
Graph Representation Learning for Security
Analytics in Decentralized Software Systems and

Social Networks

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

DOKTOR DER NATURWISSENSCHAFTEN

Dr. rer. nat.

vorgelegte Dissertation

von

M. Eng. Huu Hoang Nguyen

geboren am 21. Januar 1990, in Dong Thap, Vietnam

2024

ii

Referent: Prof. Dr. -Ing Wolfgang Nejdl

Korreferent: Prof. Dr. Jiang Lingxiao

Vorsitz: Prof. Dr. Ziawasch Abedjan

Tag der Promotion: 03.05.2024

iii

“The steps you take don’t need to be big; they just need to take you in the right
direction.”

Jemma Simmons (Marvel Cinematic Universe)

v

ABSTRACT

With the rapid advancement in digital transformation, various daily interac-
tions, transactions, and operations typically depend on extensive network-
structured systems. The inherent complexity of these platforms has become
a critical challenge in ensuring their security and robustness, with impacts
spanning individual users to large-scale organizations. Graph representation
learning has emerged as a potential methodology to address various security
analytics within these complex systems, especially in software code and social
network analysis, and its applications in criminology. For software code,
graph representations can capture the information of control-flow graphs and
call graphs, which can be leveraged to detect vulnerabilities and improve
software reliability. In the case of social network analysis in criminal investiga-
tion, graph representations can capture the social connections and interactions
between individuals, which can be used to identify key players, detect illegal
activities, and predict new/unobserved criminal cases.

In this thesis, we focus on two critical security topics using graph learning-
based approaches: (1) addressing criminal investigation issues and (2) detect-
ing vulnerabilities of Ethereum blockchain smart contracts. First, we propose
the SoChainDB database, which facilitates obtaining data from blockchain-
based social networks and conducting extensive analyses to understand Hive
blockchain social data. Moreover, to apply social network analysis in criminal
investigation, two graph-based machine learning frameworks are presented to
address investigation issues in a burglary use case, one being transductive link
prediction and the other being inductive link prediction. Then, we propose
MANDO, an approach that utilizes a new heterogeneous graph representation
of control-flow graphs and call graphs to learn the structures of heterogeneous
contract graphs. Building upon MANDO, two deep graph learning-based
frameworks, MANDO-GURU and MANDO-HGT, are proposed for accurate
vulnerability detection at both the coarse-grained contract and fine-grained
line levels. Empirical results show that MANDO frameworks significantly
improve the detection accuracy of other state-of-the-art techniques for various
vulnerability types in either source code or bytecode.

Keywords: graph embedding, graph neural network, heterogeneous graph learn-
ing, decentralized social network, vulnerability detection, blockchain, smart contract,
social network analysis, crime linkage, link prediction, database

vii

ZUSAMMENFASSUNG

Mit dem rasanten Fortschritt der digitalen Transformation hängen verschiedene
tägliche Interaktionen, Transaktionen und Abläufe in der Regel von umfangreichen,
netzwerkstrukturierten Systemen ab. Die inhärente Komplexität dieser Plattfor-
men stellt eine kritische Herausforderung dar, um ihre Sicherheit und Stabilität zu
gewährleisten, mit Auswirkungen, die von Einzelpersonen bis hin zu großflächigen
Organisationen reichen. Graph-Representation-Learning hat sich als eine vielver-
sprechende Methodik etabliert, um vielfältige Sicherheitsanalysen in diesen kom-
plexen Systemen anzugehen, insbesondere in der Softwarecodeanalyse und der
sozialen Netzwerkanalyse, sowie in deren Anwendungen in der Kriminologie. Bei
Softwarecodes können Graph-Representationen die Informationen von Kontrollfluss-
diagrammen und Funktionsaufrufgraphen erfassen, die genutzt werden können,
um Schwachstellen aufzudecken und die Softwarezuverlässigkeit zu verbessern. Im
Bereich der sozialen Netzwerkanalyse in der kriminalpolizeilichen Ermittlung kön-
nen Graph-Representationen die sozialen Verbindungen und Interaktionen zwischen
Individuen abbilden, was dazu verwendet werden kann, Schlüsselpersonen zu iden-
tifizieren, illegale Aktivitäten zu erkennen und neue/unbeobachtete kriminelle Fälle
vorherzusagen.

In dieser Dissertation konzentrieren wir uns auf zwei kritische Sicherheitsthemen
unter Verwendung von Graphen-Learning-basierten Ansätzen: (1) die Behandlung
von Problemen kriminaltechnischer Untersuchungen und (2) die Erkennung von
Schwachstellen in Ethereum-Blockchain-Smart-Contracts. Zunächst schlagen wir die
SoChainDB-Datenbank vor, die das Abrufen von Daten aus Blockchain-basierten
sozialen Netzwerken erleichtert und umfangreiche Analysen zur Verständigung der
Hive-Blockchain-Sozialdaten ermöglicht. Darüber hinaus, um soziale Netzwerkanal-
yse in kriminaltechnischen Untersuchungen anzuwenden, werden zwei graphen-
basierte maschinelle Lernframeworks vorgestellt, um Untersuchungsprobleme in
einem Einbruchsfall zu behandeln, einer davon ist transduktive Link-Prädiktion
und der andere induktive Link-Prädiktion. Anschließend schlagen wir MANDO
vor, einen Ansatz, der eine neue heterogene Graphen-Representation von Kon-
trollflussgraphen und Aufrufgraphen nutzt, um die Strukturen heterogener Vertrags-
graphen zu erlernen. Aufbauend auf MANDO werden zwei Deep-Graphen-Learning-
basierte Frameworks, MANDO-GURU und MANDO-HGT, für eine genaue Schwach-
stellenerkennung sowohl auf der grobkörnigen Vertrags- als auch auf der feinkörni-
gen Zeilenebene vorgeschlagen. Empirische Ergebnisse zeigen, dass die MANDO-
Frameworks die Erkennungsgenauigkeit anderer State-of-the-Art-Techniken für ver-
schiedene Schwachstellentypen in entweder Source-Code oder Bytecode signifikant
verbessern.

Schlüsselwörter: Grapheneinbettung, Graph-Neuronales-Netzwerk, heterogenes Graphen-
lernen, dezentrales soziales Netzwerk, Schwachstellenerkennung, Blockchain, Smart Contract,
soziale Netzwerkanalyse, Kriminalitätsverknüpfung, Link-Prädiktion, Datenbank

ix

Acknowledgements
During my doctoral studies over the last three years, I have fortunately re-
ceived invaluable assistance and contributions from my supervisors, col-
leagues, friends, and family members. In moments of most challenge and
difficulty, their sincere and practical advice has been vital in facilitating the
successful progression of my research.

I wish to express my profound gratitude to Prof. Dr. Wolfgang Nejdl for
supporting me throughout my doctoral journey and giving me the exciting
opportunity to work in an active and excellent research environment at the
L3S Research Center. My wholehearted thanks go to Prof. Dr. Jiang Lingxiao
from Singapore Management University. His invaluable guidance has steered
my ideas and encouraged me to delve deeper into my research endeavors.

I am very grateful to my mentors at L3S Research Center, Dr. Zahra
Ahmadi, Dr. Daniel Kudenko, Dr. Marco Fisichella, and Dr. Tuan-Anh Hoang,
for constantly supporting and guiding me, especially at the initial stages of my
doctoral studies. A very special thanks to my fellows and friends, Dr. Thanh-
Nam Doan and Nhat-Minh Nguyen, for our collaborative efforts culminating
in outstanding scientific achievements.

Lastly, my deepest thanks are reserved for my wife, Hong Lan Thao Le,
whose unwavering support and provision of the best conditions for me to
maintain my focus on research during the last years.

xi

Contents

Abstract v

ZUSAMMENFASSUNG vii

Acknowledgements ix

1 General Introduction 1
1.1 Overview of Graph Representation Learning 2
1.2 General Motivation . 3
1.3 Research Objectives . 4
1.4 Thesis Outline . 5
1.5 List of Publications . 7

2 Background and Related Work 9
2.1 Background . 10

2.1.1 Basics of Social Network Analysis 10
Social Influence Analysis 10
Community Detection 11
Link Prediction . 12

2.1.2 Graph Embedding Neural Networks 13
Fundamental Graph Embeddings 14
Homogeneous Graph Neural Networks 14
Heterogeneous Graph Neural Networks 15

2.1.3 Preliminary of Blockchain-Related Social Networks . . 16
2.1.4 Blockchain Smart Contracts and Their Security Issues . 17

2.2 Related Work . 19
2.2.1 Relevant Datasets . 20
2.2.2 Crime Investigation and Machine Learning Methods . 21

Crime Linkage . 22
Crime Prediction . 23

2.2.3 Code Representation and Machine Learning Techniques
for Bug Detection in Smart Contracts 24
Conventional Bug Detection Techniques 24
Learning-Based Bug Detection Techniques 25
Graph Embedding Neural Network Techniques 26

3 SoChainDB Database 28
3.1 Introduction . 29
3.2 Overview of Hive Blockchain 31

xii

3.3 Dataset Collections & API Service 33
3.3.1 Pipeline . 33
3.3.2 SoChainDB’s Public APIs and Homepage 35

3.4 Use Cases . 37
3.4.1 Hive Ecosystem Overview 38
3.4.2 Analysis of Hive Social Network 38

Overall Analysis . 38
Social Network Analysis 40
Comparison with Available Hive Statistics Analysis . . 42

3.4.3 Splinterlands - A Hive-based decentralized card game 42
3.4.4 NFTShowroom . 44

4 Link Prediction in Criminal Investigation 46
4.1 Introduction . 47
4.2 Data Collection and Network Creation 49

4.2.1 Burglary Dataset . 49
4.2.2 Generated Networks . 49

4.3 Link Prediction Methods . 50
4.3.1 Transductive Link Prediction 51

Prediction by Transductive Algorithm 53
4.3.2 Inductive Link Prediction 53

Attribute-Oriented Encoder 54
Structure-Oriented Encoder 54
Alignment Mechanism 54
Link Prediction . 56

4.4 Experimental Analysis . 56
4.4.1 Transductive Link Prediction Results 56
4.4.2 Inductive Link Prediction Results 57

Data Splitting . 57
Methods of Comparison 58
Parameter Setting . 59
Results Discussion . 60

5 MANDO Framework 62
5.1 Introduction . 63
5.2 Motivation and Problem Definition 65
5.3 The MANDO Approach . 66

5.3.1 Overview . 66
5.3.2 Heterogeneous Contract Graph Generator 67
5.3.3 Multi-Metapaths Extractor 69
5.3.4 Multi-Level Graph Neural Networks 70

Topological Graph Neural Network 71
Node-Level Attention Heterogeneous Graph Neural

Network . 71
Optimization for Detection 72

5.3.5 Two-Phase Vulnerability Detector 73
Phase 1: Coarse-Grained Detection 73

xiii

Phase 2: Fine-Grained Detection 73
5.4 Empirical Evaluation . 73

5.4.1 Datasets . 73
5.4.2 Comparison Methods 74

Comparison to Graph-based neural network Methods 74
Comparison with Conventional Detection Tools 75

5.4.3 Evaluation Metrics . 75
5.4.4 Empirical Results . 76

Coarse-Grained Contract-Level Vulnerability Detection
(RQ1) . 77

Fine-Grained Line-Level Vulnerability Detection (RQ2) 77

6 MANDO-HGT Framework 79
6.1 Introduction . 80
6.2 Motivation . 82
6.3 Approach . 84

6.3.1 Heterogeneous Contract Graph Generator 84
6.3.2 Meta Relations Extractor 86
6.3.3 Node Features Extractor 86
6.3.4 MANDO-HGT Graph Neural Network 88
6.3.5 Two-Phase Vulnerability Detector 89

Phase 1: Coarse-Grained Detection 89
Phase 2: Fine-Grained Detection 89

6.4 Empirical Evaluation . 89
6.4.1 Dataset . 90
6.4.2 Evaluation Metrics . 91
6.4.3 Baselines and Parameter Settings 91
6.4.4 Experimental Results . 92

Coarse-Grained Contract-Level Vulnerability Detection 93
Fine-Grained Line-Level Vulnerability Detection 93

6.4.5 Case Studies: Interpreting Vulnerability Prediction Results 94
True positive cases . 95
True negative cases . 96
False positive cases . 97
False negative cases . 98

6.4.6 Limitations and Discussions 98

7 MANDO-GURU Tool 100
7.1 Introduction . 101
7.2 Usage . 102
7.3 Tool Design & Implementation 103

7.3.1 Backend . 103
Heterogeneous Representation for the Generated Control-

Flow Graphs and Call Graphs 103
Fusion of Heterogeous Control-Flow Graphs and Het-

erogeous Call Graphs 104
Node Feature Initialization 104

xiv

Extraction of Custom Multi-Metapaths 104
Heterogeneous Graph Neural Network 105
Coarse-Grained Detection and Fine-Grained Detection 105

7.3.2 RESTful APIs and Frontend 105
7.4 Tool Validation . 106

7.4.1 Setup . 106
7.4.2 Empirical Results . 107

Contract-Level Vulnerability Detection 107
Line-Level Vulnerabilty Detection 107

8 Conclusion and Future Work 108
8.1 Summary of Contributions . 109
8.2 Utilizing social network analysis to aid criminal investigations 109
8.3 Detecting vulnerabilities in blockchain smart contracts 111

A Curriculum Vitae 113

xv

List of Figures

2.1 Example of social influence score measured for individuals in
Zachary’s karate club network. 11

2.2 Example of communities of individuals in Zachary’s karate
club network. 12

2.3 Example of missing links and the predictions to recover them. 13

3.1 Growth of active users on Hive over time. 31
3.2 Overview architecture of Hive blockchain-based social network. 32
3.3 SoChainDB general pipeline. 34
3.4 SoChainDB homepage. 37
3.5 The Hive dynamics from April 2020 to January 2022. 39
3.6 Number of Hive users based on the number of followers/followings

per account. 40
3.7 Top 10 users by posts and comments. 41
3.8 Average reward claimed per account in Hive social network

from April 2020 to January 2022. 41
3.9 Network of active communities on Hive blockchain. 42

4.1 The crime-offender bipartite network. 50
4.2 The offender network, in which nodes represent offenders, and

edges indicate if two offenders share a crime. 51
4.3 The crime network. 51
4.4 Transductive link prediction in the offender network. 56

5.1 A sample Ethereum smart contract code snippet, its correspond-
ing heterogeneous call graph, and a sample heterogeneous
control-flow graph. 65

5.2 Overview of the MANDO framework. 67
5.3 Our Novel Architecture for Node-Level Attention Heterogeneous

Graph Neural Network in the MANDO Framework. 70

6.1 A sample Ethereum smart contract, its call graph, and a control-
flow graph for a function. 82

6.2 Code snippet, runtime bytecode, and control-flow graph of the
runtime bytecode of a contract containing an access control bug. 83

6.3 MANDO-HGT Overview. 84
6.4 The architecture of the MANDO-HGT Graph Neural Network. 87
6.5 True positive cases of access control and arithmetic samples. . . 96
6.6 True negative case of access control sample. 96
6.7 False positive cases of front running and reentrancy samples. . . 97

xvi

6.8 False negative cases of arithmetic and reentrancy samples. . . . 98

7.1 A sample vulnerability detection page of MANDO-GURU. . 102
7.2 Overview of the MANDO-GURU Tool. 103

xvii

List of Tables

3.1 SoChainDB API parameters. 36
3.2 Hive social network statistics until January 31, 2022. 40
3.3 Top influential communities based on networks of active com-

munities and their new subscribers on Hive blockchain in 2021. 43
3.4 Splinterlands statistics until January 31, 2022. 44

4.1 Accuracy of transductive link prediction on five different simi-
larity measures and their ranking. 57

4.2 Inductive link prediction results on the crime network. 60

5.1 Table of Notation. 71
5.2 Average Performance Comparison of the Coarse-Grained Contract-

Level Detection over 20 Runs. 76
5.3 Statistics of the Mixed Dataset. 76
5.4 Average Performance Comparison of the Fine-Grained Line-

Level Detection over 20 Runs. 78

6.1 Statistics of the Mixed Dataset. 90
6.2 Performance comparison in terms of Buggy-F1 score on differ-

ent bug detection methods at the contract granularity level for
both source code and bytecode. 90

6.3 Performance comparison in terms of Buggy-F1 score on dif-
ferent bug detection methods based on source code at the line
granularity level. 92

xix

List of Abbreviations

ML Machine Learning
DL Deep Learning
LSTM Long Short Term Memory
GNN Graph Neural Network
MLP Multi-Layer Perceptron
CFG Control-Flow Graph
HCFG Heterogeneous Control-Flow Graph
CG Call Graph
HCG Heterogeneous Call Graph
ACC Accuracy
AP Average Precision
ROC Receiver Operating Characteristic
AUC Area Under The Curve

xxi

Dedicated to my family and my curiosity

1

Chapter 1

General Introduction

2 Chapter 1. General Introduction

1.1 Overview of Graph Representation Learning

Graph representation learning, a specialized subfield of machine learning,
is increasingly proving effective in modeling and analyzing complex graph
data structures [1]. Like other machine learning models, it allows learning
features from the data to generate predictive models suitable for specified
prediction tasks. However, graph representation learning has an advantage
over other machine learning models through its ability to represent and learn
useful features on complex data associations, especially in graph-structured
data. With the popularity of graph data in many fields in recent years, such
as social networks, criminal networks, protein interactions in biology, or
function invocations in software engineering, this research direction is open-
ing up several new approaches for practical downstream tasks such as link
prediction, community detection, social influence analysis, data or entity
classifications [2]. The complexity of the structured data derives from the
relational nature of entities and their linkages. For instance, this complexity
manifests in criminal networks through offenders with various relationships,
including their friends, neighborhoods, family ties, or gang affiliations. Simi-
larly, decentralized software systems, e.g., blockchain networks, often include
multiple objects such as users, public accounts, or smart contracts, and their
connections represent complex relationships between them, which could be
cryptocurrency transfer flows of the users or function invocation associations
inside a smart contract.

