
B, which can be easily obtained from the intensity of
the diffraction peaks at the out-of-phase condition.32 Follow-
ing Eq. �25�, one obtains 
A /
B=0.35 for the sample with
miscut of 5.4° examined here. Finally, one can evaluate 
A
=1.94a and 
B=5.54a taking into account the value 
A
+
B=7.48a obtained from the distances of the different
peaks. Finally, the specific standard deviations �A=0.9a and
�B=1.7a can be obtained if one supposes a scaling behavior
of terrace size distributions.

At this point, we have to mention that we did not take into
account the diffuse scattering for the intensity analysis pre-
sented above. As discussed in Sec. II C, step roughness de-
creases the intensity of the diffraction peaks and causes dif-
fuse scattering. The step roughness can be obtained from
analyzing the diffuse diffraction intensity �see below�. One
can estimate a scaled step roughness of wB / �
A+
B��0.15
for the sample of 5.7° miscut. The effect of step roughness
on the diffraction peaks �=4 and �=6, however, is negli-
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FIG. 10. Diffraction profiles obtained from Ge�001� with 5.4°

miscut toward the �1̄1̄0� direction. The profiles are recorded in the
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peaks� and �=4 �right peak� for scattering phases below S=1.75.
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gible, as demonstrated by Fig. 12. The effect on the intensity
is less than 10%, yielding an even smaller influence of less
than 5% on the scaling quantity 
A /
B. Therefore, we do not
consider the step roughness for the analysis of the terrace
size distribution.

For the sample with miscut of 2.7°, Fig. 13 presents an
in-plane scan �Kx-Ky scattering plane� for scattering condi-
tion S=3.7. Three different diffraction peaks of orders �=7
to �=9 can be seen from left to right. While we previously
considered profiles of the diffraction peaks in the x direction,
here we will analyze the diffuse scattering in the y direction
�dashed lines in Fig. 13� to obtain information about the step
roughness.

Figure 14�a� presents profiles of the diffuse scattering re-

corded in the �1̄10� direction �y direction� for different Kx

values but constant scattering phase �S=3.7�. The intensity
of the diffuse intensity decreases with increasing Kx while
the FWHM of the diffuse scattering increases. This behavior
can be attributed to the formation of kinks of meandering
steps, as predicted by Eq. �29�.

As pointed out in Sec. II C, in principle, one cannot dis-
tinguish from the diffraction experiment what the contribu-
tions of SA steps and SB steps are. For the case of Ge�001�,
however, the diffuse scattering can be essentially attributed
to the kink formation of SA steps since it is well known from
STM experiments that SB steps rarely form kinks. Therefore,
we assumed wA=0 and analyzed the Kx dependence of the
FWHM of the diffuse scattering with respect to wB. Figure
14�b� shows that the Kx dependence can be described well by
Eq. �29�. Fitting the data, we obtain a correlation length �
=4.2a �16.6 Å� and a step roughness of wB=1.1a �4.4 Å�.
Therefore, the kink-kink distance is 
B

kink=3.4a �13.6 Å� for
the SB steps. In addition, the basic assumption of this report,
namely, wB�
A, 
B, can be verified a posteriori.

IV. DISCUSSION AND SUMMARY

This report deals with the influence of step roughness and
terrace size distributions on diffraction experiments per-
formed on �inhomogeneous� vicinal surfaces with alternating
terraces. Therefore, the model developed here is adequate to
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FIG. 14. �a� Line scans extracted from Fig. 13 recorded in the

�1̄10� direction �y direction� for different values of Kx. �b� Kx de-
pendence of the FWHM of the line scans. The line shows the de-
pendence described by Eq. �29�.
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surfaces such as Si�001� and Ge�001�, as well as surfaces of
alloys which tend to form paired steps. The analysis of dif-
fraction pattern yields morphologic data such as average ter-
race sizes, standard deviations of terrace size distributions, as
well as correlation lengths, kink densities, and �rms� widths
of meandering steps �see Table I�. Therefore, the theory may
also be applied to diffraction from vicinal surfaces with me-
andering steps of single height to characterize wavy steps
which, for instance, is observed for Si�001� vicinal surfaces
with extremely small miscut �less than 0.1°�.35,36 However,
we would like to emphasize that one needs diffraction ex-
periments with very high resolution to record diffraction
peak profiles as provided by grazing incidence x-ray diffrac-
tion �GIXRD�.

Previous diffraction studies on Si�001� focused on the
asymmetry between the coverage of both A and B terraces
which is equivalent to the asymmetry between average ter-
race sizes 
A and 
B, respectively. Therefore, asymmetries of
intensities of diffraction peaks have been analyzed but not
spot profiles of diffraction peaks.

