
 

 

Manufacturing of Polymer Optical Waveguides Using Self-Assembly 
Effect on Pre-Conditioned 3D-Thermoformed Flexible Substrates 

 
Gerd-Albert Hoffmann*a, b, Tim Wolfera, Jochen Zeitlerc, Jörg Frankec, Oliver Suttmannb, 

Ludger Overmeyera, b 

aInstitute of Transport and Automation Technology, Leibniz Universität Hannover, An der 
Universität 2, 30823 Garbsen, Germany; bLaser Zentrum Hannover e.V., Hollerithallee 8, 30419 

Hannover, Germany; cInstitute for Factory Automation and Production Systems, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany 

ABSTRACT  

Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass 
production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to 
comply with price requirements while providing sufficient optical quality for short range data transmission. A high 
efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical 
data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this 
paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the 
surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. 
With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create 
gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the 
preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due 
to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and 
sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides 
with a single coating process. The relevant printing process parameters that affect the quality of the generated 
waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 µm are shown. 
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1. INTRODUCTION  
The increasing amount of data in the industry demands higher bandwidths than currently used communication 
technologies are able to provide. Since optical data transmission is eligible to substitute copper based technologies for 
communication as well as for sensors applications, highly efficient fabrication methods are required. The advantages 
concerning low weight and the possibility of increasing data rates and information density are part of recent published 
international roadmaps [1]. Optical glass fibers are already commercially available and fulfill all relevant requirements 
concerning high transfer bandwidths over long distance transmission paths. Additionally the usage of polymer optical 
waveguides (POW) for short distance transmissions (up to 100 m) is becoming progressively significant. New developed 
polymer materials with a large range of refractive indices allow for higher numerical apertures and therefore a lower 
curvature radius compared to glass fibers. Moreover polymers exhibit higher mechanical flexibility and rigidity than 
glass fibers. For example new production technologies like direct laser writing [2], two-photon-polymerization [3] and 
hot embossing [4] are currently under investigation in order to become competitive to copper based technologies 
concerning productivity and quality. Functional printing is another promising approach to achieve these requirements. In 
combination with thermoforming of these functionalized polymer foils, spatial mechatronic interconnected devices with 
optical functionalities can be realized. This paper describes the process of flexographic printing conditioning lines on 
polymer foils. After thermoforming these substrates the hydrophobic behaviour of the conditioning lines accomplish the 
subsequent application of polymer optical waveguides. The printing machine is equipped with an optimized and 
functionalized printing form. It contains laser structured and fluorinated raised structures on it to achieve higher 
resolutions in the printing process. As a conclusion this paper shows the limitations of thermoforming flexographic 
conditioned polymer substrates and lists solutions to comply with these challenges. 
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technology to increase the functional density by means of plastic deformation of the pre-conditioned substrate. The 
combination of fabrication technologies presented in this research will offer new applications for polymer optical 
communications in future. 
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