Machine learning models mainly deal with many data types, including
structured data (e.g., tables) or unstructured data (e.g., text or images). The
general machine learning algorithms assume the data points are indepen-
dently and identically distributed [3]. This assumption might suit many
traditional data types, but it becomes less applicable when handling complex
structured data as graphs, where data points (i.e., nodes) are associated. In
contrast, the data instances from a network or a graph are not independent but
interconnected. Thus, graph representation learning methods are proposed to
encode graphs into low-dimensional vector spaces, which preserve structural
and attribute information. The main focus of graph representation learning is
to learn a function that possibly maps nodes, edges, or entire graphs to vector
representations, called node embeddings or graph embeddings, depending
on the targeted downstream tasks. Accordingly, these approaches provide a
way to convert the rich but complex information contained in graphs into a
format that can be easily used by traditional machine learning models [4].

Graph representation learning techniques span a wide array of methods,
each with distinct mechanisms and goals. Although the categorization into
unsupervised and supervised techniques is often cited, it is crucial to recognize
that the boundary between these categories is somewhat blurred in practice [2],
with many techniques sharing elements of both.

Fundamental graph embedding methods aiming primarily to learn repre-
sentations that capture the structural properties of the graph draw parallels
to unsupervised learning techniques in traditional machine learning. Tech-
niques such as DeepWalk [5], node2vec [6], and LINE [7] utilize processes like

1.2. General Motivation 3

random walks, matrix factorization or graph-based regularization to derive
node embeddings. The main focus of these methods lies in preserving the
topological properties of the graph, and they operate independently of specific
labels or attributes for training.

On the other hand, some newer methods employ graph neural networks
to learn node embeddings in an end-to-end manner. Besides capturing the
graph’s topologies, these methods leverage specific attributes or labels asso-
ciated with the graph nodes or edges. Approaches including Graph Convo-
lutional Networks (GCNs) [8], Graph Attention Networks (GATs) [9], and
GraphSAGE [10] bear similarities to (semi-)supervised learning in traditional
machine learning. They concentrate on learning representations being benefi-
cial for predicting specific attributes or labels.

Nevertheless, some graph representation learning techniques integrate
elements of both structural and attribute-based learning, placing themselves
somewhere between these two kinds. These combined methods aim to make
the most of both strategies, effectively capturing both the structural properties
of the graph and the specific attributes or labels associated with the nodes
or edges. The selection of the appropriate method largely depends on the
specific requirements and constraints of the downstream tasks.

1.2 General Motivation

With the growing availability of graph-structured data and advancements in
deep learning techniques, graph representation learning has demonstrated
promising results across various domains. This thesis will concentrate on
applying graph representation learning for security analytics in social net-
works and decentralized software systems with a focus on blockchain systems.
Specifically, we emphasize criminal investigations and smart contract security
analysis.

Decentralized software systems, such as blockchain networks, have gained
significant traction due to their potential for enabling secure, transparent,
and tamper-resistant data management. However, these systems also present
unique security challenges, such as detecting software vulnerabilities in smart
contracts or identifying malicious nodes in the network. Graph representation
learning can play a crucial role in addressing these challenges by modeling the
complex relationships among entities in the system and learning informative
representations that can be used for detecting potential security risks.

An emerging area of interest is decentralized social networks built on
blockchain technology, which are growing in popularity as they address
critical concerns associated with traditional centralized social networks, such
as content ownership and over-commercialization. Despite their potential, the
rich and valuable data these networks generate remain relatively untapped
due to challenges in data collection, which often require specialized blockchain
knowledge. This thesis will explore the application of a database framework
to facilitate data collection from blockchain-based social networks, further
enhancing the efficacy of graph representation learning in these scenarios.

4 Chapter 1. General Introduction

In the field of social network analysis, graph representation learning can
be applied to uncover hidden relationships, identify potential illegal activities,
and track suspicious entities, ultimately aiding in the prevention, detection,
and investigation of criminal activities. Criminals increasingly leverage social
networks for various unlawful activities, such as money laundering, terrorist
financing, drug trafficking, and human trafficking. By applying graph rep-
resentation learning techniques to model the complex relationships within
social networks, it becomes possible to develop more effective methods for
addressing security challenges in these digital platforms.

This thesis aims to contribute to the growing area of research in graph
representation learning by focusing on its applications in security analytics for
decentralized software systems and social networks. We will investigate vari-
ous techniques and approaches, ranging from traditional graph embedding
methods to more recent deep graph learning-based methods, such as Graph
Convolutional Networks (GCNs) [8], Graph Attention Networks (GATs) [9],
Heterogeneous Graph Attention Networks (HANs) [11], and Heterogeneous
Graph Transformers (HGTs) [12]. By exploring these techniques and their
potential applications, this thesis seeks to advance the state-of-the-art in graph
representation learning and showcase its potential for addressing critical se-
curity challenges in both decentralized software systems and social networks.

1.3 Research Objectives

A key aspect of this thesis will be the development of novel graph representa-
tion learning techniques tailored to the specific requirements and challenges
of the target domains. In the context of decentralized software systems, we
will investigate methods for fine-grained detection of smart contract vulner-
abilities and explore the potential of heterogeneous graph transformers for
vulnerability detection on both source code and bytecode levels. By incorpo-
rating these cutting-edge techniques, we aim to improve the robustness and
security of decentralized software systems, contributing to the ongoing efforts
to mitigate the risks associated with these novel technologies.

In the field of social networks, the thesis will delve into the application of
graph representation learning for link prediction tasks, focusing on criminal
investigation scenarios. By leveraging the rich relational information in social
network data, we aim to develop more effective methods for uncovering
hidden relationships, tracking suspicious entities, and identifying potential
criminal activities. Thus, the research will contribute to the broader efforts to
enhance the safety and security of social networks, which play an increasingly
important role in our daily lives.

In summary, this thesis aims to comprehensively explore graph repre-
sentation learning techniques and their applications in security analytics for
decentralized software systems and social networks. By investigating vari-
ous methods, ranging from traditional graph embedding techniques to more
recent deep graph learning-based approaches, we seek to demonstrate the
versatility and potential of graph representation learning in addressing a wide

1.4. Thesis Outline 5

range of security challenges in these complex systems. Through this research,
we hope to contribute to the ongoing efforts to enhance the safety and security
of our digital environment for a more secure and reliable future.

1.4 Thesis Outline

This thesis is structured into several chapters, each serving a specific purpose
and contributing to the overarching research goals. Below is a summary of
each chapter:

• Chapter 1: General Introduction. This chapter sets the stage for the the-
sis by presenting the motivation, research objectives, and an overview
of the main concepts in graph representation learning. It clarifies the
potential of graph representation learning in security analytics for de-
centralized software systems and social networks.

• Chapter 2: Background and Related Work. This chapter provides an
in-depth overview of the main concepts and techniques related to graph
representation learning, along with an extensive literature review on
security analytics for blockchain smart contracts and criminal networks.
Also, it lays the foundation for network analysis using graph representa-
tion learning techniques in the subsequent chapters.

• Chapter 3: A Database for Storing and Retrieving Blockchain-Powered
Social Network Data. This chapter introduces the design and imple-
mentation of a novel database system named SoChainDB, tailored for
storing and retrieving data from blockchain-powered social networks.
It discusses the challenges associated with data collection from such
networks and how the proposed system addresses them. This chapter
is based on our resource paper: “SoChainDB: A Database for Storing and
Retrieving Blockchain-Powered Social Network Data” published in the 45th
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2022), July 2022.

• Chapter 4: Link Prediction for Social Network Analysis in Criminal
Investigation. In this chapter, we explore the application of graph repre-
sentation learning in link prediction tasks, specifically within the context
of criminal investigations on social networks. It delves into developing
and evaluating novel methods for uncovering hidden relationships be-
tween entities in criminal networks. This chapter is based on our journal
paper “Inductive and Transductive Link Prediction for Criminal Network
Analysis” published in the Journal of Computational Science, 2023.

• Chapter 5: Multi-Level Heterogeneous Graph Embeddings for Fine-
Grained Detection of Smart Contract Vulnerabilities. This chapter
proposes a multi-level heterogeneous graph embedding technique for
the fine-grained detection of vulnerabilities in smart contracts. It dis-
cusses the unique security challenges of decentralized software systems

6 Chapter 1. General Introduction

and presents the proposed method’s effectiveness in addressing them.
This chapter is based on our research paper: “MANDO: Multi-Level Het-
erogeneous Graph Embeddings for Fine-Grained Detection of Smart Contract
Vulnerabilities” published in the 9th IEEE International Conference on
Data Science and Advanced Analytics (DSAA 2022), October 2022.

• Chapter 6: Heterogeneous Graph Transformers for Smart Contract
Vulnerability Detection on Source Code and Bytecode. This chapter
delves into using heterogeneous graph transformers for vulnerability
detection in both the source code and bytecode levels of smart con-
tracts. It provides an in-depth analysis of the proposed method and
its advantages over traditional techniques. This chapter is based on
our research paper: “MANDO-HGT: Heterogeneous Graph Transformers for
Smart Contract Vulnerability Detection” published in the 20th International
Conference on Mining Software Repositories (MSR 2023), May 2023.

• Chapter 7: A Tool for Vulnerability Detection for Smart Contract
Source Code by Heterogeneous Graph Embeddings. This chapter
introduces a novel tool for detecting smart contract source code vulnera-
bilities using the proposed heterogeneous graph embedding techniques.
It details the tool’s implementation, functionality, and practical utility,
providing a real-world application of the proposed graph representation
learning techniques. This chapter is based on our tool paper: “MANDO-
GURU: Vulnerability Detection for Smart Contract Source Code By Hetero-
geneous Graph Embeddings” published in the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2022), November 2022.

• Chapter 8: Conclusion and Future Work. This final chapter offers a sum-
mary of the research presented in the thesis, discusses the implications
of the findings, and provides recommendations for future research in
the field. It reflects on the thesis’s contributions to enhancing the safety
and security of decentralized software systems and social networks.

The structure of this thesis is designed to provide a logical progression of
the research, from the foundational concepts to the development of novel tech-
niques, tools, and practical applications in the graph representation learning
field.

Contribution Clarification. I conceived the original idea, established
the experimental settings, verified the analytical methods, and directed the
projects for Chapters 3, 5, 6, and 7. I was the main contributor in designing the
technical architectures and developing the SoChainDB, MANDO, MANDO-
HGT, and MANDO-GURU frameworks in Chapters 3, 5, 6, and 7. In Chapter
4, I built two graph-based machine-learning frameworks for crime link predic-
tion and performed most evaluation experiments. Additionally, I conducted
partial experiments in Chapters 3, 5, 6, and 7.

1.5. List of Publications 7

1.5 List of Publications

Throughout my doctoral studies, I have published several papers exploring
various aspects of graph representation learning and its applications. Not
every aspect is covered in this thesis due to space constraints. The full list of
publications is as follows:

Graph Representation Learning for Criminal Network Analysis: we
apply graph representation learning for criminal network analysis to establish
or predict unobserved connections of entities, such as persons, organizations,
and locations, to enhance investigation capabilities for large criminal cases in
the publications below.

• Ahmadi, Z., Nguyen, H. H., Zhang, Z., Bozhkov, D., Kudenko, D.,
Jofre, M., Calderoni, F., Cohen, N., & Solewicz, Y. (2023). Inductive and
transductive link prediction for criminal network analysis. Journal of
Computational Science, 102063 [13] ⋆.

• Nguyen, H. H., Bozhkov, D., Ahmadi, Z., Nguyen, N. M., & Doan, T.
N. (2022, July). SoChainDB: A Database for Storing and Retrieving
Blockchain-Powered Social Network Data. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2022) (pp. 3036-3045) [14] ⋆.

• Nguyen, T. H., Nguyen, H. H., Ahmadi, Z., Hoang, T. A., & Doan, T. N.
(2021, December). On the Impact of Dataset Size: A Twitter Classification
Case Study. In IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology (pp. 210-217) [15] †.

• Maly, K., Backfried, G., Calderoni, F., Černocký, J., Dikici, E., Fabien, M.,
Hořínek, J., Hughes, J., Janošík, M., Kovac, M., Motlicek, P., Nguyen,
H. H., Parida, S., Rohdin, J., Skácel, M., Zerr, S., Klakow, D., Zhu, D. &
Krishnan, A. (2021). ROXSD: a Simulated Dataset of Communication in
Organized Crime. In ISCA Symposium on Security and Privacy in Speech
Communication, Virtual Event, 10-12 November 2021 (pp. 32-36) [16] †.

• Fabien, M., Parida, S., Motlícek, P., Zhu, D., Krishnan, A., & Nguyen, H.
H. (2021). ROXANNE Research Platform: Automate Criminal Investiga-
tions. In Interspeech (pp. 962-964) [17] †.

• Nguyen, H. H., Zerr, S., & Hoang, T. A. (2020, December). On Node
Embedding of Uncertain Networks. In 2020 IEEE International Conference
on Big Data (Big Data) (pp. 5792-5794). IEEE [18] †.

Graph Representation Learning for Vulnerability Detection in Blockchain
Smart Contracts: we apply heterogeneous graph representation learning on
control-flow graphs, program call graphs, and data dependency for vulnera-
bility detection in blockchain smart contracts in the publications below.

8 Chapter 1. General Introduction

• Nguyen, H. H., Nguyen, N.M., Xie, C., Ahmadi, Z., Kudenko, D., Doan,
T. N., & Jiang, L. (2023, May). MANDO-HGT: Heterogeneous Graph
Transformers for Smart Contract Vulnerability Detection. In Proceedings
of 20th International Conference on Mining Software Repositories [19] ⋆.

• Nguyen, H. H., Nguyen, N.M., Doan, H.P., Ahmadi, Z., Doan, T. N., &
Jiang, L. (2022, November). MANDO-GURU: Vulnerability Detection
for Smart Contract Source Code By Heterogeneous Graph Embeddings.
In Proceedings of the ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (pp. 1736-
1740) [20] §.

• Nguyen, H. H., Nguyen, N.M., Xie, C., Ahmadi, Z., Kudenko, D., Doan,
T. N., & Jiang, L. (2022, October). MANDO: Multi-Level Heterogeneous
Graph Embeddings for Fine-Grained Detection of Smart Contract Vul-
nerabilities. In Proceedings of the 9th IEEE International Conference on Data
Science and Advanced Analytics (pp. 1-10) [21] ⋆.

Graph Similarity Learning on Multi-Target Multi-Camera Object Track-
ing: we build vehicle features as graph structures and customize graph sim-
ilarity learning to match the vehicle objects from different cameras in the
publications below.

• Nguyen, T.T., Nguyen, H.H., Sartipi, M., and Fisichella, M. (2023). Multi-
Vehicle Multi-Camera Tracking With Graph-Based Tracklet Features.
IEEE Transactions on Multimedia [22] †.

• Nguyen, T.T., Nguyen, H.H., Sartipi, M., and Fisichella, M. (2023). Real-
Time Multi-Vehicle Multi-Camera Tracking With Graph-Based Tracklet
Features. Journal of Transportation Research Record [23] †.

⋆: The entire content of the publication was included in this thesis.
§: The partial content of the publication was included in this thesis.
†: The content of the publication was not included in this thesis.

9

Chapter 2

Background and Related Work

10 Chapter 2. Background and Related Work

2.1 Background

This section first outlines the foundational background of social network
analysis, including social influence analysis, community detection, and link
prediction. Then, some fundamental techniques of graph embeddings will
be introduced as a basis and extended to more sophisticated graph neural
networks for both homogeneous and heterogeneous graph structures. Next,
we present a preliminary to introduce how blockchain-related social networks
work. Finally, the latter part of the section focuses on the security challenges
faced by blockchain smart contracts, emphasizing the Ethereum network.

2.1.1 Basics of Social Network Analysis

Briefly described, social network analysis is the process of uncovering hidden
patterns regarding the behaviors and relations among individuals in networks
through a wide range of computational and statistical methods. Examples
of those patterns are the distribution of relations among the individuals,
the underlying factors that determine the relations, or cohesive groups of
individuals with dense relations. These methods have been applied in various
domains of daily life, including economics, biology, and sociology, particularly
in security and criminology. This section presents an overview of existing
methods most closely related to our research in the thesis.

Social Influence Analysis

This task aims to quantify individuals’ influence over others within a social
network. In some contexts, it is also called influential individual identifica-
tion. The influence can also be explicitly quantified to the domain or pairwise
relations in open-domain settings. Within criminal analysis, where the do-
main is already well understood, it focuses on the overall global influence of
each individual within the network. Each individual is assigned a relative
importance score, as demonstrated in Figure 2.1, that measures its influence
compared to others.

Inquiry into the most influential individuals in a group has been one of
the leading drivers of social network analysis, especially its applications in
analyzing or monitoring organized crimes. Most studies apply the centrality
measures (a family of measures aiming at assessing how central, i.e., essential
or influential, a node is in a network) to criminal organizations.

