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ABSTRACT  

In the presented work a fast frequency domain measurement system to determine group delay (GD) and group delay 
dispersion (GDD) of optical coatings is proposed. The measurements are performed in situ directly on moving substrates 
during the thin film coating process. The method is based on a Michelson interferometer, which is equipped with a high 
power broad band light source and a fast spectrometer. Especially for the production of chirped mirrors it is 
advantageous to obtain group delay and group delay dispersion data of the last layers. This additional information allows 
for online corrections of coating errors to enhance the precision of complex interference filters for short pulse 
applications. 
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1. INTRODUCTION  
During the last years, short pulse lasers have gained increasing importance, for example in ultra-precise material 
processing. On the way to more power and shorter pulses the demands on the lasers increased rapidly. Today, key 
elements of many short pulse lasers are chirped mirrors for the compensation of dispersion effects induced within the 
beam path. To achieve these shorter pulses precise chirped mirrors with very flat broad negative group delay dispersion 
(GDD) or very high negative GDD are needed. This imposes critical demands on coating precision and coating control 
mechanisms. To deposit these complicated coating designs with more than hundred layers, advanced optical monitoring 
strategies like broad band monitoring and also single wavelength monitoring are state of the art. These techniques use 
transmittance or reflectance measurements during the coating process to terminate every single layer with a defined 
optical thickness. One effect, which has to be mentioned in this context, is error compensation. Usually, this is a positive 
effect of optical monitoring, which compensates e.g. for deviations in optical constants by modification of physical 
thickness. Furthermore, errors in already deposited layers are corrected by thickness adjustments of following layers. As 
a consequence, the result will be in most cases slightly worse than the target specification but better than without 
compensation effect. In case of chirped mirrors with additionally defined GDD targets, this compensation effects can be 
counterproductive, because variations or inaccuracies in dispersion have a large impact on the GDD and cannot be easily 
compensated by thickness modifications. Hence, the last layers of chirped mirrors, which normally represent an 
adjustment of the optical impedance, have an essential influence on the GDD performance of the mirrors and are often 
controlled by classical methods like quartz crystal monitoring or time counting. These methods are not very effective, 
because many coating iterations will be needed to find a coating parameter set for a satisfactory GDD result. To attain 
information about the developing GDD, especially of these last growing layers, an in situ Fourier-transform 
measurement system is proposed. The method is based on a Michelson interferometer with a broad band light source and 
a fast spectrometer. To our knowledge, the measurement of the GDD directly on the moving substrates during the 
coating process has been shown for the first time. With this additional information about the group delay dispersion, 
novel real time algorithms can be developed to react on deposition errors and to optimize the thicknesses of the last 
layers of chirped mirror systems.  

 

2. THEORETHICAL BASIS 
Fourier-Transform Spectral Interferometry  

Fourier-Transform Spectral Interferometry (FTSI) is an alternative to the classical time domain analysis method that is 
used for interference analysis. The main advantage is a fast data acquisition of the measured wide spectral range, which 
is essential for online in situ measurements on moving substrates. Details of the measurement equipment are given in the 
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next section. In this section, the determination of the differences in phase between two light pulses by FTSI is described 
[1]. If ER(t) and ES(t) represent the time dependence of two electrical fields and ER(ω) and ES(ω) their Fourier 
transforms, the phase difference Δϕ to be measured is given by 

 ∆߮ = arg[ܧௌ(߱)] − arg ோܧ] (߱)] (1) 

The resulting frequency spectrum of the interferometer, which is analyzed by a spectrometer, is given by  

 ܵ(߱) = ோ(߱)|ଶܧ| + ௌ(߱)|ଶܧ| + 2ܴ݁ሼܧோ∗(߱)ܧௌ(߱)ሽ= 	 ோ(߱)|ଶܧ| + ௌ(߱)|ଶܧ| + (߱)ௌܧ(߱)∗ோܧ × exp[݅(߱߬ + ∆߮)] + ܿ. ܿ., (2) 

where c.c. stands for the complex conjugated of the previous term and ߬ for the relative time delay between the two 
interferometer arms. The last two terms represent the interference part and depend strongly on the phase difference of the 
two electrical fields. To extract the phase information, firstly an inverse Fourier transformation of Equation (2) into the 
time domain is applied: 

