RAPID COMMUNICATIONS

PHYSICAL REVIEW A 89, 051603(R) (2014)
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We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two
clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic
expansion, both clouds acquire ring-shaped density distributions with superimposed angular density modulations.
The density distributions depend on the applied magnetic field and are well explained by a simple Bogoliubov
model. We show that the two clouds are anticorrelated in momentum space. The observed momentum correlations
pave the way towards the creation of an atom source with nonlocal Einstein-Podolsky-Rosen entanglement.
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Since the optical trapping of Bose-Einstein condensates
(BECs) enabled the investigation of quantum gases with
multiple spin components, spinor condensates have become
a particularly rich research field [1,2]. While initial work
focused on an understanding of the ground state and dynamical
properties of spinor condensates [3-5], recent experiments
have started to exploit their properties for applications in other
fields. In particular, the production of entangled states through
spin dynamics [6,7] has spawned interest in spin dynamics for
their applications in precision metrology [8,9].

Spin dynamics in a trapped quantum gas is strongly
influenced by the geometry of the confining potential. In
particular, highly asymmetric optical traps provide a way to
reduce the dimensionality of a trapped quantum gas, both
with respect to the motional and spin degrees of freedom
[10]. Thus, tailored confining potentials offer new avenues
for exploiting spin dynamics, e.g., the generation of correlated
pairs of atoms in well-defined motional states [11], similar to
work on four-wave mixing of ultracold atoms in an optical
lattice [12—14].

In this Rapid Communication, we investigate spin dynamics
in a quantum gas confined to two dimensions (2D) by an
optical lattice. We show how the spin excitation modes in
the 2D potential lead to ring-shaped density distributions with
a superimposed angular density modulation in time-of-flight
images. The angular structure is traced to the matter-wave
interference between multiple spin excitation modes with
angular momentum. The observed density distributions may
also be interpreted as several wave packets propagating in 2D
with well-defined momentum.

We investigate spin dynamics in a ’Rb BEC prepared in
|F =2,mp = 0) (|0)). By making several standard approxi-
mations to treat atomic collisions at ultralow temperatures, one
finds that only collisions that preserve the total magnetization
can occur [1]. Thus, the spin dynamics leads to scattering
into |F =2,mp = %£1) (|£1))and |F =2,mp = £2) (|£2)),
but for short evolution times, scattering between |0) and
|£1) predominates; i.e., |0) + |0) <> |1) + |—1). By treating
the |0) condensate as a classical field ¥y and |£1) as
small fluctuations 8v.;, the dynamics may be described
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where Hy = —%Vz + MT(U%,OZ, no = [Yol?, p is the radial
coordinate, w, is the radial trapping frequency of the confining
potential, and M is the mass. The 2D interaction energies
Uy and U, respectively describe spin-independent and spin-
dependent contact collisions [15]. The 2D chemical potential is
givenby wandg ~ —72 HzG~? x B?is the quadratic Zeeman
energy difference between |0) and |+1) for a magnetic field
of magnitude B. The first two lines of Eq. (1) describe the
internal dynamics of vy and v, respectively, while the final
line describes scattering between |0) and |£1). Given our focus
on spin-changing collisions during short evolution times, we
neglect the significantly weaker dipolar interaction: In F = 2
of 3"Rb, the magnetic dipole interaction strength is on the order
of 5% of the spin-dependent contact interaction U; [1,16].
We realize a 2D spinor gas by preparing a BEC in an
optical lattice. The BEC is produced in |+2) in a loffe-
Pritchard magnetic trap and contains on average ~2 x 10°
atoms with no discernible thermal fraction [17]. The BEC is
loaded into a red-detuned vertical optical lattice at wavelength
AMat = 914 nm and depth s = Vi /Ec = 18.2 0.3, where
E... is the recoil energy. The lattice is formed by retroreflecting
a beam with a 1/e* waist of w = 102 £ 2 um. At the chosen
lattice depth, the radial and axial trapping frequencies are w, =
2w x (47.3 £ 1.0) Hz and w,x = 27 x (23.5 + 0.2) kHz, re-
spectively, and tunneling between lattice sites is negligible.
The lattice loading is performed by simultaneously reducing
the current in the magnetic trap coils and increasing the lattice
intensity over 110 ms. This results in ~ 10 lattice sites occupied
by independent BECs. The atoms are prepared in |0) by two
sequential microwave pulses via |FF = 1,mp = 1) ata constant
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magnetic bias field of 285 mG in a horizontal direction,
which is maintained throughout the experiment. Following
preparation in the lattice, the cloud has a finite thermal
component: On average, we obtain Nggc = (4.2 £0.7) x 10*
atoms in the BEC and Ny, = (1.2 £0.2) x 10° in a thermal
fraction at temperature ~120 nK. The thermal component
arises from a technical limitation in switching off our magnetic
trap. Spin dynamics is initiated by applying an additional
magnetic field along the vertical direction. This field is turned
on with a linear ramp over 1 ms and adds vectorially to the
magnetic bias field to set g; the resulting magnetic field is held
constant for a variable evolution time. The spin dynamics is
brought to an end by switching off the optical lattice.