Typically, individuals’ influence in a general social network can be mea-
sured by the following metrics:

• Degree [25, 26]: This metric is the number of relations or links between
other individuals the targeted individual involves.

• Closeness [25, 26]: This metric measures how close the targeted individ-
ual is to all other individuals by aggregating the length of the shortest
paths between the targeting individual and all others in the network.

2.1. Background 11

FIGURE 2.1: Example of social influence score measured for individuals in Zachary’s
karate club network [24].

• Betweenness [25, 26]: This metric quantifies the number of times the
targeted individual lies on the shortest path between pairs of other
individuals.

• Pagerank score: inspired by the ranking of webpages in search en-
gines [27], this metric measures the importance of the targeted individual
by counting the weighted vote it receives from others.

• Authority and Hub scores: Similar to the Pagerank score, hub and
authority scores originated in search engine research [28]. These scores
quantify the hub and authoritativeness of individuals in a network.

Community Detection

Frequently, individuals within a network tend to form communities. As
illustrated by the example in Figure 2.2, each community is a cohesive group
of individuals whose intra-community interaction is more dense and frequent
than their interaction with the rest of the network. However, in most cases,
this community structure is hidden as communities are not well defined, or
individuals do not publicly reveal their community membership. This task
aims to uncover those hidden structures using interactions among network
individuals and their associated information, e.g., attributes and meta-data.

While community analysis has rapidly grown to be a popular field in
general network research, its applications to security analytics still need to be
completed. Research has shown that community analysis can hardly distin-
guish real-life subgroups in a criminal network (e.g., gangs, cliques, families,
clans). For example, a study [29] inquired whether the network communities
in a communication network among mafia offenders corresponded to the clan
subdivision within the offenders, and the results showed that communities
only partially overlapped with criminal clans in practice.

Notwithstanding these issues, investigators may benefit from community
detection methods when analyzing the patterns of interaction among entities

12 Chapter 2. Background and Related Work

FIGURE 2.2: Example of communities of individuals in Zachary’s karate club net-
work [24]. Individuals having the same color belong to the same community.

in a criminal network. While the human eye and mind can hardly identify
cohesive subgroups, clustering social relations is essential to society’s (and
criminal groups’) organization.

Generally, existing community detection methods [30] can be categorized
into four main groups, including:

• Individual-centric methods (e.g., K-clique-based method [31]) focus
on identifying communities whose members satisfy specific properties
such as the degree or reachability of other members.

• Group-centric methods (e.g., modularity maximization [32] and spectral
clustering [33]) emphasize each community as a whole: each community
has to satisfy specific properties without zooming into the individual
level, such as the density of relations or interaction among community
members.

• Network-centric methods focus on partitioning the network into several
sub-networks; each is considered a community.

• Hierarchy-centric methods (e.g., Girvan–Newman algorithm [34]) aim
to construct a hierarchical structure of communities within the network.

Link Prediction

In reality, individuals interact and communicate with each other through
many channels that are not always observable. Hence, many interactions and
relations among individuals in a network are hidden or not observed. More-
over, the network evolves as new interactions and connections are constantly
added. This is due to the revelation of hidden interactions and relations in the
past, the availability of new data sources, and primarily, individuals forming
new links or interacting with unique other individuals. As illustrated by the
example in Figure 2.3, this task aims to uncover these missing or hidden,
unobserved interactions and relations in the network and predict the most

2.1. Background 13

probable ones to be formed shortly. Specifically, given an individual u and
a number k, we would like to identify top k other individuals that are not
connected with u but might or would have interactions/relations with u.

Link Prediction

FIGURE 2.3: Example of missing links (dashed lines on the left network) and the
predictions to recover them (red lines on the right network).

It is inevitable for criminal investigations to collect incomplete information
about a group. Unlike the universe of suspects’ interactions with other people,
law enforcement agencies typically gather only a portion of these. Also, crimi-
nals have everyday lives with interactions with family, friends, partners, and
colleagues. And these interactions take several forms, which law enforcement
can hardly exhaustively map. Link prediction methods, increasingly popular
in general social network research, can assist in identifying possible missing
links. The methods may assist investigators by providing potential leads on
connections not (yet) observed in the investigation, and that may request
specific actions such as increased surveillance on two individuals due to the
high probability of a relation between them.

In principle, all link prediction methods would, first, assign a score(u, v)
to each pair of nodes (u, v) of the network and then choose the top scored
pairs as predicted links for node u [35]. The score is often calculated based
on measuring proximity and similarity between each u and v in the input
network. Generally, existing approaches have differences in the similarity
used. Some most relevant methods in social network analysis include Jaccard
similarity, Adamic Adar similarity [36], Preferential attachment similarity [37],
Resource allocation similarity [38], and Soundarajan-Hopcroft similarity [39].
Since link prediction is one of the significant components of our research,
the differences between the five similarity methods will be described and
explained in more detail in Section 4.3.1 about transductive link prediction
for social network analysis in criminal investigation.

2.1.2 Graph Embedding Neural Networks

Definition 2.1.2.1 (Graph). A graph can be denoted as G = (V, E), where
V symbolizes the set of vertices or nodes, and E represents the set of edges.
The set of neighboring nodes of a vertex v ∈ V is expressed as N(v) = {u ∈
V|(v, u) ∈ E}.

Graph neural networks (GNNs) aim to learn and create valuable and prac-
tical representations of graph structure data. Based on the rich relational

14 Chapter 2. Background and Related Work

information in graph-structured data, the learning area focuses on developing
algorithms capable of efficiently handling complex relational data. Various
graph representation learning techniques have been developed as the disci-
pline has advanced, ranging from fundamental graph embedding techniques
to more modern tactics based on deep learning. GNNs could be categorized
into two groups: Homogeneous GNNs and Heterogeneous GNNs. Although
homogeneous GNNs and heterogeneous GNNs are both specialized in learn-
ing representations for graphs, they cater to different types of graph structures
and apply varied methods for processing graph data.

Fundamental Graph Embeddings

Fundamental graph embeddings play a pivotal role in graph-based learning,
especially before the advent of GNNs. They basically focus on converting
graph-structured data into lower-dimensional spaces, where semantic rela-
tionships and graph properties are preserved. Typically, they can only handle
homogeneous graphs with lower complexity than heterogeneous graphs. The
traditional methods primarily leverage matrix factorization, random walks,
or other heuristic methods to generate embeddings. Some widely recognized
techniques include:

• DeepWalk: DeepWalk [5] considers short truncated random walks on
the graph as a language corpus and vertices of that graph as vocabulary.
It uses a skip-gram language model.

• node2vec: Similar to DeepWalk, node2vec [6] uses a skip-gram language
model over a graph to learn its structure. In node2vec, preferences for
depth-first or breadth-first sampling can be specified.

• LINE: The LINE embedding method [7] attempts to represent nodes as
low dimensional embeddings that combine first-order (direct connection
between nodes with strength weight) and second-order (direct neighbor-
hood overlap between two nodes) proximity. The algorithm employs
sampling of the second-order relationships to improve efficiency and
make learning on datasets with millions of nodes and billions of edges
feasible.

Homogeneous Graph Neural Networks

Homogeneous GNNs deal with graphs having nodes and edges of one single
type, making them relatively less complex and more computationally effi-
cient. They assume that all nodes share similar features and that every edge
indicates the same type of relationship. Techniques like convolutional layers
or attention mechanisms are common in these networks, allowing the aggre-
gation of information from neighboring nodes and enabling the learning of
representations capturing the graph’s local structures and properties. Notable
models in this group include:

2.1. Background 15

• Graph Convolutional Network (GCN): GCN [8] uses a message-passing
algorithm to propagate information between neighboring nodes. They
typically employ multiple graph convolutional layers to learn increas-
ingly complex features. Generally, GCN extends the capabilities of CNN
by incorporating the Laplacian matrix as a first-order approximation for
the propagation between the layers of spectral graph convolutions.

• Graph Attention Network (GAT): GAT [40] employs an attention mech-
anism that assigns different importance to neighbor nodes. This allows
the model to efficiently aggregate information from different parts of
the graph. The attention mechanism dynamically adjusts to each node’s
neighborhood, enabling the model to adapt to varying connectivity pat-
terns and handle irregular structures. Their ability to capture local and
global contextual information makes them particularly well-suited to
complex graph data tasks.

• GraphSAGE: GraphSAGE [10] was introduced as an approach to for-
mulate embeddings for unseen vertices in a dynamic network. Unlike
other methods that train embeddings for every node within the network
individually, GraphSAGE creates a function to generate embeddings for
a node based on the local features of its neighborhoods. It first samples
a node’s neighbors and then employs various aggregators to refine its
embedding.

Heterogeneous Graph Neural Networks

Definition 2.1.2.2 (Heterogeneous Graph). A heterogeneous graph is a di-
rected graph G = (V, E, ϕ, ψ), consisting of a vertex set V and an edge set E.
ϕ : V → A is a node-type mapping function and ψ : E → R is an edge-type
mapping function. A and R denote the sets of node types and edge types, and
|A| ≥ 2 and |R| ≥ 1.

Definition 2.1.2.3 (Metapath). A metapath θ is a path in the form of A1
R1−→

A2
R2−→ ...

Rl−→ Al+1, which defines a composite relation R = R1 ◦ R2 ◦ ... ◦
Rl between type A1 and Al+1, and ◦ denotes the composition operator on
relations. Note that the length of θ is the number of relations in θ.

Definition 2.1.2.4 (Meta Relation). A meta relation of an edge e = (s, t) from a
source node s to a target node t is indicated as ⟨τ(s), ϕ(e), τ(t)⟩, with τ(s) and
τ(t) representing the node type of s and t, respectively, and ϕ(e) representing
for the edge type of e. A metapath can refer to a sequence of such meta
relations for a sequence of connected edges.

Heterogeneous GNNs are developed for graphs containing multiple node
and edge types, representing different entities and relationships. Given the di-
verse nature of entities and relationships in real-world graphs, heterogeneous
GNNs employ advanced mechanisms for information aggregation. These
may include type-specific transformation functions or attention weights that

16 Chapter 2. Background and Related Work

consider the varied importance of different types of relationships, e.g., meta-
relations or metapaths, to accurately capture the diversified information in
such graphs. Some well-known models encompass:

• metapath2vec: metapath2vec [41] generates embeddings by carrying
out random walks that follow user-predefined metapaths. By leveraging
a heterogeneous skip-gram model, it is particularly effective in captur-
ing the semantic relationships between diverse types of nodes, thus
producing meaningful embeddings in heterogeneous networks.

• Heterogeneous Graph Attention Network (HAN): Specifically designed
to manage heterogeneous graphs, HAN [11] uses hierarchical attention
mechanisms to understand the significance of different node types and
metapaths. This model enables the learning of useful node embeddings
that capture the rich contextual information in heterogeneous networks,
allowing for enhanced performance in tasks such as node classification
and clustering.

• Heterogeneous Graph Transformer (HGT): Instead of concentrating
on tokens in sentences or pixels in images or videos as the typical ap-
plications of traditional transformers, HGT [12] employs the notion of
meta relations and its attention mechanisms to model different types of
nodes and edges in heterogeneous graphs. By generating meta relations
dynamically, HGT can effectively model complex interactions between
different types of entities without relying on predefined metapaths.

2.1.3 Preliminary of Blockchain-Related Social Networks

The rapid growth of blockchain technology has attracted more and more
companies and organizations working in areas related to social networks to
support and integrate this technology into their platforms. Although several
firms [42–44] claim that their social networks have built-in blockchain tech-
nology, most only incorporate a small part of this cutting-edge technology.
For instance, one of the most straightforward approaches is often chosen to
only use cryptocurrency tokens as loyalty points or a type of integrated-in cur-
rency for the users to trade in their systems through Smart Contract platforms
in some of the blockchains available in the market, such as Ethereum [45],
EOS.IO [46], and Binance Smart Chain [47]. The approach has the advantage of
low cost and does not require advanced knowledge of blockchain technology.
However, users’ data is still entirely in the hands of organizations operating
and developing such social networks. Therefore, these social platforms, in
reality, still follow centralized models, and users do not fully control their
data. At the same time, this is an essential point of a decentralized system like
blockchain is aiming.

On the other hand, besides the mentioned social networks, few other
platforms still focus on building and providing a completely decentralized
social network, which requires a solid technical background in blockchain
technology and much effort to persuade and attract users from traditional

2.1. Background 17

social networks. Specifically, the most notables are the Steem network [48]
and its successor, Hive blockchain [49]. The primary difference between these
two blockchain-powered social networks and the rest is their completely
decentralized architectures. Mainly, the core characteristics of blockchain
technology, including immutability, transparency, no double spent, append-
only, non-repudiation, and no single point failure, are the crucial targets in
designing these social networks. These characteristics are evident through the
Delegated Proof-of-Stake (DPoS) consensus mechanism using a voting system
for choosing the block producers called “witnesses” per cycle and the fully
decentralized designed ledger.

In addition, Block.one, the organization behind the popular network EOS.IO,
introduced Voice being a promising decentralized social network based on the
EOS.IO blockchain in 2019 [50]. The announced platform Voice inherits the
advantages mentioned on Steem and Hive and also integrates Smart Contract
system, a notable feature of EOS.IO. However, at the moment, in January 2022,
the new social network is still in the beta version. Therefore, we will integrate
this network into our framework after its public release.

Consensus Mechanism: As a successor to Steem, Hive applies the Dele-
gated Proof-of-Stake (DPoS) consensus [49], which Daniel Larimer invented in
2014 as an alternative to the Proof-Of-Work consensus algorithm widely used
by several famous blockchains, e.g., Bitcoin and Ethereum. The first implemen-
tation of DPoS was on a decentralized platform exchanging cryptocurrency
named Bitshares in 2015 [51], then in Steem [48], ARK [52], Lisk [53], and most
recently in the platforms of TRON [54], EOS.IO [46], and Hive [49]. DPoS
consensus encourages blockchain users to vote and elect delegates to validate
the next block as a popular evolution of the Proof-of-Stake concept. Regular
users could vote on delegates through the consensus mechanism by staking
their tokens into a pool and assigning those to a specific delegate. On the
other hand, the delegates are responsible for achieving consensus to generate
and validate new blocks. Usually, the collected rewards of the delegates are
proportionally shared with their respective voters when contributing to the
blockchain.

The DPoS consensus mechanism’s proponents believe it is a better demo-
cratic approach for a more comprehensive and diverse group of people partici-
pating in the selection process of the next block validator. Moreover, the DPoS
election system is based on the earned reputation of the delegates and not the
entire wealth. Therefore, if an elected node misbehaves or does not obtain the
required performance, it will be quickly suspended and substituted by another.
Additionally, the limited number of validators allows the blockchain network
to reach consensus more quickly. As a result, DPoS-powered blockchains
are more scalable and can process more transactions per second (TPS) than
Proof-of-Work and traditional Proof-of-Stake.

2.1.4 Blockchain Smart Contracts and Their Security Issues

While the first generation of blockchain was designed only to solve cryptocur-
rency problems, the current generation, such as Ethereum and Binance Smart

18 Chapter 2. Background and Related Work

Chain, focuses on providing decentralized computing platforms [45, 47]. One
new prominent feature of these trustworthy platforms is to enable smart con-
tract, which can automatically execute on the blockchain and be enforced by
the consensus protocol [55]. A smart contract is a decentralized app (dapp) with
a set of rules defined by a sequence of its bytecode instructions. The smart
contract can execute actions such as transferring cryptocurrency or invoking
functions of other smart contracts when corresponding events happen (e.g.,
payment of security deposits in an escrow agreement, betting of decentralized
gambling). Accordingly, smart contracts can be applied in a wide range of
fields, including financial instruments (e.g., financial derivatives, crowdfund-
ing 1), notary (e.g., copyrights on digital arts files 2, document existence and
integrity 3) and asset tracking for the Internet-of-Things [56].

In blockchain consensus protocols, each full node of the peer-to-peer net-
work aims to ensure the correct execution of contracts. A smart contract is
executed correctly, being a necessary condition for their validity; otherwise,
attackers could shuffle executions in order to divert some money from a legiti-
mate participant to themselves. However, only the correctness of executions is
insufficient to keep smart contracts secure. Like traditional software programs,
smart contracts can still contain programming bugs or vulnerabilities 4 inten-
tionally or unintentionally created by their programmers. There are numerous
security issues with smart contracts [57–59], with some most popular of them
include:

• Access Control: Failure to use function modifiers or use of tx.origin.

• Arithmetic: Bugs related to the overflow or underflow of integer.

• Denial of Service: time-consuming operation leads to the rejection of the
smart contract.

• Front Running: Two dependent transactions that invoke the same con-
tract are included in one block.

• Reentracy: Unexpected behavior of a contract due to reentrant function
calls.

• Time manipulation: The timestamp of the block is manipulated by the
miner.

• Unchecked Low Level Calls: low level functions, i.e., call(), callcode(),
delegatecall(), or send() fails because of unchecked condition.

1https://www.ethereum.org/crowdsale
2https://monegraph.com
3https://proofofexistence.com
4In cybersecurity contexts, vulnerabilities mean special kinds of bugs that can be exploited

and cause major security concerns. According to https://dasp.co/, all the bug types
mentioned in this work can be vulnerabilities, although only a few instances of the bug types
can be exploited. In this thesis, we do not need to handle the differentiation and simply treat
them as synonyms.

https://www.ethereum.org/crowdsale
https://monegraph.com
https://proofofexistence.com
https://dasp.co/

2.2. Related Work 19

In fact, adversaries may take advantage of undocumented methods and
exploit potential bugs as well as vulnerabilities in the contracts, which can
cause harm to users. Such bugs or vulnerabilities may have a more severe
impact than those in traditional software as the buggy smart contracts, once
deployed to a blockchain, are irreversible unless self-destructed and may lead
to substantial financial losses if misused by attackers. One of the most success-
ful attacks is “The DAO”, which exploited the “reentrancy” vulnerability and
managed to steal from a contract around $50M at the time of the attack [60].
Also, $31M worth of ether was stolen due to a critical security bug in a digital
wallet contract [61].