(߱)ଵܵିܶܨ  = (ܶ)ௌܧ⨂(ܶ−)∗ோܧ + (ܶ)ோܧ⨂(ܶ−)∗ௌܧ + ܵ(ܶ − ߬) + ܵ(−ܶ − ߬)∗ (3) 

The first two terms are autocorrelation functions of the individual reflection signals of the reference mirror and the 
sample substrate. They are centered at ܶ = 0. In contrast to this, the terms ܵ(ܶ − ߬) and ܵ(−ܶ − ߬)∗ are centered at ܶ = ߬ and ܶ = −߬, respectively [2]. Hence, the values of ߬ should be large enough for the required separation of the 
signal components [3] [4] [5]. This evaluation can be done by convolution with a separation function, e.g. a super-Gauss 
window function 

(ܶ)ݓ  = exp [−(ܶ ⁄ߪ )ଶఒ]. (4) 

The parameter σ denotes the half-width of the function and λ the super-Gauss order [2] [6]. In a next step, the result is 
shifted by the time delay – ߬. Finally, a transformation back into the frequency domain  

(߱)ݏ  = ܶܨ ቄ[ିܶܨଵܵ(߱)] × expቂ−((ܶ + ߬) ⁄(ߪ ଶఒቃቅ (5) 

results directly in the filtered signal ݏ(߱) with phase difference 	∆߮(߱) = arg	[ݏ(߱)] [7]. 

If the influence of the reference mirror on phase is independent of frequency (see Paragraph 3), the group delay ܦܩ(߱) 
of the phase difference ∆߮(߱) is equal to the group delay of the phase ߮ௌ(߱) of the sample under inspection: 

(߱)ܦܩ  = − డడఠ arg[ݏ(߱)] = − డ(∆ఝ)డఠ = −డ(ఝೄ)డఠ . (6) 

The group delay dispersion (GDD) can be calculated by an additional derivation of the GD with respect to the frequency ߱ [6] [8]. 

(߱)ܦܦܩ  = −డ(ீ஽)డఠ = డమ(∆ఝ)డఠమ  (7) 

 

Signal requirements and Fourier approximations 

Signals that should be analyzed by Fourier transformations have to fulfill some essential requirements. If fast algorithms 
like FFT are used, the data points have to be evenly spaced. This can be implemented in a simple way by suitable 
sampling approaches. The second aspect, that has to be considered in case of Fourier transformations, is connected to the 
periodicity and differentiability of the functions. In practice, measured signals result in non-periodic jump discontinuities 
at the start and end of the measurement range. As a consequence, the Fourier series produce large artifacts in form of 
oscillations (Figure 4 and Figure 5). To overcome this issue, a common Fourier approximation is to multiply the signal 
with a periodic window function so that the product and its derivatives become periodic with respect to noise and 
computational accuracy [9] [10]. However, this approach influences the performance of the measurement system. On the 
one hand, the signal-to-noise ratio decreases especially at start and end of the measurement range. On the other hand, 
also the window function method produces artifacts. Therefore, the windowing has to be a compromise between 
enforcing the periodicity and optimizing the shape of the calculation result in dependency of the window function as well 
as the given data set [11]. Finally, the approximation is very sensitive to the noise of the signal and the window function 
parameters connected to the separation of interference terms. 
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In case of the aimed in situ measurements on moving substrates, the effects mentioned above would result in strong 
oscillations of the GD and GDD curves. Hence, the Short Time Fourier Transformation (STFT) was chosen as an 
alternative and more suitable Fourier approximation method. The STFT is a well-known approach for wavelet analysis in 
many areas of signal processing [12] and can be also used to determine the GD. In the given case, the main advantages 
compared to other wavelet analysis methods are a reduced computational time, an effective reduction of transformation 
artifacts, and a lower influence of noise due to the overlapping of several small range Fourier transformations [13]. In 
particular, the usage of a window function for the measured signal ܵ(߱)	before applying the Fourier transformation into 
the time domain (Equation (3)) is not necessary.  
 