We probe the result of the spin dynamics by Stern-Gerlach
separation and absorption imaging along the vertical direction
after 20 ms time of flight. To avoid saturating the optical depth
of our imaging system for the |0) cloud, a third microwave
pulse is applied just after the lattice is switched off to
transfer part of the |0) populationto |FF = 1,mp = 0), whichis
transparent to the imaging light [18]. To obtain accurate atom
numbers, the imaging system was calibrated following [19,20].
Finally, the point-spread function of the imaging system is well
described by a Gaussian function with 1/e? waist 5.72 um. A
typical absorption image is shown in Fig. 1(a). For this image
the peak optical depth of atoms in state |0) was reduced to
1.5. The |%1) clouds have an interesting ring structure with a
number of peaks on the circumference and will be discussed
in detail below.

Figure 1(b) shows the time evolution of the population
in |£1) for ¢ = —67 Hz in terms of the relative population
(N_1 4+ Ny)/(N_-1 + No + Ny). The data have been fitted
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FIG. 1. (Color online) (a) Absorption image after Stern-Gerlach
separation and time of flight for ¢ = —330 Hz and 8 ms evolution
time. (b) Time evolution of relative population in |£1). The data
have been fitted with an exponential function for the first 8 ms; the
statistical uncertainty of each point is on the order of the symbol size.
(c) Mean relative population in |+1) after 8§ ms evolution time; the
solid line is a guide to the eye.
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FIG. 2. (a) Absorption images for several values of g; the gray
scale was adjusted for different settings of ¢ to enhance visibility.
The schematic for ¢ = —382 Hz illustrates momentum conservation
in a spin-changing collision. (b) Simulated time-of-flight density
distributions for the same values of g.

by an exponential function ocexp(t/r) from O to 8 ms.
This dependence is expected because Eq. (1) describes an
initial exponential amplification analogous to parametric down
conversion in nonlinear optics [21]. The fitted value of the time
constant was 7 = 3.0 & 0.2 ms. After 8 ms, the population
deviates from exponential growth, indicating the breakdown of
the “linear regime” in which depletion of |0) can be neglected.
Additionally, we begin to observe a small population in |£2)
at this time: At 8 ms, the relative population in |£2) is on
average 0.25%, i.e., on the order of our resolution limit.

The spin dynamics that transfers atoms from |0) to |*1)
exhibits a clear dependence on ¢, as shown in Fig. 1(c). The
data show a broad peak centered at ¢ = —100 Hz and for
higher |¢q|, the population in |£1) drops gradually to zero. The
q dependence is also evident in the density distributions after
time of flight. Figure 2(a) shows absorption images along the
vertical axis for several values of ¢. The spatial structure of the
clouds changes from a singly peaked distribution at low |g| to a
ring shape with density modulations around the circumference
at higher |q|.

Typically, ring-shaped density distributions in such time-
of-flight images indicate the presence of orbital angular
momentum [22], and the appearance of density modulations
around the circumference could be interpreted as the matter-
wave interference pattern of two or more angular momentum
eigenstates [11,23]. For large |¢|, one may obtain a good
understanding of the ring formed in a simplified, “free-space”
picture. In this picture, one can regard the spin-changing
collision as scattering two atoms from the stationary BEC into
|£1) in a ring in momentum space with radius p,,s = +/2Mgq.
Momentum conservation requires that the two scattered atoms
propagate in opposite directions, as indicated in Fig. 2(a) for
q = —382 Hz. Although, in principle, the system exhibits
polar symmetry, bosonic stimulation breaks the symmetry
leading to azimuthal modulations, which result in the forma-
tion of counterpropagating wave packets. Interestingly, these
wave packets should comprise an Einstein-Podolsky-Rosen
(EPR) entangled pair in momentum |=£p,,s) and spin state
|£1) [24,25].
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FIG. 3. (Color online) (a) (Solid line) Effective potential expe-
rienced by |+1) and (red dashed line) the cylindrical box approx-
imation. (b) Instability rates Enil/h forn=1,1=0,1,...,9. The
peak instability rate is that of the n = 1, [ = 0 mode; the peak rate
decreases monotonically with increasing /. (c) Instability rates in the
range ¢ = 0 to —500 Hz. (d) A closeup of (c) showing the instability
rates at ¢ = —400 Hz.