To analyze security issues, besides traditional software engineering meth-
ods such as model checking or theorem proving, machine learning-based
approaches, especially in graph representation learning, are increasingly
widespread because of their compatibility and high accuracy with multi-
ple input data sources. First, the source code or bytecode of smart contracts
will be represented as an intermediate representation, such as control flow
graphs, call graphs, data dependency graphs, or abstract syntax trees. The
graph-structured intermediate representations have flexible abilities to cap-
ture general semantics and relationships between objects, variables, syntaxes,
and functions in a software program as a smart contract. Next, based on the
generated graph structures, graph neural network models are applied to auto-
matically extract the input graphs’ features as the node or graph embeddings
used in further predicting steps. This is also a primary advantage of machine
learning-based methods over conventional program analysis approaches, in-
cluding model checking and theorem proving, which rely heavily on expert
knowledge in defining mathematical-logic formulas, symbolic executions,
and abstract interpretations. Finally, node or graph feature embeddings are
utilized on specific downstream tasks such as classification, clustering, simi-
larity, centrality, or link prediction to determine the types and corresponding
locations of vulnerabilities/bugs in the input smart contracts.

2.2 Related Work

In the first part of this section, we present a list of relevant or used datasets
in the experiments in the following chapters. Next, some machine learning
methods applied in criminology and crime research are introduced to pro-
vide an overview of security analytics in this specialized field. In the rest
of the section, we present various approaches regarding machine learning
in code representation for bug detection in smart contracts. In each subsec-
tion, we also briefly mention the existing works’ limitations and why our
proposed methods can potentially reduce these constraints or improve the
overall performance.

20 Chapter 2. Background and Related Work

2.2.1 Relevant Datasets

The karate club dataset of Zachary [24] is probably the first public social net-
work dataset. Over the years, many more public datasets have been proposed
for social network studies. Baumgartner et al. released the Reddit dataset [62]
and the Telegram dataset [63] - a social network of instant messaging apps.
McAuley and Leskovec [64] also published a dataset containing user con-
nections in Facebook, Twitter, and Google+ social networks. Cho et al. [65]
collected the dataset from the Gowalla social network, allowing users to share
their locations with friends. Yang and Leskovec [66] shared their Youtube
dataset - a video-sharing type social network. Several studies use the Yelp
dataset [67] to understand the impact of reviews on a location-reviewed social
network. Bojer et al. [68] published a Kaggle network dataset, one of the largest
data science social platforms. Mohri and Medina [69] released a dataset of
eBay, an auction-based social network. Capocci et al. [70] provide a Wikipedia
dataset, a social network of editors for making a global online encyclopedia.
Clement et al. [71] publish a dataset of ArXiv - a social network of scientific
collaboration among the research community. Oliver et al. introduce covert
networks [72], a collection of past cases’ networks that are collected and made
publicly available. This collection includes a subset with networks among the
involved individuals available along with some of their attributes (e.g., name,
gender, and role). Notable examples include the networks of financial flows
from the Madoff fraud case 5 and the network of terrorists involved in the
9/11 attack 6.

Unlike the basic social and criminal networks above, datasets regarding
decentralized systems based on blockchain technology are more complicated
and could be split into two groups:

• Datasets of blockchain smart contracts: which are often in the forms of
source code or bytecode and require transformation to intermediate pre-
sentations (e.g., formal formulas or graph structures) before any analysis.
Particularly, Smartbugs Curated [73, 74] is a collection of source code of
vulnerable Ethereum smart contracts organized into nine types. This
dataset is one of the most used real datasets for research in automated
reasoning and testing of smart contracts written in Solidity, the primary
programming language on the Ethereum blockchain. It contains 143
annotated contracts having 208 tagged vulnerabilities. Smartbugs also
provides a Wild collection of 47,398 unique smart contracts from the
Ethereum network. SolidiFI Benchmark [75] is a synthetic dataset of
vulnerable smart contracts. There are 9369 injected vulnerabilities in
350 distinct contracts, with seven different vulnerability types. Besides,
Zhuang et al. [76], Liu et al. [77] and eThor [78] in their research work
also introduce some datasets of smart contract source code and bytecode

5https://en.wikipedia.org/wiki/Madoff_investment_scandal
6https://en.wikipedia.org/wiki/September_11_attacks

https://en.wikipedia.org/wiki/Madoff_investment_scandal
https://en.wikipedia.org/wiki/September_11_attacks

2.2. Related Work 21

labeled by their own rules. However, the datasets do not have fine-
grained line-level labels for vulnerabilities like Smartbugs and SolidiFI
Benchmark.

• Datasets of blockchain operations: which often contain data and his-
tory of transactions of a specified blockchain. Recently, Li et al. [79, 80]
released a dataset of operation in the blockchain-based social network
Steem, called SteemOps. Since our SoChainDB is a database framework
targeting data completeness and flexible accessibility of storing and re-
trieving blockchain-powered social network data, we provide in-depth
analysis to show the excellence of our work over these existing ones:

– Data Completeness: These works only provide a subset of the entire
network. For example, Li et al. [80] released data with only opera-
tions of the Steem network. We argue that without other kinds of
data, such as friend networks and post content, it restricts research
questions that help us understand the whole picture of blockchain-
based social networks. Our system is guaranteed to provide the
complete data of social networks.

– Data Readiness and Accessibility: The only way to use data in the
current literature [79,80] is to download the archival files containing
all information. Such a method has two problems: First, it does
not allow users to investigate the network. For example, suppose
researchers want to study an event in a specific period. They need
to download and extract the entire archival file and then filter
data according to the desired period. Second, archival files can
produce computational problems. Since the archival files of the
whole network are enormous, it is easy to exceed the computational
resources. To overcome such obstacles, SochainDB provides two
friendly options for users, especially data scientists and researchers,
to query and download the data, including SQL-like interfaces and
APIs.

– Data (Sub-)Instantaneity: Archival files usually do not sync with the
original social networks. Notably, the latest SteemOps dataset [80]
was released on Dec 1st, 2019. It is not possible to solve emerging
problems like the COVID-19 outbreak and the record price of Bit-
coin with obsolete data. For this reason, the data in SochainDB is
guaranteed to be near-real-time with the actual data of the Hive
blockchain.

2.2.2 Crime Investigation and Machine Learning Methods

There is a growing interest in using machine learning in criminology and
crime research, particularly crime prediction [81]. Most methods focus on
predicting future crimes’ time and/or location, while a few studies aim to
find connections and links among the crimes. In this section, we review the

22 Chapter 2. Background and Related Work

models based on machine learning to deal with the crime linkage problem
and general crime prediction.

Crime Linkage

Crime linkage studies are generally based on the similarity of criminal be-
havior, which relies on three assumptions [82, 83]: (1) criminal behavior is
consistent, that is, the same offender will behave similarly over time, (2) differ-
ent criminals show distinctive criminal behaviors that are different from each
other, and (3) criminal behavior is measurable through a direct relationship
and homology between the characteristics of offenders and their behavior
through quantitative models.

The crime linkage problem can be seen as a binary classification task that
aims to find serial crimes committed by the same offenders. In this setting,
it is evaluated whether each of all possible crime pairs represents a serial
crime pair or not. Due to insufficient evidence, it is sometimes difficult to
determine if a crime is serial, so these two-way decisions are prone to error.
A recent study attempted to model the problem with a three-way decision,
where the data space is divided into three possible regions (i.e., positive,
negative, and boundary) based on two thresholds, so those samples that
are difficult to distinguish given the existing information are placed in the
boundary area [84]. Then, they tried to automatically learn the thresholds of
the three-way decisions without the need to establish explicit loss functions.
Nonetheless, serial crime pairs are much less common in many real-world
cases than non-serial crime pairs. To address this challenge, some studies
applied class imbalance algorithms [85]. In a particular robbery case, they
focus on the indistinguishable case pairs at the classification boundary rather
than resampling smaller or larger classes to handle the imbalanced dataset.
Chi et al. also presented a decision system that determined if two robberies
belong to the same series of cases [86]. However, their system is quite limited
in that it considers only robbery cases and requires police officers to manually
mark each case’s characteristics.

Due to the increasing attention to deep learning methods and their promis-
ing results in various applications, a recent study uses an adaptive deep
Q-learning network with reinforcement learning to develop a robust crime
prediction model [87]. In another work, Wang et al. extended the ResNet
model [88] for spatiotemporal crime forecasting [89]. A crime forecasting sys-
tem using an attention-based sequence-to-sequence model and convolutional
variational autoencoders has also been proposed [90]. Previously, Simonyan
and Zisserman presented a two-stream deep learning approach that learned
video representations by dividing video streams into two components, one
representing a spatial stream and the other a temporal one [91]. They used
a Convolutional Neural Network (CNN) architecture to identify spatial de-
pendencies, further enhanced by a Long-Short Term Memory (LSTM) that
captured temporal patterns. The joint use of CNNs and LSTMs showed highly
complementary behavior in capturing spatial and temporal features for video
classification [92]. Later, Solomon et al. proposed machine learning-based

2.2. Related Work 23

approaches for crime linkage to parameterize crimes with spatiotemporal in-
formation and automatic and manual language features extracted from police
reports [93]. In doing so, they used two types of samples: positive pairs, which
were pairs of burglaries committed by the same criminal, and negative pairs,
which were pairs of burglaries committed by different criminals. Then, the
model predicted crimes committed by new criminals that were not observed
in the training phase. Ghazvini et al. also proposed a model that detected
serial crimes by isolating short-term repetitiveness using neural networks [94].

All related work presented so far relates to transductive link prediction,
where approaches have aimed to build new connections between known
offenders. Inductive link prediction, by contrast, focuses on cases where new
offenders are added to the scope. Expanding the analysis beyond the study
of crime, Bojchevski and Günnemann [95] described network nodes using
a Gaussian distribution instead of a simple low-dimensional vector used in
previous studies (e.g., [6]). Then, a dissimilarity measure with respect to the
Gaussian distribution was defined to minimize the heterogeneity of adjacent
nodes: each time a new node was added to the network, the approach would
predict its links to known nodes while minimizing the dissimilarity between
the connected ones.

Crime Prediction

Crime prediction methods in the literature have largely ignored the role of
co-offending in committing a crime. Instead, they have focused on modeling
observed crimes spatially and temporally to predict the time and location of
future crimes. Crime prediction methods can be divided into two categories:
traditional empirical methods and spatiotemporal methods. Spatiotemporal
models, including time series [96] and Kernel Density Estimation (KDE) [97],
are commonly applied for crime prediction and are related to the crime linkage
problem. Variously, traditional methods consider time and location indepen-
dently [98] and aim to focus on predicting crime hotspots and crime risk
areas [99]. These methods are less relevant to our study as they ignore the
connection between the crimes. However, we provide a brief overview of this
literature to review the machine learning methods used in this field.

As for early studies, Olligschlaeger examined using Multi-Layer Percep-
tron (MLP) in GIS systems to predict drug-related calls at 911 call centers
in Pittsburgh, USA [100]. He trained a simple MLP architecture with only
nine neurons and a single hidden layer on a dataset with three collected fea-
tures indicating the number of calls received in each map cell area related
to weapons, robberies, and assaults. Later, Gorr et al. compared different
regression approaches to predict a set of crime categories using Pittsburgh
data [101]. They ran regression functions of different complexity on the same
data and found that more sophisticated methods outperformed simple time
series. In particular, they found that the predicted mean absolute error was
improved through a smoothing coefficient, that is, by applying more weight
to recent data. However, results from the Prophet model [102] applied to

24 Chapter 2. Background and Related Work

crime occurrence datasets from three major US cities showed that time series
models could outperform neural networks.

SVMs have shown successful results in various applications, including
hotspot location prediction [103]. Yu et al. compared the competency of SVMs
to other well-established machine learning approaches like Naive Bayes and
Random Forests [104]. They found supportive evidence aligned with the
theory of the recurrence of residential burglary at a particular place. In some
types of crimes, such as burglaries, serial offenders remain in a certain area
due to familiarity with the region, even though the proximity to their home
could compromise their anonymity. Thus, their incidents are concentrated
within a ring-shaped area centered on an outbreak point [105]. Furthermore,
Mohler et al. [106] and Ratcliffe [107] proposed two different temporal crime
modeling approaches and gained insights that validated the well-known
claim that offenses can be driven by the availability of opportunities.

Many of the methods in the literature rely solely on spatial dimensions of
the incidents, including KDE [108]. Originally, Silverman used KDE to divide
the study area into grids of regular cells and estimated a density value for
each cell via a kernel function that estimates the probability density of crime
incidents [109]. By extending KDE to employ space and time variants, Nakaya
and Yano proposed a crime cluster analysis with a temporal dimension that
can simultaneously visualize the geographical extent and duration of criminal
clusters [97]. Going one step further, Toole et al. used criminal records to
identify spatiotemporal patterns at multiple scales [110]. They employed
various quantitative tools to identify significant correlations across both space
and time in the behavioral crime data.

2.2.3 Code Representation and Machine Learning Techniques
for Bug Detection in Smart Contracts

We discuss the main differences between our work and closely related work
on smart contract bug detection.

Conventional Bug Detection Techniques

Bug and vulnerability detection has been an important research problem for a
long time in various domains of computer science, including programming
languages, systems, cybersecurity, and software engineering. Furthermore,
with the rise of more diverse and complex languages and software systems,
more general, scalable, and accurate bug/vulnerability detection and preven-
tion are essential. On the other hand, smart contracts in blockchain technology
have received increasing popularity and reputation, and hence, vulnerability
detection for smart contracts is becoming a popular topic [58, 111]. Many
studies detect specific types of bugs or vulnerabilities using conventional
program analysis and software engineering and security techniques, such as
testing/fuzzing [112–116], symbolic execution [117–121], and static/dynamic
program analysis [78, 122–126]. For example, OYENTE [127] uses symbolic
execution to explore execution paths in smart contracts as much as possible

2.2. Related Work 25

and search for four types of bugs. SmartCheck [128] uses static analysis tech-
niques to check smart contract code for patterns that match pre-defined rules
about vulnerabilities and code smells. Several other studies [129–135] use
formal verification to check smart contracts’ safety and functional correctness
according to certain human-defined specifications [136]. However, in con-
trast to our automatic bug pattern detection method, such security analysis
techniques are built to discover specific vulnerabilities according to manually
defined patterns or specifications. They often need customized implementa-
tion of the testing, analysis, and verification algorithms for the specific smart
contract language and vulnerability types; their analysis algorithms can be
very different for source code and bytecode, limiting their flexibility for new
languages or vulnerability types. Although our learning-based approaches
also require customized front-end code parsing and control-flow graph con-
structions, our graph-learning components in MANDO, MANDO-GURU,
and MANDO-HGT are independent of the languages and can be applicable
to new vulnerability types.

Learning-Based Bug Detection Techniques

Many studies are based on machine learning and deep learning for detecting
bugs in either source, bytecode, or binary. Generally, there are more deep
learning-based techniques for source code than bytecode/binary.

Learning-based bug detection for general source code. Software pro-
grams have explored learning from heterogeneous graphs for vulnerability
detection, code search, and other tasks. Most previous studies either consider
token sequences of code, data flow graphs, or control flow graphs for individ-
ual functions separately or consider cross-function relations independently
from the within-function relations due to scalability and design constraints in
their methods. For example, VulDeePecker [137] uses both syntax structures
and dependency slices to represent programs and employ commonly used
neural network models to learn the programs’ embedding and identify vulner-
ability patterns for C/C++ programs. VulDeeLocator [138] extends the work
by adding attention-based granularity refinement to identify fine-grained
line-level vulnerability locations. BGNN4VD [139] also uses combined code
representations in the abstract syntax trees and control- and data-flow graphs
to learn vulnerability patterns via bilateral graph neural networks for C/C++
programs. Some other studies consider different kinds of code representations
and learning techniques for source code in various languages [140–147] and
very few consider using heterogeneous graphs for source code representa-
tion [148]. However, the existing approaches are almost designed for other
languages and unsuitable for Solidity smart contracts.

Our MANDO, MANDO-GURU, and MANDO-HGT are the first to
consider heterogeneous graph learning that combines control-flow graphs
and call graphs and employs the learned embedding for recognizing vulner-
abilities in Solidity smart contracts. Different from all previous studies, our
frameworks based on heterogeneous contract graphs are able to represent a
smart contract’s syntactic and semantic information more comprehensively,

26 Chapter 2. Background and Related Work

combining fine-grained individual statements and lines of code within each
function with cross-function call relations together for pattern learning and
search. In addition, they can be scalable and generalizable to different types
of vulnerabilities.