For instance, the ratio of terrace sizes has been evaluated
from the asymmetry of the intensity of both 1
2 and
2
1 superstructure peaks of Si�001�, which are under exter-
nal stress.37,38 The intensity from the 90° rotated domains has
been associated with both A and B terraces. Splitting of the
superstructure spots into two �or more� peaks due to correla-
tion of the reconstruction of adjacent terraces has been ob-
served for vicinal Si�100� surfaces which are dominated by
DB double steps and B terraces.39,40 It has been pointed out
that short terrace sizes may be underestimated by this
method.41

Therefore, de Miguel et al. analyzed the intensity of the
peak at Kx=0%Bz at the out-of-phase condition with respect
to the adjacent peaks in reciprocal space to obtain ratios be-
tween average terrace sizes for vicinal Si�001� with different
angles of miscut.41 This procedure accords with Eq. �25�. It
has been applied by other groups, too.42 In addition, the peak
profiles for different scattering conditions presented �but not

discussed� by these authors confirm the diffraction analysis
developed here. On one hand, diffraction peaks are sharp if
they are close to Kx=0%Bz. On the other hand, the peaks
broaden if their position shifts to higher or lower values of
Kx.

The diffraction study presented here treats �two dimen-
sional� diffraction from vicinal surfaces with alternating ter-
races of different average sizes. Information concerning the
morphology of these surfaces is obtained from analyzing the
profiles of both diffraction peaks and diffuse scattering.

Early reports concerning diffraction spot profile analysis
refer to homogeneous vicinal surfaces with equal conditions
for every step. Lu and co-workers developed statistical mod-
els for one dimensional surfaces which do not consider the
influence of step meandering due to the reduced
dimensionality.43,44 Therefore, these studies focused on the
influence of terrace size distributions on diffraction peak pro-
files. For instance, the authors report the splitting into two
peaks for the out-of-phase condition if the terrace size distri-
bution is governed by cut-off geometric distributions where
terraces of small size are totally suppressed �P�
�
0�=0�.
Although one can easily obtain analytic solutions for the
calculation of peak profiles, the cut-off geometric distribu-
tion is rather nonphysical. Thus, it seems better suited to use
the gamma distribution �cf. Eq. �23�� as we do in our model
calculations.

Nevertheless, our results comprised in Eqs. �19�–�22� are
generally valid and independent of the exact form of the
terrace size distribution. Therefore, the results presented by
Lu and co-workers qualitatively agree with our results.43,44

For instance, the peaks become sharper if the terrace size
distribution becomes sharper. In addition, the phase depen-
dent FWHM of the peaks has been reported, which is also
predicted by Eq. �21�.

Furthermore, for the out-of-phase condition, one can com-
pare our result for vicinal surfaces with the diffraction peaks
obtained for rough singular �nonvicinal� surfaces �out-of-
phase projection of stepped surface on two-level system32�.

TABLE I. Overview of surface properties and their influence on the diffraction pattern.

Surface property Scattering condition Diffraction property Equation

Average terrace length Any Distance �K0 �20�

A+
B of diffraction peaks

Ratio of terrace sizes Out-of-phase condition Intensity ratio G0
int �25�


A /
B S=n+ 1
2 of diffraction peaks

Standard deviation of Variation of S close FWHM 2��S� �21�
terrace size distribution to Bragg condition of diffraction peak

�A+�B

Correlation length �A, B Diffuse scattering FWHM 2�A,B
in �29�

of meandering steps close to Bragg rod of diffuse scattering

Average distance 
A,B
kink Diffuse scattering FWHM 2�A,B

out �29�
of kinks close to boundary of of diffuse scattering

Brillouin zone

rms width w Dependence of diffuse FWHM 2�A,B�Kx� �29�
of meandering steps scattering on Kx of diffuse scattering
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Here, the FWHM of diffraction peaks of even order � qua-
dratically decreases for decreasing standard deviation at the
out-of-phase condition �K0= ±	 / �
� with 
A=
B= �
��.
This result coincides with former calculations for diffraction
peaks at the out-of-phase condition from surfaces with
peaked terrace size distribution.31 Here, we would like to
remark that the peaks of odd diffraction order �=2Sout �peak
at Kx=0 for out-of-phase condition�, which are sharp at the
out-of-phase condition, do not appear for homogeneous vici-
nal surfaces due to symmetry 
A=
B. However, singular
surface with nonequal distributions between layers of odd
and even heights �scaled to the layer distance d� lead to the
remaining central peak intensity �in our model, the diffrac-
tion peak of odd order �=2Sout�, too.

Later, the effect of step roughness of homogeneous sur-
faces on the diffraction intensity has been treated for slit
integrated intensities with the path of integration perpendicu-
lar to the meandering step edge.45,46 The authors report that
diffraction peaks split into a sharp peak and diffuse scattering
for the out-of-phase condition. This is in good agreement
with the model presented here. After slit integration �x direc-
tion�, the separated peaks due to the vicinality for Ky =0
collapse into one central spike while there exists an addi-
tional profile due to the two dimensional distribution of dif-
fuse scattering.