To elaborate on the qualitative picture presented so far,
we investigate the excitation spectrum of the |£1) states that
arises from the Hamiltonian in Eq. (1). In the Thomas-Fermi
approximation, ng in each lattice site has the shape of the
inverted confining potential. Accordingly, atoms in |£1)
experience a flat potential bottom plus a small parabolic
repulsion U;ng [26]. Outside the |0) BEC, the potential rises
steeply and the effective potential may be approximated by a
cylindrical box [11]. Figure 3(a) shows the effective potential
experienced by |+1) and the cylindrical box approximation.
This motivates the simplified Hamiltonian for excitations of
the system
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The eigenstates of the cylindrical box potential are [26]
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where pg is the Thomas-Fermi radius of the cloud, Jj
are Bessel functions of the first kind, and B, is the
nth zero of Jy. The eigenstates ¢,; have energies €, =
FLZ,B,%I /(2Mp§). The substitution of Slﬁm = an Oninpy INtO
Eq. (2) leads to the matrix elements (@, |ngl@,r). Cylin-
drical symmetry of ny and orthogonality of ¢,; for dif-
ferent [ yields (@u|nol@wr) = dur{@ulnole.:). Additionally,
a numerical evaluation of the matrix elements shows that
(@ui|nol@nr) 22 8w S {@ni N0l @ni) = Spw i (no)m is a good
approximation. With this simplification, Eq. (2) may be put
into a symmetric form and diagonalized through a Bogoliubov
transformation. The excitation energies are

EL = £i/(U(no)m)* — (€ + Ui{no)u + @2 (4)
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The eigenvalues Enil are either real or imaginary depending
on the interplay of €,;, Uy (ng),;, and g: A real E$ determines
the standard phase evolution of an eigenstate; an imaginary
value describes unstable evolution, i.e., growth or decay in the
amplitude of an eigenstate. In the following, we focus on the
unstable evolution and refer to E3;/h as instability rates.

For our experimental parameters, the instability rates form
a dense “forest” of overlapping resonances. The density of |0)
atoms sets the width and peak value of each resonance, and
it is the extreme compression along the lattice symmetry axis
that causes many modes to overlap. For Npgc = 4.2 x 10%,
the central site has 9 x 10° atoms, and the peak value of the
mean field repulsion U, ng is 55 Hz [see Fig. 3(a)]. To illustrate
how the modes change in shape as a function of /, Fig. 3(b)
shows Efs forn=1,1=0,1,...,9 in the central lattice site.
The peak instability rate is reached by the mode (1,0) due
to its large overlap with the BEC in |0). Figure 3(c) shows
the instability rates for all relevant modes in the range g = 0
to —500 Hz: It is clear that a single g value supports many
unstable modes.

We may quantify the multimode character of the spin
dynamics by investigating the instability rates at a given q.
We focus on the high |¢g| free-space regime. Figure 3(d) shows
the instability rates in a narrow interval around ¢ = —400 Hz,
for which 19 modes are unstable. We quantify multimode
amplification by the ratio §E/E, where E/h is the mean
value of the instability rate of the unstable modes, and §E/h
is the mean difference of instability rate between modes. For
SE/E « 1, all modes grow in population almost equally on a
time scale (4w E/h)~!, as though degenerate in instability rate.
In the case of the most unstable modes in Fig. 3(d), 6E/h ~
2Hzand E/h ~ 30Hz, for which the time scale for population
growth is 2.7 ms, consistent with the experimentally measured
value of 3.0 ms [see Fig. 1(b) and associated discussion]. Only
on a time scale (4w8E/h)~" ~ 40 ms will the evolution of
different unstable modes become resolvable, but this lies in
the nonlinear regime, well outside the 8 ms evolution time we
employ [see Fig. 1(b)].

The expansion of excitations in |£1) in terms of states
with angular momentum arises naturally from the cylindrical
symmetry of the optical lattice, but this choice of basis is
arbitrary. In the free-space picture, two atoms from the sta-
tionary BEC undergo a momentum-conserving spin-changing
collision: In the cylindrical basis, one spin state gains positive
angular momentum L while the other gains —L, and the total
angular momentum remains zero.