Learning-based bug detection in smart contract bytecode and general
binary code. DC-Hunter [149, 150] uses an unsupervised graph embedding
algorithm to encode normalized and sliced code graphs into comparable
vectors so that vulnerable smart contracts can be identified when compared
to the vectors of known vulnerable ones. For their high precision, they need
to heuristically normalize instructions and data in the bytecode generated
by different compilers and slice the code following contract-specific data-
and control- flows during simulated executions. L-GCN [151] splices a graph
convolutional network for control-flow graphs together with a long short-term
memory network for segmented opcode sequences of bytecode and trains
the spliced networks to classify vulnerable bytecode. Zhu et al. [152] learn
bytecode but for a different problem of finding similar smart contracts. Also,
among the limited literature on deep learning-based vulnerability detection
methods in smart contracts bytecode [153–157], some use control-flow and
data-flow graphs. However, they still use homogeneous graph learning
techniques, while our approach customizes heterogeneous graph learning
for both source code and bytecode of smart contracts. Besides smart contract
bytecode, a few studies have adopted deep learning techniques for general
binary code [158–162]. They also have not considered heterogeneous graph
learning techniques either, although some of those learning techniques can be
combined with ours.

Our MANDO-HGT framework is different from those studies in that we
adapt supervised graph learning directly to the bytecode control-flow graphs
without the need for heuristic code normalization or slicing, and we are able
to perform fine-grained function-level vulnerability detection. MANDO-
HGT uses a triplet network composed of sequence transformers to recognize
similar/dissimilar smart contracts without source code, even when different
optimization options and compiler versions produce their bytecode. We focus
on a different problem of vulnerability detection in smart contract bytecode
using graph-based learning while handling only one compiler version and
optimization. It would be useful to consider extending our graph-based
approach to handle different compiler versions and optimizations.

Graph Embedding Neural Network Techniques

A few studies have detected smart contract vulnerabilities using graph neural
network-based embedding techniques. Zhuang et al. [76] represent each func-
tion’s syntactic and semantic structures in smart contracts as a contract graph
and propose a degree-free graph convolutional neural network with expert
patterns to learn the normalized graphs for vulnerability detection. They
also provide more interpretable weights by extracting vulnerability-specific
expert patterns for encoding graphs [163]. In the Peculiar tool [164], Wu et
al. present a pretraining technique based on customized data flow graphs

2.2. Related Work 27

of smart contract functions to identify reentrance vulnerabilities. However,
their methods face various limitations: Relying on expert patterns, their graph
generator only works with some pre-defined Major and Secondary functions
before generating the contract graphs, leading to poor performance in the
graph generation process compared to our MANDO, MANDO-GURU, and
MANDO-HGT frameworks. Besides, pre-defined patterns also restrict them
to detect only two specified bugs, Reentrancy, and Time Manipulation, in
Solidity source code. In contrast, the heterogeneous graph structure allows
our frameworks to be more general and flexible in exploring different vul-
nerability types without requiring any pre-definitions. Other studies use
other forms of embeddings in code fragments or the graph/tree structures
generated. For example, SmartEmbed [165] employs serialized structured
syntax trees to train word2vec and fastText models to recognize vulnerabil-
ities. SmartConDetect [166] treats code fragments as unique sequences of
tokens and uses a pre-trained BERT model to identify vulnerable patterns.
Meanwhile, Zhao et al. [167] use word embedding together with similarity
detection and Generative Adversarial Networks (GAN) to detect reentrance
vulnerabilities dynamically.

Although the existing deep/graph neural network-based techniques allevi-
ate the problem by automatically learning bug patterns from certain represen-
tations of existing code, such as syntax trees and data-/control-dependency
graphs, they have treated the trees/graphs as flattened sequences or conven-
tional graphs disjointing each other and have not utilized particular kinds of
control flow and call relations in the contract code to capture their semantics
more comprehensively. Moreover, they often treat nodes and edges in the
tree- and graph-representations of source code homogeneously, ignoring fine-
grained differences in their types and locations. As a result, they could only
search for coarse-grained whole-graph-level smart contract vulnerabilities,
which are not accurate enough to locate the line-level locations of vulnerabil-
ities. Different from such existing techniques, our unique graph encodings
in MANDO, MANDO-GURU, and MANDO-HGT can accurately capture
vulnerability patterns and locate fine-grained vulnerabilities at the line level.

28

Chapter 3

A Database for Storing and
Retrieving Blockchain-Powered
Social Network Data

3.1. Introduction 29

Social networks have become an inseparable part of human ac-
tivities. Most existing social networks follow a centralized sys-
tem model, which despite storing valuable information of users,
arise many critical concerns such as content ownership and over-
commercialization. Recently, decentralized social networks, built
primarily on blockchain technology, have been proposed as a sub-
stitution to eliminate these concerns. Since decentralized archi-
tectures are mature enough to be on par with centralized ones,
decentralized social networks are becoming more and more popu-
lar. Decentralized social networks can offer both common options
like writing posts and comments and more advanced options such
as reward systems and voting mechanisms. They provide rich
ecosystems for influencers to interact with their followers and
other users via staking systems based on cryptocurrency tokens.
The vast and valuable data of the decentralized social networks
open several new directions for the research community to extend
human behavior knowledge. However, accessing and collecting
data from these social networks is not easy because it requires
strong blockchain knowledge, which is not the main focus of com-
puter science and social science researchers. Hence, in this chapter,
we propose the SoChainDB framework that facilitates obtaining
data from these new social networks. To show the capacity and
strength of SoChainDB, we crawl and publish Hive data - one of
the largest blockchain-based social networks. We conduct exten-
sive analyses to understand the insight of Hive data and discuss
some interesting applications, e.g., games, and non-fungible to-
kens market built upon Hive. It is worth mentioning that our
framework is well-adaptable to other blockchain social networks
with minimal modification.

3.1 Introduction

Social networks provide many useful services for their end-users; therefore,
they are a part of billions of users’ lives worldwide nowadays. For example,
Facebook had around 2.85 billion monthly active users at the end of March
2021 [168], and Twitter has nearly 300 million active users [169]. Such a large
userbase creates a rich and colossal dataset of various aspects of human ac-
tivities. However, unfortunately, most social network services are deployed
upon a centralized architecture. In other words, each social network is un-
der the umbrella of a particular organization or company. Despite having
many advantages, a centralized architecture still contains several fundamental
disadvantages:

1. The content ownership is not in the hands of its creators. Although
users generate content through their interactions in social networks, the
content is hosted by the service providers. Hence, “who is the actual

30 Chapter 3. SoChainDB Database

owner?” is still an open question. The data leakage risk makes the
problem worse.

2. Internet censorship is another thread of centralized architectures. Service
providers are under pressure from other organizations to remove or
delete posts or comments displeasing those organizations. Therefore,
they are ineffective tools to protect the voice of their users.

3. Due to their large user base, social networks are being exploited for
commercialization by marketing companies and advertising agencies.
Advertising content is increasingly integrated into many popular social
media platforms without permission from users. Such activities could
harm the engagement of users’ experience, and have a negative impact
on users’ behavior.

Due to these drawbacks, distributed social network architecture has been
proposed as a reasonable substitution. The technology behind it is blockchain
which ensures the completeness of data by leveraging cryptography. Since
its proposal, social networks powered by blockchain have been evolving
gradually, and they are now ready to serve millions of users. Decentralized
social networks provide many benefits: First, their functionality is on par with
conventional social network platforms. For instance, standard features such
as following users, posting articles, and writing comments are all available
in blockchain-based social networks. Second, they inherit transparency from
blockchain technology. Since all data is stored via blockchain, it is publicly
accessible, and decentralization makes blockchain social networks impossible
to manipulate. Third, users of blockchain social networks are rewarded for
their activities. Such a system encourages users to engage more in social
networks and benefits their activities. Finally, we can leverage blockchain
technology of decentralized social networks to build applications such as
games or trading platforms to help the existing network user base. These
potentials in decentralized social networks offer the research community
many novel directions to understand human behaviors through valuable
and massive data generated by a variety of user interactions on the system.
However, collecting data from decentralized social networks has several
challenges: First, blockchain knowledge is required, which is not negligible
and could create a high barrier for scientists from other fields e.g. social
science who are not knowledgeable in cryptography. Second, the demand
for a computational resource to synchronize complete data is usually high
and expensive. For example, we required a server with more than 100GB
RAM to synchronize one full node of the Hive network. Third, a cleaning
process is a must since blockchain can be used for multiple purposes, not only
social networks. Therefore, we propose SoChainDB, a framework for crawling
data from decentralized social networks, and publish Hive’s data - one of
the largest decentralized social networks built on blockchain technology. The
contribution of our work can be summarized as follows:

3.2. Overview of Hive Blockchain 31

• We first propose SoChainDB, a generalized database framework and
publicly available pipeline for extracting data from blockchain-based
decentralized social networks.

• We publish the entire dataset of one of the largest blockchain-based
social networks called Hive. It is available to download via multiple
methods such as public API services and compressed archive files.

• We provide several unique use cases of blockchain-based social networks
that could be potential future directions for the research community to
explore.

Ethics Declaration: Data stored in the Hive blockchain cannot be ma-
nipulated by any individuals or organizations, and there is no restriction in
accessing data. Therefore, the Hive blockchain data, including comments,
votes, posts, and all other blockchain-type transactions, are considered public
data. Accordingly, no permission is required to collect, store, analyze, and
publish the data. The data stored in our SochainDB is marginally different
from the stored data in Hive due to our noise filtering preprocessing step.

SoChainDB is publicly accessible at http://sochaindb.com and the dataset
is available under the CC BY-SA 4.0 license.

3.2 Overview of Hive Blockchain

20
20
-04

20
20
-05

20
20
-06

20
20
-07

20
20
-08

20
20
-09

20
20
-10

20
20
-11

20
20
-12

20
21
-01

20
21
-02

20
21
-03

20
21
-04

20
21
-05

20
21
-06

20
21
-07

20
21
-08

20
21
-09

20
21
-10

20
21
-11

20
21
-12

20
22
-01

0

50

100

150

200

250

ac

tiv
e
us

er
s (

th
ou

sa
nd

)

FIGURE 3.1: Growth of active users on Hive over time. From April 2020 to May 2021,
the monthly growth of active users is stable, around 1,600 to 6,700 users per month.
Still, since June 2021, its monthly growth has increased significantly because of the

peak price of Hive tokens during this period [170].

After a hard-fork named v0.23.0 from Steem network on March 20, 2020,
which is related to some conflicts between Steem core communities and the

http://sochaindb.com

32 Chapter 3. SoChainDB Database

Token transactions

...

Backup witness20 Elected Witnesses

New blockchain block

Vested HIVE tokens

Hive Decentralized Applications

Serve data

Hive Rewards Posts

Votes

Game actions

Witness votes

Hive user-base

Comments

Hive Blockchain

FIGURE 3.2: Overview architecture of Hive blockchain-based social network.

new board of Steemit Inc. [171], Hive became an entirely community-based
blockchain. In more than a year, the growth of active users per month in Hive
blockchain has remarkably increased from approximately 1,600 active users
in April 2020 to more than 250,000 in August 2021 (see Figure 3.1)1. This is
partly due to the transformation from the Steem communities to the Hive
network, besides the fact that the decentralized social network concepts have
become more and more widespread over time. In the current version of the
SoChainDB framework, we only focus on supporting and integrating the data
extracted from the Hive blockchain to ensure the overall best performance.
Moreover, Hive and Steem share a nearly similar architecture; therefore, our
approach could easily and quickly adapt to the Steem network with minimal
modification in the subsequent versions. Figure 3.2 shows the overview
architecture of Hive blockchain. Here, we only discuss the core components
of Hive blockchain used for generating a decentralized social network.

Hive - Social Network: Since Hive supports all basic functionalities of
traditional social networks, users can create, edit, comment, and share posts.
The posts can contain text, links, hashtags, mentions, and metadata such as
timestamp, author, edit the information. Note that multimedia data, including
images or videos, are not stored directly in the Hive blockchain due to the
block size limitations and the blockchain’s overall performance, especially
when a new block is created and broadcasted throughout the network in
seconds. Moreover, other users can view and interact with the post by reply,
comment, and reblog. These ensure users’ consistent experience and similarity
to regular social networks.

Hive - Blockchain: The Hive underlying blockchain architecture allows
easy storage and retrieval of immutable chains of large amounts of data
and information. It also provides an efficient transaction platform in only
three seconds without any fee. Transaction confirmation time and fees are
usually among the most important challenges of promoting a blockchain’s
development and adaptability of use. For example, the Bitcoin network takes

1The users are classified as “active” if they publish at least one post, comment, or vote,
even if they do not have any actions later.

3.3. Dataset Collections & API Service 33

an average of ten minutes to validate a new block with transaction fees that tab
to 60 USD at a price in April 2021 [172]. Besides, when Hive witnesses generate
a new block, it includes all verified transactions or operations that users
perform. These operations could be classified into four primary groups [48,49]:
(i) post and vote, (ii) witness election, (iii) followers/followings, and (iv)
cryptocurrency transfer.

Hive - Tokens and Rewards System: Similar to the miners of Bitcoin and
Ethereum, the Hive witnesses receive Hive cryptocurrency tokens rewarded
by Hive blockchain when generating and validating new blocks. The Hive
tokens can power up a Hive account for more substantial voting power and
increased curation rewards, more resource credits to make transactions on
Hive blockchain, and more stake in Hive governance to assign and vote
witnesses and projects. Also, the Hive platform provides another unique
reward system based on an upvote and downvote mechanism. It is integrated
into the blockchain core using Hive tokens, and Hive Backed Dollars (HDB)
tokens. Those authors who write engaging and trending content can receive
Hive tokens or HDB tokens from other users on the network. Moreover, some
Hive-based back-ends such as PeakD [173] or Hive.blog [174] can rank a post
based on users’ interaction and the number of Hive tokens staked. The higher
the rank, the more likely the post would appear on these decentralized web
applications’ front page or trending tabs.

3.3 Dataset Collections & API Service

3.3.1 Pipeline

Figure 3.3 illustrates the pipeline of SoChainDB, including the following four
steps:

• Scraping: To obtain the entire Hive blockchain dataset, we should syn-
chronize a Hive full-node. Setting up a full node often requires advanced
blockchain knowledge of custom configuration to select the suitable
blockchain plugins and index the data in a sufficient time with reason-
able computational resources. These settings are also relevant to the
peer-to-peer protocol that synchronizes the data block. Thus, if a regular
researcher or a data scientist wants to access and exploit information
from these types of decentralized social networks, these are significant
obstacles. Moreover, ensuring data integrity is always the highest pri-
ority of our framework when extracting from each block on the Hive
distributed ledger. Hence, all scraped data are re-checked with public
peer nodes for completeness, accuracy, and consistency.

• Cleaning: Our system encodes the data into the NDJSON-formatted files,
in which every line has JSON format, and then splits them into chunks as
an intermediate step for simultaneous preprocessing. This technical step
is necessary because the size of the uncompressed blockchain dataset
is almost one terabyte. Moreover, the Hive blockchain provides several

34 Chapter 3. SoChainDB Database

- Synchronizing a full node of Hive blockchain
- Extracting blockchain data by blocks
- Checking and ensuring data integrity

Cleaning

- Encoding data into NDJSON format
- Splitting data files into chunks
- Processing block JSON strings
- Resolving incompatibility of the input JSON

- Resolving field type incompatibilities
- Generating table schema based on data files
- Storing data on the Google BigQuery

Storing

- Summarizing Hive user-base statistics
- Implementing blockchain view for querying
- Developing and serving the public APIs
- Deploying front-end for the APIs
- Serving compressed data files to download

Serving

Scraping

FIGURE 3.3: SoChainDB general pipeline.

dynamic JSON fields that allow users to push data in custom fields
encoded as a regular string. Thus, the custom JSON strings should
be decoded, and all field incompatibility issues should be refined and
resolved before storing in a cloud service.

• Storing: In this step, table schemas based on the data chunks are automat-
ically generated with the types of each block field being homogeneous
before uploading them to a suitable cloud platform specialized in big
data. In the current version, we use Google BigQuery as the central
platform to store the decentralized social network data because of its
high adaptability and compatibility with multiple varieties of data, as
well as the high performance on querying big data and scalability [175].
However, our system architecture allows us to migrate to other plat-
forms with similar functionalities to Google BigQuery flexibly with little
change.

• Serving: We have implemented several blockchain views to optimize the
query time and secure our APIs from anomaly users’ behaviors while
crawling data. As significant and core features, our public APIs are listed
and served through our front-end at http://sochaindb.com. The detail
of these APIs is described in Section 3.3.2. Likewise, we summarize
blockchain operation statistics and present some prominent analyses
about the Hive decentralized social network in Sections 3.4.2 and 3.4.2.
We provide an HTTP service to download the compressed archive files
at http://sochaindb.l3s.uni-hannover.de.

http://sochaindb.com
http://sochaindb.l3s.uni-hannover.de

3.3. Dataset Collections & API Service 35

3.3.2 SoChainDB’s Public APIs and Homepage

APIs service: SoChainDB provides a RESTful API service built on Falcon [176]
to query our clouded data on Google BigQuery through some endpoints. This
highly optimized framework has significant features, such as asynchronous
I/O support and simple API modeling. Falcon also showed an outstanding
performance via intensive experiments on benchmarks and comparison with
various other Python web API frameworks in several realistic scenarios in
2018 [177]. It assists us in accelerating the incoming requests to access our
database in parallel versus sequential ways. Our APIs are generally designed
to process big datasets with thousands of requests per second. The API ser-
vice is deployed at http://sochaindb.com/hive-api/v1.0.0/, and its source
code is publicly accessible at our Github repository 2. Since the hard-fork of
Hive from Steem happened in late March 2020 [171], our APIs in the early
version could only support the Hive blockchain data from March 27, 2020 to
December 6, 2021. We schedule to update the database every month and add
the Steem blockchain data in the subsequent versions. All our RESTful APIs
use the GET methods divided into three groups to meet the basic requirements
of datasets that suit social network researchers and data scientists:

• Blocks: could be used to crawl the entire blocks containing all of the trans-
actions from the Hive blockchain data. This “blocks” API allows users
to collect complete data of each block in the public ledger, including a
large amount of information about various operations types.