GD determination by Short Time Fourier Transformation  

The Short Time Fourier Transformation ܵܶܨ ௛ܶ(ܶ, ߱) of a signal ݏ(ܶ) at time T and frequency ߱ is a linear time-
frequency representation defined as ܵܶܨ ௛ܶ(ܶ, ߱) = න ℎ[ܶ − ஶ′ݐ௜ఠ௧ᇱ݀ି݁[′ݐ]ݏ[′ݐ

ିஶ  (8) 

With substitution of ݐᇱ = ݐ + ܶ the equation can be written as 

ܨܶܵ ௛ܶ(ܶ, ߱) = න ℎ[−ݐ]ݐ]ݏ + ܶ]݁ି௜ఠ[௧ା்]݀ݐஶ
ିஶ= 	݁ି௜ఠ் න ℎ[−ݐ]ݐ]ݏ + ܶ]݁ି௜ఠ௧݀ݐ	ஶ

ିஶ 	
= ݁ି௜ఠ்	ܺ(ܶ, ߱) 

 

(9) 

 
Where ℎ[−ݐ] is a real-valued window function with finite length centered around zero, e.g. a Gauss window. However, 
in the following application example (see Paragraph 4) a flat-top window function was used because of its specific 
advantages in amplitude accuracy. Although the Gauss window produces fewer artifacts in the side bands and leads to 
better results at the edges of the spectral range, it disturbs the calculated GDD curves by small ripples (Figure 6).  
The STFT in the form  ܺ(ܶ,߱) = න ℎ[−ݐ]ݏ[ܶ + ஶݐ௜ఠ௧݀ି݁[ݐ

ିஶ= ௜ఝ(்,ఠ)݁(߱,ܶ)ܯ , (10) 

with the magnitude of the time frequency spectrum ܯ(ܶ,߱) and the phase ߮(ܶ,߱) is equivalent modulo the phase factor ݁ି௜ఠ். This a more prevalent form in which the window is time-translated with the signal held to a fixed time. In general, 
the group delay can be derived from the phase ߮(ܶ,߱) (see Equation (6)). The STFT in the form ܺ(ܶ,߱) gives the 
spectral information of the signal within the window at its position in time. By sliding the window ℎ(ܶ) to different 
positions, the time-varying spectral characteristic of the signal can be extracted [13] [14] [15] [16] [17] [18]. 
Based on Equation (10) the group delay can be directly determined by using the center-of-gravity method in direction of 
time [19]: ܦܩ(ܶ,߱) = ׬ ܶ ܺ(ܶ, ߱) ݀ܶஶିஶ׬ ܺ(ܶ, ߱)ஶିஶ ݀ܶ  (11) 

The calculation of the GDD is given again by the derivative of the GD with respect to frequency ߱ (Equation (7)). 
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3. EXPERIMENTAL SETUP  
In this section the experimental setup and the measurement process are presented. Figure 1 shows a schematic 
illustration of the measurement system. It consists of a Michelson Interferometer with a broad band light source, a 
spectrometer with a fast and sensitive detector, and a polarization maintaining fiber coupler as major components. As 
reference a protected silver mirror was selected because of the relatively low phase influence. An advantage of the fiber 
coupled system compared to a free-beam setup is the enhanced flexibility. Based on the fiber approach nearly every 
process chamber can be equipped almost independent of installation conditions like flange positions, chamber 
dimensions or specific substrate holder constructions. However, to realize this flexibility polarization maintaining single 
mode fibers with a restricted wavelength range have to be employed. The usable wavelength range of the presented 
system is 800-880 nm. This restriction results from the combination of the applied light source, the fiber coupler and the 
detector of the spectrometer. Nevertheless, the measurement system is modular, because one or more components can be 
substituted independently to enlarge or shift the wavelength range.  

 
Figure 1: Experimental setup 

4. MEASUREMENT RESULTS 
Data acquisition and transformation into time domain 

In this section, the measurement performance of the system is demonstrated by an example of a chirped mirror coating 
with -600 fs² GDD in a wavelength range of 830 to 850 nm. The developed measurement system determines the GDD 
directly on the rotating substrate holder. Depending on the rotation speed, the size of sample and the diameter of 
substrate holder, 20-60 measurements of the spectrum ܵ(ߣ) can be performed typically every rotation (see Figure 2). 
Following Equation (3), Figure 3 shows the real part of the Fourier transformed interferometric measurement S(ω) of the 
example coating (see Figure 2) and the super-Gauss separation function. The separated signal has to be shifted back to 
zero by the time delay – ߬ of around 500 fs. It should be mentioned that the width of the peaks (Figure 3) is increased by 
FFT artifacts. If the measurement is windowed by, for example, a Gauss function, the width will be decreased, but 
influenced by systematic artifacts of the window function. This will be discussed in more detail in the next section. 
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Figure 2: Non windowed in situ interferometric measurement of an example of a chirped mirror coating with -600 fs² GDD  