The results of Lagallay and co-workers have been applied
to vicinal Si�100�.45,46 The angle of miscut, however, has
been 0.2°, which is much smaller than the critical angle for
the transition from single layer steps �SA and SB� to double
layer steps �DB�. Therefore, the asymmetry between A ter-
races and B terraces is not well developed. This asymmetry
has not been taken into account in these studies concerning
step roughness.

Based on quadratic model Hamiltonians with different
coupling parameters, the same group presented two dimen-
sional calculations for vicinal surfaces, too.47 Although the
calculation of the intensity has been generally done numeri-
cally, it can be shown under the assumption of strongly cor-
related meandering of adjacent steps that the diffuse scatter-
ing can be described by the sum of Lorentzians �with respect
to Ky�. This agrees with Eq. �28� although our model is based
on noncorrelated meandering of step edges.

One important physical property of homogeneous vicinal
surfaces, which has been under discussion for a long time, is
the thermally activated roughening at high temperatures.
From terrace-step-kink models �including Monte Carlo simu-
lations�, power laws have been predicted for the profiles of
diffraction peaks.48,49 The two dimensional diffraction analy-
sis has been extended to the case of SXRD from vicinal
surfaces, where the power laws are regained for transverse
profiles.50,51 The temperature dependence of the exponent
has been used to determine the critical temperature for the
roughening transition of vicinal surfaces �see Ref. 5 for an
overview�.

Some authors, however, reported other peak profiles as
Lorentzians for the diffuse diffraction from rough vicinal
surfaces.52 Bartelt et al. later emphasized the importance of
step collisions on both correlation functions and diffraction
profiles.53 The correlation on short length scales �compared
to the average distance for step collisions ycoll� differs from

the behavior on large length scales. Consequently, the power
law is only valid for small scattering vectors Ky while
Lorentzian peak profiles are observed for large Ky. Since we
exclude step collisions in our model, we only observe the
Lorentzian behavior for transverse scans parallel to step
edges �see Eq. �28��.

The diffraction analysis presented here assumes that ef-
fects due to different form factors of both A and B terraces
can be neglected. This assumption may be questionable un-
der certain scattering geometries since the different orienta-
tions of both 1
2 and 2
1 reconstruction unit cells influ-
ence the form factor. For the standard LEED geometry with
normal incidence, however, form factor effects can be ex-
cluded due to the symmetry of the diffraction experiment.
This is not the case for experiments with grazing incidence
such as reflection high energy electron diffraction �RHEED�
or GIXRD. For instance, it has been reported that diffraction
peaks appear, which are forbidden for the kinematic approxi-
mation, for diffraction from Si�001� if LEED experiments
are performed with non-normal incidence.54

Beyond the simple kinematic approximation of the dif-
fraction profile analysis presented here, we investigated the
effect of alternating form factor of A terraces and B terraces,
too. We did not present the full evaluation of the diffraction
pattern since the evaluation is quite complicated except for
simple diffraction conditions such as in-phase condition or
out-of-phase condition. However, we will shortly discuss the
main features we obtained due to the additional effect of
different form factors for A terraces and B terraces.

On the one hand, different form factors influence intensi-
ties so that intensities cannot be used to determine the mor-
phology of the surface, e.g., differences of the average ter-
race sizes 
A and 
B. Therefore, it is not possible to evaluate
the coverage of A terraces and B terraces from Eq. �25�. This
complicates the analysis. On the other hand, the profiles of
peaks do not depend on form factor effects so that Eqs. �20�
and �21� still hold and can be used to determine statistical
parameters such as 
A+
B and �A

2 +�B
2 , respectively. The

analysis of the step roughness is also not influenced by form
factor effects since the dependence of FWHM on Kx is im-
portant, but not the intensity.

In addition, we would like to emphasize that form factor
effects can be suppressed even for grazing incidence if high
symmetry scattering planes are used for the diffraction ex-
periment. For instance, one can use the scattering plane
opened by both the �100� direction and the �001� direction
for experiments with Si�100� and Ge�100�. Under these con-
ditions, both kinds of dimers of A terraces and B terraces are
inclined by 45° with respect to the scattering plane so that
the form factors are equal.55

In summary, we presented a full model for the diffraction
from inhomogeneous vicinal surfaces with inequivalent ter-
races. Therefore, the model is ideal for diffraction from semi-
conductor surfaces with terrace dependent reconstruction
�e.g., Si�001� and Ge�001��, as well as for some surfaces of
alloys which tend to form pairs of steps. The analysis is
based on the kinematic approximation. Therefore it is valid if
profiles of peaks and diffuse diffraction are considered. In
addition, ratios between intensities of peaks can be analyzed.
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We demonstrate that diffraction experiments with adequate
analysis provide many important parameters such as average
sizes and standard deviations of terrace size distributions, as
well as rms widths, correlation lengths, and kink densities of

meandering steps, to characterize the morphology of vicinal
surfaces. Finally, we applied our model to the analysis of
vicinal Ge�001� surfaces with miscut toward the �110�
direction.
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