• Posts: could be employed to crawl posts data that we filtered from the
blocks transactions. In general, the collected posts are the transactions
containing operation type as comment_options_operation having a title
field.

• Comments: could be used to get comments that we filtered from the
blocks transactions. The comments transactions have the same post-
operation type comment_options_operation with an empty string in title.

We also provide APIs specialized in collecting data for statistical purposes
with a 10,000 default size. However, users can easily modify the size by
changing the size parameter before requests. For example, through the GET
request, we can:

1. Crawl a list of users having the top amount of posts: http://sochaindb.
com/hive-api/v1.0.0/top_posts?size=1000

2. Crawl a list of users having the top amount of comments: http://
sochaindb.com/hive-api/v1.0.0/top_comments?size=1000

3. Crawl a list of contents for top posts and comments: http://sochaindb.
com/hive-api/v1.0.0/top_words?size=1000

2https://github.com/SOCHAINDB/hive-db

http://sochaindb.com/hive-api/v1.0.0/
http://sochaindb.com/hive-api/v1.0.0/top_posts?size=1000
http://sochaindb.com/hive-api/v1.0.0/top_posts?size=1000
http://sochaindb.com/hive-api/v1.0.0/top_comments?size=1000
http://sochaindb.com/hive-api/v1.0.0/top_comments?size=1000
http://sochaindb.com/hive-api/v1.0.0/top_words?size=1000
http://sochaindb.com/hive-api/v1.0.0/top_words?size=1000
https://github.com/SOCHAINDB/hive-db

36
C

hapter
3.

SoC
hainD

B
D

atabase

Parameter Description Default Accepted Values APIs
blocks posts comments statistics

size Limit the results size of a request. A data sample might be large, especially
the block samples. Users can set size for reducing runtime. 25 Integer

fields Get fields in the schema. Not all fields are useful, and it depends
on individuals’ purposes. Users can add a list of fields for reducing runtime. “*” String; List of strings

separated by comma

witnesses Filter data by a “witness” or a list of “witnesses”. It is sometimes essential
information for analyzing. None String; List of strings

separated by comma

ids Filter data by the identified blocks IDs. None String; List of strings
separated by comma

block_ids Filter data by the blocks hash, which is similar to IDs, however, this is used
to reference each block in the database. None String; List of strings

separated by comma

operations Filter by the operation types of the transactions in the blocks. None String; List of strings
separated by comma

after Filter data after a specified time. The first available time in our database
is at 16:40:09 UTC on 27th March 2020 for the current version. None UTC format

or timestamp

before Filter data before a specified time. The last available time in our database
is at 23:59:57 UTC on January 31st, 2022 for the current version. None UTC format

or timestamp

authors Filter by the authors. If users are interested in some posts or comments,
they can add a list of authors to search for more actions. None String; List of strings

separated by comma

permlinks Filter by “permlink” being a partition of posts or comments’ URL on Hive
social network. Users can add a list of “permlinks” for reducing runtime. None String; List of strings

separated by comma

post_permlinks Filter the comments in the posts having the “permlinks.” None String; List of strings
separated by comma

words
Filter the posts or comments which contain the specified input words.
This could help users catch some social network trends by searching
the hot trending words.

None String; List of strings
separated by comma

tags Filter the posts which contain the specified hashtags. This might help users
search the posts more accurately than the words parameter. None String; List of strings

separated by comma

TABLE 3.1: SoChainDB API parameters. The details of parameters fields and operations can be found in the two respective links: https:
//github.com/SOCHAINDB/hive-db/blob/master/assets/fields.md and https://github.com/SOCHAINDB/hive-db/blob/master/assets/

summary.org/#operation-types.

https://github.com/SOCHAINDB/hive-db/blob/master/assets/fields.md
https://github.com/SOCHAINDB/hive-db/blob/master/assets/fields.md
https://github.com/SOCHAINDB/hive-db/blob/master/assets/summary.org/#operation-types
https://github.com/SOCHAINDB/hive-db/blob/master/assets/summary.org/#operation-types

3.4. Use Cases 37

In Table 3.1, we summarize the list of API parameters used in the APIs
service and their compatibility for each provided API.

FIGURE 3.4: SoChainDB homepage.

SoChainDB Homepage: We built a website to show the demos and update
more information. Figure 3.4 is a screenshot of the SoChainDB homepage. The
top left corner of our homepage links to our Github repository. The navigation
bar on top of the website provides several valuable resources to explore our
website. For instance, the “API Docs” menu shows a detailed document of
our provided APIs with various examples for ease of use. The rest of our
homepage visualizes some notable statistics of our dataset, e.g., word cloud
of top comments and posts, top active users of Hive networks according to
the number of posts and comments.

3.4 Use Cases

In this section, we present some potential SoChainDB use cases through three
different analyses: (i) Hive social network; (ii) Splinterlands - a card game
stored in Hive; and (iii) NFTShowroom - an NFT marketplace built on top
of Hive. The SQL queries 3 incorporated to extract all data described in this
section from SoChainDB, and some sample data of our APIs 4 can be found in

3https://github.com/SOCHAINDB/hive-db/blob/master/assets/queries.md
4https://github.com/SOCHAINDB/hive-db/tree/master/sample_data

https://github.com/SOCHAINDB/hive-db/blob/master/assets/queries.md
https://github.com/SOCHAINDB/hive-db/tree/master/sample_data

38 Chapter 3. SoChainDB Database

our Github repository. We first introduce the overview of the Hive ecosystem
and then present an in-depth analysis of the use cases.

3.4.1 Hive Ecosystem Overview

Hive is first used for its social network platform but with Hive Engine, a side-
chain layer enabling smart contracts to work on its network, Hive also allows
developers to build various decentralized applications on top of its blockchain.
There are several applications built on the Hive ecosystem. Some famous ones
are: (i) Game: Splinterlands, a multiplayer magic card game, and Rabona, a
soccer management game; (ii) Social: LeoFinance, a crypto traders community,
and Actifit, a community for users to share their workouts; (iii) Non-Fungible
Tokens Markets: NFTMart and NFTShowroom as notable marketplaces to
purchase digital assets whose owners can have proof of ownership; (iv) DeFi:
The platforms to raise funds for cryptocurrency for any project. The most
famous decentralized application is DLease; and (v) Video: Vimm and 3Speak
are two most well-known Hive blockchain-based video-sharing services.

3.4.2 Analysis of Hive Social Network

Overall Analysis

This section analyzes various aspects of the Hive social network to depict
Hive users’ rich and massive data. Table 3.2 shows the overview statistics of
the social network. The table shows that Hive social network obtains a sizable
adoption. For instance, the total number of active users is more than 760,000,
and around 1,200 new users join the network every day. These users generate
more than three million posts in total and more than five thousand posts per
day. To further illustrate the evolution of the network, we plot the growth of
active users over time in Figure 3.1. The figure shows that the growth of active
users has significantly increased by approximately 15,500% in over a year. It is
an important signal to show that the Hive social network is an active platform
that receives more and more users’ attention. We further plot the Hive users’
activities over time in Figure 3.5 through the number of posts, comments and
communities.

The figure depicts the regular activities of Hive users every month. Specif-
ically, these users’ posts and comments continuously increased from August
2021 and reached 240K and 700K respectively in January 2022. It shows an-
other evidence that Hive is steadily becoming a platform for users to share
their daily life habits.

To form a network, each user has an option to follow others. The essential
feature of social networks and the follower/following network should follow
a power-law distribution [178]. Figure 3.6 shows the follower/following
distribution of users in the Hive network.

The figure states that Hive social network’s follower/following relation-
ship follows a power-law distribution, and it is similar to the centralized

3.4. Use Cases 39

(A) Number of comments

20
20
-04

20
20
-05

20
20
-06

20
20
-07

20
20
-08

20
20
-09

20
20
-10

20
20
-11

20
20
-12

20
21
-01

20
21
-02

20
21
-03

20
21
-04

20
21
-05

20
21
-06

20
21
-07

20
21
-08

20
21
-09

20
21
-10

20
21
-11

20
21
-12

20
22
-01

300

400

500

600

700

co
m
m
en

ts
 (t
ho

us
an

d)

(B) Number of posts

20
20
-04

20
20
-05

20
20
-06

20
20
-07

20
20
-08

20
20
-09

20
20
-10

20
20
-11

20
20
-12

20
21
-01

20
21
-02

20
21
-03

20
21
-04

20
21
-05

20
21
-06

20
21
-07

20
21
-08

20
21
-09

20
21
-10

20
21
-11

20
21
-12

20
22
-01

120

140

160

180

200

220

240

po

st
s (

th
ou

sa
nd

)
(C) Number of communities

20
20
-04

20
20
-05

20
20
-06

20
20
-07

20
20
-08

20
20
-09

20
20
-10

20
20
-11

20
20
-12

20
21
-01

20
21
-02

20
21
-03

20
21
-04

20
21
-05

20
21
-06

20
21
-07

20
21
-08

20
21
-09

20
21
-10

20
21
-11

20
21
-12

20
22
-01

20

40

60

80

100

120

140

cr
ea

te
d
co
m
m
un

iti
es

FIGURE 3.5: The Hive dynamics from April 2020 to January 2022.

networks such as Facebook and Twitter. This pattern is also observed in the
distribution of top active users by posts and comments in Figure 3.7.

The reward system is a unique feature of the Hive decentralized social
network. Users could receive and claim their rewards in the Hive platform
through the “Hive Backed Dollars (HDB)" tokens and the staked Hive tokens
called “Hive Power." The former is related to user content, e.g., posts, com-
ments, and the latter is paid directly to boost users’ popularity. While liquid
Hive tokens could convert to HBD, Hive Power is only based on the number
of Hive tokens users staked in the platform. Figure 3.8 displays the value of
HBD and Hive Power used by each user account over time. The figure shows
an interesting phenomenon: From April 2020 to June 2021, the value of HBD
per account increases over time. However, from June 2021 to October 2021,
this value decreases significantly, and such a sudden drop also happens with
the value of Hive power per account. This is expected since the growth of
active users in this period is increased (see Figure 3.1) due to the Hive cryp-
tocurrency price surge during this time [170]. The figure also shows a complex
pattern of average reward in the Hive network and suggests further studies
to understand how reward can affect users’ behaviors in the decentralized
social network. Such research can open a new direction to improve existing

40 Chapter 3. SoChainDB Database

Total Count Avg. new
per days

created users 766,080 1,246
posts 3,574,862 5,813
comments 8,999,321 14,633
comment edits 259,191 421
upvotes 162,242,767 263,809
downvotes 1,182,265 1,922
communities 2,527 4

TABLE 3.2: Hive social network statistics until January 31, 2022.

10
0 -
 20

0

20
0 -
 30

0

30
0 -
 40

0

40
0 -
 50

0

50
0 -
 60

0

60
0 -
 70

0

70
0 -
 80

0

80
0 -
 90

0
90
0 -

followers/followings per account

0

500

1000

1500

2000

2500

us

er
s b

y
fo
llo

we
rs

500

1000

1500

2000

2500

3000

us

er
s b

y
fo
llo

wi
ng

s

FIGURE 3.6: Number of Hive users based on the number of followers/followings per
account.

centralized social networks.

Social Network Analysis

One of the outstanding advantages of a blockchain-based social network is
information transparency. For instance, building networks of subscribers with
the communities or authors with readers or followers with followings can
be exploited instantly from the public data of the blockchain. In contrast, in
traditional social networks, researchers usually require the approval of the
organizations or firms that own such information.

Figure 3.9 illustrates a directed network with 527 nodes and 933 links of
various active communities with their new subscribers on the Hive blockchain
social network on May 2, 2021. A more intensified red color represents the
Pagerank influence score of each node. Accordingly, the most influential
node in the network is #hive-168042, a community named Planetauto that is
specialized in providing automotive content such as car guides, car reviews,
events, and games for cars. Similarly, Table 3.3 shows the top-three influential
communities every month from January to December in 2021 using the net-
works sharing approximate graph structures in Figure 3.9 but more extensive
and complex. Likewise, there are three most influential communities in the

3.4. Use Cases 41

cry
sta

lliu
an

fen
g

ho
lyb

rea
d

cry
sta

lan

qu
rat

or
nch

aincur
ie

ne
ws

wr
ite

r

eb
arg

ain
s

zin
asu

ra
0

10

20

30

40

50

60

70

80

Po
st

s (
th

ou
sa

nd
)

Top Users by Posts

hiv
eb

uzz

po
shb

ot

be
erl

ov
er
act

ifit tip
u

miste
ren

ga
ge

men
t

ece
ncywiv

01
x6

oc5
xcv

47
0

50

100

150

200

250

300

Co

m
m

en
ts

 (t
ho

us
an

d)

Top Users by Comments

FIGURE 3.7: Top 10 users by posts and comments.

20
20
-04

20
20
-05

20
20
-06

20
20
-07

20
20
-08

20
20
-09

20
20
-10

20
20
-11

20
20
-12

20
21
-01

20
21
-02

20
21
-03

20
21
-04

20
21
-05

20
21
-06

20
21
-07

20
21
-08

20
21
-09

20
21
-10

20
21
-11

20
21
-12

20
22
-01

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

HB
D

1

2

3

4

5

6

7

8

Hi
ve

 p
ow

er

FIGURE 3.8: Average reward claimed per account in Hive social network from April
2020 to January 2022.

Hive decentralized network in this period, including LeoFinance(#hive-167922),
one of the largest crypto and finance content communities, GEMS(#hive-
148441), a community with a wide range of topics from lifestyle, cooking,
and food hobby to history and philosophy in many different languages, and
Splinterlands(#hive-13323), a community specialized in Splinterlands being a
digital collectible card game based on Hive blockchain. Interestingly, Aquatic
Sentinels (#hive-154473), a new and only-26-subscribers community special-
ized in sharing the beauty, diversity, and science of the aquatic and marine
ecosystems, reached third place in May 2021. The reason originates from

42 Chapter 3. SoChainDB Database

FIGURE 3.9: Network of active communities on Hive blockchain and their new
subscribers on May 2, 2021. The circle nodes represent the subscribers, and the
triangle nodes represent the communities. The intensity of the red color illustrates

the influence of the node in the network.

another environment-related famous community with over 3,500 users called
Amazing Nature(#hive-127788), which has subscribed to the Aquatic Sentinels
community at this time.

Comparison with Available Hive Statistics Analysis

There are minor differences between the statistics reported in Figures 3.1 and
3.5 and the daily and weekly reports of two users arcange and penguinpablo in
PeakD [173] and Hive.blog [174]. However, we present monthly statistics in this
chapter, while the existing statistics reports include daily and weekly statistics.
This may cause a data mismatch misconception, but our investigations do not
indicate significant differences.

3.4.3 Splinterlands - A Hive-based decentralized card game

Splinterlands is a collectible card game that leverages the power of Hive
blockchain in storing all of its information. This is the principal technical
difference of Splinterlands compared to the other blockchain-based games. For
example, Gods Unchained, another collectible card game built upon Ethereum,
stores only the players’ assets and purchases information in blockchain while
the rest, e.g., the battle result, is stored on the game publisher servers. Table 3.4
shows Splinterlands’s overall statistics, which clearly indicates its popularity.

Gameplay: After signing up for the game, each new player can select
numerous cards to start battles. Each card’s properties fall into four categories:

3.4. Use Cases 43

Networks
(By Month) Network Statistics Top Influential Communities

Rank Hive ID Name

January
Nodes 3590 1st hive-180164 Hive

Book Club
Edges 10461 2nd hive-167922 LeoFinance
Avg. Degree 2.9139 3rd hive-196037 DTube

February
Nodes 3690 1st hive-167922 LeoFinance
Edges 11220 2nd hive-196037 DTube
Avg. Degree 3.0407 3rd hive-148441 GEMS

March
Nodes 4993 1st hive-167922 LeoFinance
Edges 18560 2nd hive-145666 Photo Lovers
Avg. Degree 3.7172 3rd hive-148441 GEMS

April
Nodes 6329 1st hive-148441 GEMS
Edges 27134 2nd hive-174578 OCD
Avg. Degree 4.2872 3rd hive-167922 LeoFinance

May
Nodes 6065 1st hive-148441 GEMS
Edges 25535 2nd hive-174578 OCD

Avg. Degree 4.2102 3rd hive-154473 Aquatic
Sentinels

June
Nodes 4775 1st hive-130560 Hive Diy

Edges 16724 2nd hive-131619 Blockchain
Gaming

Avg. Degree 3.5024 3rd hive-148441 GEMS

July
Nodes 4919 1st hive-110011 Aliento
Edges 18330 2nd hive-148441 GEMS
Avg. Degree 3.7264 3rd hive-174578 OCD

August
Nodes 5521 1st hive-13323 Splinterlands
Edges 20400 2nd hive-148441 GEMS
Avg. Degree 3.6950 3rd hive-104151 Beyond Horizon

September
Nodes 4171 1st hive-13323 Splinterlands
Edges 12964 2nd hive-148441 GEMS
Avg. Degree 3.1081 3rd hive-174578 OCD

October
Nodes 4773 1st hive-181450 Education

& Training
Edges 15176 2nd hive-13323 Splinterlands
Avg. Degree 3.1796 3rd hive-184127 Regional Press

November
Nodes 6951 1st hive-13323 Splinterlands
Edges 23605 2nd hive-167922 LeoFinance
Avg. Degree 3.3959 3rd hive-148441 GEMS

December
Nodes 8776 1st hive-181450 Education

& Training
Edges 31594 2nd hive-184127 Regional Press
Avg. Degree 3.6000 3rd hive-173286 Gods On Chain

TABLE 3.3: Top influential communities based on networks of active communities
and their new subscribers on Hive blockchain in 2021.