We simulate the experimental results by forming a super-
position state ¥ in each lattice site comprised of the set {v} of
modes that have a finite instability rate at a given ¢. In light
of earlier work [11,26], we form a general superposition state
for one spin state (e.g., |+1)) in each lattice site, consisting
of positive and negative angular momentum components.
The expansion coefficients are sampled from appropriate
probability distributions for each realization of the simulation
[11]. The state is given by ¥ = >_" c¢u + ¢, @n—i, Where
the complex amplitude is ¢,; = VP, and ¢,; and ch
are sampled separately. The first factor, / P,;(?), is the square
root of the probability to obtain N atoms in mode (n,/) in
|£1); i.e., a two-mode Fock state [11]. The second factor,
e'? establishes a random phase between / and —/ modes, and
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FIG. 4. (Color online) (a) Cloud radius after 20 ms time of flight.
Black points: experimental data; red squares: simulations; blue line:
ballistic expansion model (offset to begin at the average value of the
mean field repulsion across the populated lattice sites). (b) Density
correlation function atg = —297 Hz (mean of 54 realizations for both
simulations and experimental data). Black line: cross-correlation for
|£1) clouds; blue dash-dotted line: mean autocorrelation function for
|£1) clouds; red dotted line: autocorrelation for simulations.

between different lattice sites. For each lattice site the BEC
population is calculated and ¢ is evolved for 20 ms in free
space [27]. The superposition across all lattice sites is then
formed and the squared modulus is taken to obtain the density
distribution. Finally, the simulated density distributions are
convolved with the measured point spread function.
Examples of the simulated density distributions obtained
following this procedure are shown in Fig. 2(b). The sim-
ulated distributions reproduce the transition from a density
distribution with a central peak at low |g| to the striking
ring structures observed in the experiment at high |g|. This
transition can be understood from the mode structure in Figs.
3(b) and 3(c): The dominant (1,0) mode extends from g & 0 to
g ~ —90 Hz, meaning that ¥ in this interval will have nonzero
density in the center of the cloud, even after time of flight. For
larger |g|, modes without population in the center and a range
of angular momenta predominate in the experimental and
simulated density distributions. While the simulations capture
the overall ring structure well, it is clear that they show more
azimuthal structure than the observed density distributions.
To make a quantitative comparison of the simulated and
experimental density distributions, we first investigate the
size of the clouds. Figure 4(a) shows the cloud radius
(p) of the experimental and simulated density distributions.
The box model simulations show good agreement with the
experimental cloud size, with deviations arising for low and
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high |g| where the cylindrical box approximation breaks
down. At low |g|, this arises from the ~50 Hz repulsive
bump U;ng [see Fig. 2(a)], and at high |g|, the box potential
underestimates the energy imparted to the scattered atoms
due the finite slope of the walls. One can obtain a simple
estimate of the cloud radius in the high |g| regime using the
free-space picture: If each wave packet gains pu,s = +/2Mgq,
the position of an atom assuming ballistic expansion is given
by (p) = vV p3 + (Pumst/M)?, where py is the in-trap radius
and ¢ is the time of flight.

To study the structure around the circumference of the
experimental and simulated density distributions, we em-
ploy an angular density correlation function. Momentum
conservation in the collision process requires that a density
peak at angle 6 in a |£1) cloud leads to an anticorrelated
density peak located at ' =6 — 7 in the |F1) component
[see Fig. 2(a) for ¢ = —382 Hz]. We define the correlation
function ¢(@) = (i—1(0)ii41(6 — @) /[{7i—1){ii+1)], where it
are the two angular density distributions and the angular
brackets denote the mean over 6. The correlation function for
q = —297 Hz is shown in Fig. 4(b) and exhibits the expected
anticorrelation between the two clouds. In order to analyze
the /-mode composition of the states generated by the spin
dynamics, we also show the autocorrelation function for the
experimental and simulated density distributions. A compar-
ison of these indicates that only a subset of the energetically
allowed [ modes contribute to the observed experimental states.
Nonetheless, the autocorrelation function confirms that several
[ states contribute to the observed distributions because c(«)
is approximately flat away from the peak at « = 0 due to the
destructive interference of several frequency components; in
the free-space picture, this amounts to random spontaneous
symmetry breaking of the polar symmetry.

In conclusion, we have investigated spin dynamics in a
2D quantum gas and have observed qualitatively new features
such as ring-shaped density distributions in time of flight.
A theoretical analysis of the spin excitation modes in the
system provided a qualitative understanding of the ring-shaped
clouds and showed their angular structure is due to the
interference of several modes. In future work, we will gain a
full understanding of the unstable spin modes by studying the
dynamics in a single site of the optical lattice. Finally, tailoring
the trapping potential further will enable the preparation of
anticorrelated wave packets of quantum degenerate atoms
with the aim of producing an atom source with nonlocal EPR
entanglement.
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