 
Figure 3: Real part of the Fourier transformed interferometric measurement ࡿ(࣓)	and super-Gauss separation function 
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Comparison of different transformation procedures back into frequency domain 

In this section, results of different methods for the transformation back into the frequency domain are presented. 
Thereby, the advantages of the STFT method for the in situ GDD measurements, which are related to averaging and 
smoothing effects, are demonstrated. Figure 4 shows the consequences of an inappropriate interference peak separation. 
In this case, the applied super-Gauss function is too broad and causes in combination with the signal noise strong 
oscillations, although the measurement signal ܵ(߱)	 was windowed with a Gauss function before FFT-1 was applied. 
These disadvantageous oscillations distort the GDD if calculating with (Fig. 4) as well without windowing the 
measurement signal ܵ(߱). 

 
Figure 4: Influence of noise on calculated GDD, Gauss windowed FFT-1, FFT with an exceedingly broad separation function for 
demonstration 

In contrast, Figure 5 presents the results of an optimized peak selection for the FFT transformations. The light grey curve 
shows the case without a windowing of the measurement signal, and the dark grey curve represents the optimum result 
that is achievable with windowing and an optimized peak separation. However, both curves are worse than the STFT 
result (black) in comparison to the theoretical design curve (dashed). Additionally, there are transformation artifacts of 
the Gauss window function observable as systematic ripples for example between 830 and 840 nm wavelength. These 
artifacts can be observed also with applied Gauss window as moving window for STFT (Figure 6) in comparison with 
flat-top windowed STFT and the design curve. As mentioned before, a flat-top window is superior in this case and was 
used as default. Nevertheless, the usage of the STFT produces better and more stable results than the classical FFT even 
without an additional windowing before the transformation into time domain and without an optimization of the peak 
separation function. This is particularly important, because in case of the fast in situ measurement on moving substrates 
it is impossible to optimize the separation window parameters continuously. 
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Figure 5: Calculated GDD influenced by separation function adjusting and windowing of the measurement signal for FFT-1 

 
Figure 6: Comparison of STFT from time domain into frequency domain with Gauss and flat-top STFT window 

Finally, Figure 7 shows the GDD result with usage of the STFT and a moving flat-top window in comparison to an ex 
situ measurement done with a ChromatisTM time domain GDD measurement system by KMLabsTM. The measurement 
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results differ slightly, which could be due to the different measurement spot sizes and measurement positions in 
combination with minor layer thickness inhomogeneities or substrate deformations caused by coating stress. In case of 
the ChromatisTM ex situ measurement system, the spot area is approximately one square centimeter and the measurement 
position slightly off-center. In contrast, the spot diameter of the in situ measurement system is in the range of 50 µm and 
the measurement is done on a defined radius along the moving substrate. In the presented case about 40 from 60 
measurements performed every revolution of the substrate holder are selected for data analysis. Measurements with, for 
example low interference contrast, are sorted out. The in situ measurement of Figure 7 is an average of 100 rotations and 
consists of about 4000 single measurements. The error bars of about 10 fs² in the range of 840 nm wavelength 
demonstrate the stability of the in situ measurement. 

In addition, in Figure 7 two design curves which correspond to a layer thickness difference of only 2.2 nm in layer 53 of 
55 are depicted (deviation of less than 1.5%). The first curve matches very well with the in situ measurement and the 
other curve with the ex situ measurement of the ChromatisTM system. This illustrates how sensitive the GDD reacts on 
coating errors.  

 
Figure 7: In situ GDD measurement in comparison to ex situ ChromatisTM measurement and theoretical design GDD 

CONCLUSIONS 

This study demonstrates a new group delay and group delay dispersion in situ measurement system for use in optical 
coating plants. With the presented fiber based FTSI system it is possible to measure the GD and GDD directly on the 
moving substrates during complex deposition processes. Different Fourier analysis methods were evaluated in respect to 
optimum stability. Finally, a conventional Fourier transformation into time domain without windowing functions and a 
subsequent STFT with a flat-top moving window back into frequency domain have been proven to be the most 
appropriate solution. This approach opens the way for a significantly enhanced chirped mirror production. Furthermore, 
based on the additional phase information new deposition control algorithms can be developed as the GDD is very 
sensitive to thickness variations and can be used for a more reliable differentiation between layer thickness and refractive 
index. 
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