(i) Rarities determine how rare the card is. There are four levels of rarities:
common, rare, epic, and legendary. (ii) Each card has seven stats: Mana cost,
Speed, Armor, Health and Attach including Melee, Ranged, and Magic. (iii)
Fire, Earth, Water, Life, Death, Dragon, and Neutral define the faction of
this card. (iv) Each card has more than 46 abilities to increase the fun and
randomness of battles. Before a battle between two players, each player is
provided with a fixed amount of mana, and each player chooses the same
number of cards to organize on the battlefield. The result of the battle is
determined by position, strength, cards’ ability, and some randomness injected
by the system. There are three types of battle: ranked, practiced, and friendly
matches. The last two do not affect the ranking of players. The players’ cards
can be traded with other ones.

44 Chapter 3. SoChainDB Database

Category Feature Count
Overview Statistic # of active users 380,476

of daily games 9,240,084
of cards 283+

Account-related # Claim Reward 58,248,195
Actions # Upgrade Account 664,180

Add Wallet 517,058
Battle Actions # Match Finding 186,016,801

Match Starting 2,477,844
Surrender 1,685,134

Asset Actions # Burn Cards 323,701
Lock Assets 137,777

Purchase Actions # Sell Cards 6,387,080
Purchase Record 52,786

TABLE 3.4: Splinterlands statistics until January 31, 2022.

Data Analysis: Each blockchain transaction records an action that hap-
pened in the game. We can cluster these actions into the following four
categories. Table 3.4 represents some notable activities for each category:

1. Account-related actions: Some example operators in this category are
rewarded with more than 36 million transactions, while upgrade account
operator has more than 626K transactions on the Hive blockchain, and
adding wallet is nearly 480K operators.

2. Battle actions: It contains activities related to a battle, e.g., players of a
battle, each player’s order of card deck in the match, the battle result,
and the battle type. Some examples include more than 178 million
match-finding transactions, where users have played nearly 2.5 million
matches.

3. Asset actions: It is the card information that each player has. So, for
example, players can destroy cards, which they do not want to use.
According to Hive transactions, there are 314 thousand actions recorded
on the system. Lock asset is also done more than 92K times.

4. Purchase actions: Since the game allows its players to buy, sell, or transfer
their assets, all transactions are stored in the blockchain to avoid manipu-
lation, even from the game publisher side. As stated in Table 3.4, around
4.5 million transactions are related to the users’ card selling activities. It
expresses the users’ high trading activities in this game.

3.4.4 NFTShowroom

NFTShowroom is a marketplace for artists selling their digital art. The plat-
form associates each digital art with a unique Non-Fungible Token (NFT).
Since Hive blockchain is not designed as a decentralized computational sys-
tem as Ethereum or EOS.IO, a smart contracts side-chain layer called Hive

3.4. Use Cases 45

Engine is used to issue token SWAP.HIVE of NFTShowroom. Then, the owner-
ship of the artwork can be verified employing the Hive Engine smart contracts,
and the primary layer of the Hive blockchain is leveraged for the verification
in the case of NFTShowroom. Moreover, the purchase history of the digital
art is trackable via the transactions created on the Hive Engine nodes before
automatically sending them to the Hive main chain. When digital art is trans-
ferred, sold, or bought, the transactions are recorded in the Hive blockchain.
This information is publicly transparent and could be verified by other users.

Till end of January 2022, NFTShowroom consists of more than 11,866
artworks sold. On average, ten artworks are purchased through the system
every day. Based on our dataset, the total number of NFTShowroom tokens
minted is 45,961, and such number is increasing over time because of its rapid
development.

46

Chapter 4

Link Prediction for Social Network
Analysis in Criminal Investigation

4.1. Introduction 47

The identification of potential offenders, who are more likely to
form a new group and co-offend in a crime, plays an essential role
in narrowing down law enforcement investigations and improving
predictive policing. Once a crime is committed, focusing on link-
ing it to previously reported crimes and reducing the inspections
based on shreds of evidence and the behavior of offenders can
also greatly help law enforcement agencies. However, classical
investigative techniques are generally case-specific and rely mainly
on police officers manually combining information from different
sources. Therefore, automatic methods designed to support co-
offender research and crime linkage would be beneficial. Building
on the foundation of social network analysis as developed dur-
ing the development of SoChainDB presented in Chapter 3, in
this chapter, we propose two graph-based machine learning frame-
works to address these issues based on a burglary use case, the first
being transductive link prediction, which seeks to predict emergent
links between existing graph nodes (which represent criminals or
criminal cases), and the other being inductive link prediction, where
connections are found between a new case and existing nodes.

4.1 Introduction

Various theoretical and empirical studies indicate that most crimes concentrate
in time and space according to the so-called “law of crime concentration" [179].
Furthermore, crime commission and victimization are concentrated among
a minority of a population [180, 181]. The evidence of the concentration of
crime and offenders paved the way for developing increasingly sophisticated
crime prediction approaches.

Predictive policing aims to predict the risk of future crime incidents based
on past crimes and other information [182]. It supports the identification
and prioritization of potential targets for crime investigation through the
application of advanced analytical techniques [183]. Traditionally, police
officers have used simple, manual approaches to identify hotspots (i.e., areas
with a higher likelihood of crime), for instance, by pinning incidents on maps
[184,185]. These approaches have been improved through the application of a
variety of quantitative techniques [186] that can handle the crime prediction
problem more efficiently, including various classic machine learning methods
such as Random Forests [187], Naive Bayes [188] and Support Vector Machines
(SVMs) [189]. As a result of these advances, predictive policing has found
several applications in law enforcement to predict the time and location of
future crimes [190] while generating a lively debate about its effectiveness
and potential biases [191–193]. Despite the increasing attention to predictive
policing, research has rarely addressed the possibility of identifying potential
offenders and, more specifically, co-offending in crime, that is, when two
or more individuals participate in the same crime [182]. Yet, similar issues
are central to another stream of research that focuses on crime linkage, a

48 Chapter 4. Link Prediction in Criminal Investigation

process of associating two or more crimes based on evidence and offender
behavior [194–196]. However, this approach has largely relied on case-specific
qualitative information (e.g., identifying the modus operandi of a specific
offender and linking it to criminal events) and has barely evolved to more
general methods [93].

As a crime generally involves an offender and a target and often occurs
in a certain place and time, predictive policing techniques should answer, at
least in part, one or more of the following questions: (1) who will commit a
crime, (2) who will be the victim, (3) what type of crime will be committed, (4)
in what location and (5) at what time will a new crime take place [197]. While
most of the previous applications of predictive policing have focused on the
last three questions and most crime linkage approaches have addressed the
first question through case-specific methods, in this chapter, we concentrate
mainly on answering the first question about who will offend and with whom
through advanced machine learning. In particular, the present research aims
to address the following research questions:

RQ1: Knowing a network of offenders and their previous collaborations,
can we predict potential future burglary attempts made by existing
offenders in the network?

RQ2: Knowing the historical information of crimes and their offenders,
can we narrow down the inspections of a new case to a list of potential
offenders?

To this end, a comprehensive burglary dataset of more than 30,000 real case
reports is processed and further transformed into a bipartite graph of offend-
ers and criminal cases to build a network of criminals based on the collected
information, which is then used to determine the co-offense likelihood for
known criminals. By proposing different machine learning methods, our goal
is to contribute to predictive policing and crime linkage research with a gen-
eral, parsimonious, and automated approach. In doing so, we first propose
an unsupervised link prediction framework that uses node neighborhoods
and path information to identify possible links based solely on the network
topology. On the other hand, several studies show that if labeled instances are
available, supervised link prediction approaches outperform unsupervised
methods [198, 199]. Although some studies have applied supervised learning
for link prediction (e.g., [199, 200]), the use of these methods for co-offense
prediction is still scarce [182]. Moreover, the success of the most used su-
pervised algorithms usually depends on the data preparation and feature
engineering method that properly describes the phenomenon. Therefore, we
attempt to overcome these limitations by exploring more advanced analytical
methods, specifically deep neural networks. Since we have prior knowledge
of the offending history of criminals, we call this approach transductive link
prediction. Furthermore, we propose an inductive link prediction framework to
assess whether offenders of a newly placed crime can be predicted based on
the textual reports of the crimes presented as node attributes.

4.2. Data Collection and Network Creation 49

4.2 Data Collection and Network Creation

4.2.1 Burglary Dataset

The dataset used in this study, provided by the Israel National Police and duly
anonymized according to the standards of Israeli national law and GDPR and
further approved by a legal advisor of the Israel National Police, contained
around 30,000 reports of solved burglary cases that occurred in Israel between
2012 and 2021. The information contained in the reports included a crime
identifier, the respective anonymized identifiers of the offenders, the min-
max-scaled site coordinates of the crime that prevent precise retrieval of the
localization of the site, timestamps, and a parameterized free-text description
of the case in the form of an embedding vector, in particular, a SIF embedding
[201]) described next. Even though we used a burglary database similar to
Solomon et al. [93], our study employed a completely different link prediction
approach as they looked at the link prediction task from a classical machine
learning perspective, while our work is framed based on graphs, where crimes
and offenders are nodes represented by features1, hence explicitly considering
the structure of the criminal network and not only the features of the sample.

Text Embedding: The properties of the crime nodes in our graphs are
transformed into embedding vectors built from the textual description of
the incident. Even though the spatiotemporal information of a crime is very
important for link detection and prediction, we have ignored these features,
which could be seen as a routine independent investigative filtering procedure.
Similar to Solomon et al. [93], we parameterized the textual information of
the crime using Smooth Inverse Frequency (SIF) [201] 2. The SIF method can
encode sequences of words in a sentence or paragraph into a single vector,
mathematically representing the crime description. In short, this method
intelligently combines the embeddings of each word within a sequence to
identify the most relevant ones, a simple semantic text similarity task that has
proven to work well [203].

4.2.2 Generated Networks

Three different networks were generated based on the original burglary data
and text embeddings, including:

1While this study uses only offender or crime descriptions, future research could also
incorporate criminal characteristics.

2More sophisticated alternatives to text embedding, such as those based on Bidirectional
Encoder Representations from Transformers (BERT) [202], have recently been proposed.
However, since the optimization of text embeddings as node attributes is not the main goal
of this article, we followed the suggestion of Solomon et al. to use SIF instead of BERT.
Their findings could be due to the fact that the pretrained AlephBert did not fit the current
corpus, while SIF relied on a domain-specific word2vec model trained on a large corpus of
our criminal texts. Since police reports lacked the proper language formalism, we believe
that the benefits of BERT are diminished, especially when it was not fine-tuned to our data.
Further elaboration on text embedding optimization is suggested for future work.

50 Chapter 4. Link Prediction in Criminal Investigation

1. A crime-offender network (Figure 4.1) with 41, 324 nodes and 34, 156 edges,
where nodes represent both crimes and offenders, and links indicate
whether an offender participated in a crime. This network is a bipartite
graph with two different types of nodes later divided into two networks
for further analysis.

FIGURE 4.1: The crime-offender bipartite network3. Green circles and orange triangles
represent crime cases and offenders, respectively. Edges indicate when an offender

participated in a crime.

2. An offender network (Figure 4.2), where the nodes represent the offenders
and the links indicate whether two offenders are involved in one or more
burglary cases. To generate the offender graph, we used the original
undirected crime-offender network to connect two offender nodes each
time they shared a crime and then filtered the crime nodes. The offender
network resulted in a total of 17, 232 nodes and 21, 302 edges. We used
this dataset in the link prediction experiments as the network is large
enough for this purpose. Furthermore, we specifically conducted the
unsupervised transductive link prediction experiments on this dataset
as we only accessed the network structure and not additional embedded
attributes for offenders.

3. A crime network (Figure 4.3) with nodes representing offenses and edges
indicating the number of shared offenders between the crimes. This
network included 23, 380 nodes and 42, 604 edges. It was used for link
prediction experiments, especially inductive link prediction, since nodes,
i.e., crime cases, consisted of embedded descriptions as attributes.

4.3 Link Prediction Methods

We propose two approaches for link prediction: transductive link prediction
(Section 4.3.1), which considers prior knowledge of the offender network to
predict emerging links between existing nodes (i.e., offenders), and inductive
link prediction (Section 4.3.2), where the links of a new crime to existing crimes
can be predicted based on available meta-information (i.e, node attributes).

3Snapshots are taken using our open-source network analysis tool, which can be down-
loaded from https://github.com/erichoang/criminal-network-visualization.

https://github.com/erichoang/criminal-network-visualization

4.3. Link Prediction Methods 51

FIGURE 4.2: The offender network, in which nodes represent offenders, and edges
indicate if two offenders share a crime.

FIGURE 4.3: The crime network. The nodes represent placed crimes and the edges
indicate whether two crimes share an offender.

4.3.1 Transductive Link Prediction

As mentioned in Section 2.1.1, in principle, all link prediction methods work
by assigning a score(u, v) to pairs of nodes (u, v) and then choosing the top-
scored pairs as predicted links for u [35]. The score value is computed based on
the input network and often measures the proximity or similarity between u
and v. Different measures of similarity have been proposed, the most relevant
in the literature and applicable for crime prediction being the following:

• Jaccard similarity measures the probability that both u and v have
past connections to individual f . For this, an individual f is randomly
selected from a set of all individuals with past connections to either
u or v. The probability is then calculated as the ratio of the number
of individuals that both u and v have observed interactions with and
the number of individuals with whom either u or v have observed
interactions. In particular:

Jaccard(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)| , (4.1)

where Γ indicates the neighborhood function of a node.

• Adamic Adar similarity [36] is a variant of the Jaccard ratio, where
similarity is determined as a weighted count of the individuals with
whom both u and v have had interactions. Each individual is weighted

52 Chapter 4. Link Prediction in Criminal Investigation

by the inverted number of all other observed individuals:

Adamic(u, v) = Σz∈Γ(u)∩Γ(v)
1

log |Γ(z)| . (4.2)

In this setting, a popular individual with many connections other than
to u and v contributes less to the similarity ratio than an individual f
who only has past connections to u and v. It is reasonable since, in this
case, f could probably be the driver of the relationship between u and v.

• Preferential attachment similarity [37] follows what is called the Rich-
Get-Richer phenomenon. This means that the probability that u will
connect with v in the future is proportional to the popularity of these
two individuals. In its simplest mathematical form, this measure is
determined by the product of the number of other individuals with
whom u has had interactions and the same number with v:

Pre f erential(u, v) = |Γ(u)||Γ(v)|. (4.3)

• Resource allocation similarity [38] aims to measure resources flowing
from u to v through other people with whom u and v have connections.
It has a very similar mathematical formulation to the Adamic Adar
similarity, except that the number of other individuals is now weighted
by their individual interactions:

Resource_Allocation(u, v) = Σz∈Γ(u)∩Γ(v)
1
|Γ(z)| . (4.4)

• Soundarajan-Hopcroft similarity [39] is an improved variant of Adamic
Adar similarity that considers information about the community struc-
ture of the input network. The rationale is that the more community
members the two individuals have in common, the more likely they are
to form some sort of connection. Mathematically, the score is determined
by the number of individuals both u and v have interacted with, plus
the number of communities they both belong to:

Soundarajan_Hopcro f t(u, v) = Σz∈Γ(u)∩Γ(v)
f (z)
|Γ(z)| , (4.5)

where f (z) equals 1 if z belongs to the same community as u and v.

These measures are based on the connections between individuals in the
network, so they can be improved by considering the attributes and behavior
of individuals when calculating the similarity values. Several works have
leveraged this approach. The tensor factorization method, for instance, has
gone hand in hand with a high computational cost considering its technical
complexity, which is why we have discarded it in this study.

4.3. Link Prediction Methods 53

Prediction by Transductive Algorithm

Our approach for similarity-based transductive link prediction is simple yet
effective. For each pair of nodes, (v, u), in the node set V, we first calculate
their similarity sim(v, u) using one of the following similarity metrics: the
Jaccard coefficient, Adamic-Adar index, resource allocation index, preferential
attachment or the Soundarajan-Hopcroft coefficient. Then, for each node, the
top k similar nodes regarding the computed similarity metric are selected,
which indicates the target nodes of the outgoing edges of that particular node.
The pseudo-code of our transductive approach is presented in Algorithm 1.

Algorithm 1 Transductive Link Prediction Algorithm

Require: G = (V , E), k, sim ▷ sim represents the similarity metric function
Calculate sim(u, v), ∀u, v ∈ V
pred← []
for v ∈ V do

for u ∈ select-top(sim(v, ·), k) do ▷ select the top k similar nodes
pred← pred + (v, u)

end for
end for
Return pred

4.3.2 Inductive Link Prediction

In attributed graphs, both the network structure and attribute information
can be used for link prediction. An attributed graph is represented by G =
(V , E ,X), where V = {v1, ..., vn} represents the node set, n = |V|, E ⊆ V × V
the edge set,X = {x1, ..., xn} the attribute feature matrix, xi ∈ Rm the attribute
feature vector of node vi and m the number of attributes in the graph. Given a
graph G and a pair of nodes (vi, vj), the goal of link prediction is to estimate
the likelihood of a link exists between vi and vj. Most current methods focus
on transductive link prediction, where both nodes vi and vj are already known.
However, in many real-life situations, inductive prediction is also required
considering new nodes, where attribute information is available, but one or
both of the nodes vi and vj have not been observed, at least during the training
process.

To overcome this limitation, we implement an attributed graph embedding
method called Dual-Encoder graph embedding with ALignment (DEAL) [204],
which can be used for both inductive and transductive link prediction. This
framework embeds the graph of existing nodes in the vector space and ex-
tracts its structure information (i.e., structure-oriented node embedding). It
then computes an embedding vector for new query nodes where the only
information available is their attributes (i.e., attribute-oriented node embed-
ding), which is ultimately compared to the previously computed structure
embedding. In particular, the DEAL approach involves three main compo-
nents, including two types of node embedding encoders and one alignment

54 Chapter 4. Link Prediction in Criminal Investigation

mechanism. The first encoder aims to output the attribute-oriented node
embedding (Ha), while the second relates to the structure-oriented node em-
bedding (Hs): Ha computes the embedding vectors with attributes of the new
nodes andHs computes the node embedding vector that preserves the struc-
ture information. Finally, the alignment mechanism is employed to contrast
the two embedding vectors and build the connections between the attributes
and the links. Both encoders are updated during training, so the generated
embeddings are aligned.

Attribute-Oriented Encoder

The attribute-oriented encoder Ha ingests an attribute vector xi from node
vi and generates a node embedding za

i = Ha(xi). We used an MLP with a
nonlinear activation layer to learnHa:

Ha(xi) = σ(W2
a(σ(W

1
axi + b1

a)) + b2
a), (4.6)

where W1
a , W2

a , b1
a and b2

a are hyperparameters of the model and σ(.) is the
exponential linear unit. We opt for a simple MLP approach instead of complex
neural networks since well-known Graph Neural Networks (GNN) models
such as Graph Convolutional Networks (GCN) [8] and Graph Attention
Networks (GAT) [40] suffer from scalability limitations (see Section 4.4.2).

Structure-Oriented Encoder

The structure-oriented encoder Hs generates node embeddings that only
preserve the structural information of the graph G without regard to the
attributes of the nodes. We use the one-hot encoding of the nodes IV =
{I1, ..., In} as the input of the encoder and further map node vi to its node
embedding vector zi

s = Hs(Ii). We then employ a linear model to compute
the encoderHs:

Hs(Ii) = g(Ws)Ii, (4.7)

where g(.) is used to re-parameterize Ws and accelerate the convergence of
stochastic gradient descent optimization.

Alignment Mechanism

We align the embeddings of the two types of encoders with learning the
connections between the node attributes and the graph structure. In doing so,
we apply a ranking-motivated loss function that learns the graph embedding
through ranking, which can help capture the relationships between each
pair of nodes in the training samples. Inspired by the contrastive loss [205]
that maps similar input samples to nearby points in the output vector space
and dissimilar samples to distant points, we map the linked graph nodes to
close points in the output vector space and the unlinked nodes to points far
apart. However, it should be considered that the unlinked nodes (negative
pair-wise samples) have different distances in the graph. Consequently, we

4.3. Link Prediction Methods 55

employ the following loss function for a given mini-batch of node pairs
B = {(vp1 , vq1), ..., (vpk , vqk)}, where pi ̸= qi and i ∈ [1, k]:

LB(Z) =
1
|B|Σ(vpi ,vqi)∈B[(1− yi)α(vpi , vqi)ϕ1(−s(zpi , zqi)) + yiϕ2(s(zpi , zqi))],

(4.8)
where s(., .) represents a similarity function that compares two node em-

beddings (zpi and zqi) and yi the link relation label (i.e., yi = 1 if two nodes
are connected). In this thesis, we use the so-called cosine similarity function.
Further, α represents a weight function to measure the importance of negative
samples with different distances. We can define it as α(vp, vq) = exp β

dsp(vp,vq)
,

where dsp(.) denotes the shortest path between two nodes and β > 0 is a
hyperparameter. If two nodes are unreachable, then dsp(vp, vq) = ∞. Both ϕ1
and ϕ2 are derived from function ϕ(.), which considers different hyperparam-
eters to link regularization. We then use the generalized logistic loss function
(ϕ(x), with γ > 0 and b as loss margin parameters) to tune regularization:

ϕ(x) =
1
γ

log(1 + exp−γx+b). (4.9)

Instead of optimizing LB(Zs) and LB(Za) independently, we design a
joint alignment method that aims to maximize the similarity between zpi

s and
zqi

a of two linked nodes vpi and vqi :

L(Zs,Za) =
1
|B|Σ(vpi ,vqi)∈B[(1− yi)α(vpi , vqi)ϕ1(−s(zpi

s , zqi
a))+ yiϕ2(s(z

pi
s , zqi

a))].

(4.10)
The overall objective of our inductive model follows:

L = θ1LB(Zs) + θ2LB(Za) + θ3Lalign(Zs,Za), (4.11)

where θ1, θ2, θ3 are hyperparameters to parameterize the weights of different
losses further.

Algorithm 2 Inductive Link Prediction Algorithm (DEAL)

Require: Graph G = (V , E ,X), a set of mini-batches B, loss weight θ
for each batch in B do
Zs ← Hs(IV)
Za ← Ha(X)
L ← θ.[LB(Zs),LB(Za),Lalign(Zs,Za)]
UpdateHs andHa with stochastic gradient ∇L

end for
Update Zs and Za viaHs andHa
Calculate score(u, v), ∀u, v ∈ V via Equation 4.12

56 Chapter 4. Link Prediction in Criminal Investigation

Link Prediction

To determine if there is a link between two nodes vp and vq exists, we calculate
the following score:

score(vp, vq) = λ1s(zp
s , zq

s) + λ2s(zp
a , zq

a) + λ3s(zp
s , zq

a), (4.12)

where λ1, λ2, λ3 are hyperparameters of the similarity score. In inductive
link prediction, the link zq

a to a new node vq is calculated by setting λ1 = 0.
Algorithm 2 summarizes the steps in the DEAL framework. DEAL can also
perform transductive link prediction by specifying λ1 to a non-zero value.

4.4 Experimental Analysis

The performance of link prediction methods is often evaluated by their ability
to retrieve links hidden on purpose. Accordingly, we first conceal a small
portion of the links for a given individual and then use the prediction methods
to identify potential hidden links. Section 4.4.1 and 4.4.2 discuss our findings
on transductive4 and inductive5 link prediction experiments, respectively.

(A) (B) (C) (D)

FIGURE 4.4: (a) Original offender network and two randomly selected nodes
(OID#179 and OID#220), (b) Modified network by removing the links between
the two selected nodes, (c) Transductive link prediction on OID#179 in a modified
offender network, (d) Transductive link prediction on both OID#179 and OID#220
in the modified network. The link prediction method uses the Jaccard similarity

measure, and the predicted links are the yellow-dash lines.

4.4.1 Transductive Link Prediction Results

Figure 4.4 shows an example of our transductive link prediction using the
Jaccard similarity measure. Figure 4.4a shows the original network where two
connected nodes, OID#179 and OID#220, are randomly selected. To evaluate
our link prediction algorithm, we remove the existing links using the available
options in our visualization platform. Then, we apply the transductive link
prediction with Jaccard similarity sequentially on OID#179 and OID#220.
The method returns the top k likely emerging edges (here, top three). Figure

4https://github.com/erichoang/criminal-network-visualization
5https://github.com/erichoang/criminal-link-prediction

https://github.com/erichoang/criminal-network-visualization
https://github.com/erichoang/criminal-link-prediction

4.4. Experimental Analysis 57

4.4d shows that the method can correctly predict the links between the two
nodes.

Link
Removal Top-k Jaccard

Similarity
Adamic
Adar

Preferential
Attachment

Resource
Allocation

Soundarajan-
Hopcroft

1%
1 61.78 (1) 61.03 (3) 28.69 (5) 60.84 (4) 61.12 (2)
3 67.10 (4) 67.38 (1) 46.92 (5) 67.38 (1) 67.20 (3)
5 68.32 (2) 68.32 (2) 58.32 (5) 68.32 (2) 68.60 (1)

5%
1 58.69 (1) 54.84 (3) 28.50 (5) 54.73 (4) 56.64 (2)
3 65.87 (2) 65.52 (3) 47.1 (5) 65.50 (4) 66.34 (1)
5 67.49 (4) 67.56 (2) 59.38 (5) 67.54 (3) 68.03 (1)

10%
1 53.1 (1) 48.50 (3) 27.67 (5) 48.37 (4) 50.23 (2)
3 62.30 (1) 60.85 (3) 46.41 (5) 60.81 (4) 62.03 (2)
5 64.11 (2) 63.70 (3) 57.87 (5) 63.66 (4) 64.35 (1)

15%
1 48.36 (1) 43.59 (3) 27.02 (5) 43.47 (4) 45.24 (2)
3 58.78 (1) 57.27 (3) 45.54 (5) 57.18 (4) 58.20 (2)
5 60.96 (2) 60.64 (3) 56.10 (5) 60.59 (4) 61.02 (1)

TABLE 4.1: Accuracy of transductive link prediction on five different similarity
measures and their ranking. The best results are in bold.

Table 4.1 reports the results of the transductive link prediction on the
offender network by randomly selecting a sample of links to be removed
from the original network (1%, 5%, 10%, and 15%). The link prediction scores
between the central nodes and their 2-hop neighbors (the so-called candidate
edges) are computed for each removed link based on the respective similarity
measure. For each setting (determined by the specific similarity measure and
the percentage of links removed), accuracy will naturally increase if we search
for the correct link among more potential links (i.e., larger k). Moreover, for
a fixed similarity measure and a fixed k, we can see the accuracy degrades
with more links removed as the network structure changes more and we have
less knowledge between offenders. The only exception is the Preferential
attachment measure when the removed links increase from 1% to 5%, where
accuracy improves slightly. It can also be observed that Jaccard similarity
achieves the best accuracy on top-1 predicted links for all cases (i.e., offender
network with different ratios of removed links). Finally, the Soundarajan-
Hopcroft similarity measure slightly improves the Jaccard similarity results
on the top five predicted links in all test cases.

4.4.2 Inductive Link Prediction Results

In this experiment, we train the DEAL framework on the crime network. We
first explain how data is split, and then we describe the comparison methods
and their settings. Performance is measured by known metrics such as the
Area Under the Receiver Operating Characteristic Curve (ROC-AUC) and
Average Precision (AP) at the top-ranked predicted link level [35].

Data Splitting

We split the input burglary network into three subsets:

58 Chapter 4. Link Prediction in Criminal Investigation

1. Training set: Burglary cases before 2019.01.01 (75% with the number of
nodes being 17, 531)

2. Validation set: Burglary cases from 2019.01.01 to 2020.01.01 (15% with
3, 488 nodes)

3. Test set: Burglary cases after 2020.01.01 (10% with 2, 361 nodes)

For the data processing and the creation of the subnetworks, we only
consider the training set that does not include the nodes and edges of the
validation and test sets. The validation set is used for fine-tuning the DEAL
hyperparameters, while the test set is left for evaluation purposes. For all
subsets, we consider the text embeddings of the burglary case summaries as
node attributes. We run the experiments in two versions:

• Training with transductive validation, where both training and vali-
dation sets are combined in the training process. In other words, the
validation set is a subset of the training set, but there are no links be-
tween its nodes and the nodes of the training set.

• Training with inductive validation, where the network used in the train-
ing process is completely independent and different from the validation
set network.

Methods of Comparison

We implement several baselines and state-of-the-art methods to compare their
performance against our method on the burglary dataset. For the induc-
tive link prediction, besides the fundamental graph embeddings and graph
neural networks as DeepWalk [5], node2vec [6], LINE [7], GCN [8], and
GAT [40] presented in Section 2.1.2, the following comparison approaches are
considered:

• Radius Neighbours: This simple implementation predicts which newly-
added nodes will be connected to their nearest neighbor nodes within
the ball in the node embedding space. The radius of the nearest-neighbor
ball is defined using the embedding of the training data (i.e., the nodes
already in the network) to maximize the prediction accuracy on the
training dataset.

• Linear Model: We consider the link prediction as a classification task,
where the classifier differentiates the node pairs connected by an edge
from the pairs that are not. We first augment the input data by con-
sidering any subset of data from Section 4.4.2, selecting all node pairs
(u, v) where an edge e = (u, v) exists and concatenating their vector
representations into a new vector. Such concatenations are mapped to
the positive class, i.e., y = 1. Then, we randomly sample negative pairs
from each subset, where there are no edges in between, and set their
y = 0. Finally, we train different linear classification methods, such as

4.4. Experimental Analysis 59

LASSO, Ridge, and SVM, on the augmented training set < (u, v), y >
and make inferences on the test set. Note that this approach does not
have newly added node w, so only transductive experiments apply.

• Graph2Gauss: As mentioned in Section 2.2.2, the Graph2Gauss [95]
method trains a Gaussian model over the training network and further
expands it using the newly added nodes so that the dissimilarity with
respect to the Gaussian model is minimized between all connected
nodes.

Parameter Setting

For training our method as well as Graph2Gauss, we augment the training
network into multiple triples (u, v, w), where u and v are connected while
w is a “negative sample" drawn from those nodes that do not connect to
neither u nor v. For validation purposes, we aim to predict whether there is a
connection between each new-old pair of nodes from the test set. Further, we
configure the parameters for the baseline models as follows:

• Radius Neighbours: The radius of the nearest-neighbors ball is 0.74,
which is the optimal value that minimizes the prediction error on the
training set.

• Linear Models: Three linear classification models are implemented,
including LASSO, Ridge, and the linear SVM model. We adopt the
sklearn [206] implementation of these three algorithms maintaining the
default parameters. For Ridge and LASSO, we set α = 1. For the SVM
classifier, the regularization parameter is set as C = 1 and the radial
basis function (RBF) as the kernel (see [207]).

• Graph2Gauss: In the Graph2Gauss method, the Gaussian model for
a single node is built based on the node’s embeddings and its k-hop
neighbors. We follow the same parameter setting as in [95] and set the
count of maximum hop k = 2. We implement a two-layer perceptron
to represent each node using the mean and covariant of a Gaussian
distribution in L = 64 dimensions. We then train the model for 500
epochs and use the Adam optimizer with a learning rate of 0.01 and no
weight decay.

• DeepWalk: The embeddings are trained over 100 epochs with window
size 10 and K = 3 negative samples. Overall, n = 10 random walks are
simulated with walk lengths of l = 80.

• node2vec: We use the skip-gram language model with a window size
of win = 10 and K = 3 negative samples over 100 epochs. n = 10
random walks of length l = 40 with return parameter of p = 1 and
in-out parameter of q = 4 are simulated in order to build the corpora.

60 Chapter 4. Link Prediction in Criminal Investigation

• LINE: The LINE model is trained for 50 epochs with a batch size of 1024.
The Adam optimizer is used for gradient descent with a learning rate
of 0.001 and no weight decay. The number of negative samples is set as
K = 3, and second-order proximity is used.

• Graph Convolutional Network (GCN): We use the authors’ recom-
mended settings in the GCN model. Specifically, the model is trained
for 200 epochs and uses the Adam optimizer with a learning rate of 0.01,
two hidden layers, a dropout of 0.5, and no weight decay. Since the
burglary network is large, we utilized two decomposed layers [208] to
solve memory issues in our GCN experiments.

• Graph Attention Network (GAT): The GAT model, featuring eight
attention heads, is trained for 200 epochs. Gradient descent is performed
using the Adam optimizer, with a learning rate of 0.01, two hidden
layers, a 0.6 dropout rate, and no weight decay.

Results Discussion

Methods Featured Parameters ROC-AUC AP

Conventional methods

Radius Neighbours Maximum radius r = 0.74 - 0.5146
LASSO Regularization parameter α = 1 - 0.5000
Ridge Regularization parameter α = 1 - 0.6114
SVC Regularization parameter C = 1 - 0.6065
Graph2Gauss doutput = 64, dhidden = 64,

nhidden layer = 2
0.6711 0.6556

Combination of basic
graph embeddings and case
summary text embeddings

node2vec + SIF Pooling function = avg 0.568 0.5631
DeepWalk + SIF Pooling function = avg 0.5837 0.5833
LINE + SIF Pooling function = avg 0.533 0.5333
GCN + SIF Learning rate = 0.01, dhidden = 64,

ndecomposed layers = 2
0.6206 0.6207

GAT + SIF Learning rate = 0.01, dhidden = 64,
nheads = 8

0.6128 0.6076

DEAL framework variants

DEAL-tr θ = [0.1, 0.85, 0.05], λ = [0.1, 0.85, 0.05] 0.7580 0.7567
(default setting)
(increase θ) θ = [0.2, 1.7, 0.1], λ = [0.1, 0.85, 0.05] 0.7582 0.7569

θ = [0.4, 3.4, 0.2], λ = [0.1, 0.85, 0.05] 0.7583 0.7571
(change λ) θ = [0.1, 0.85, 0.05], λ = [0.2, 1.7, 0.1] 0.7580 0.7567
(change both) θ = λ = [0.05, 0.425, 0.025] 0.7576 0.7561

θ = λ = [0.2, 1.7, 0.1] 0.7582 0.7569
θ = λ = [0.4, 3.4, 0.2] 0.7583 0.7571

DEAL-ind θ = [0.1, 0.85, 0.05], λ = [0.1, 0.85, 0.05] 0.7468 0.7477
(default setting)
(increase θ) θ = [0.2, 1.7, 0.1], λ = [0.1, 0.85, 0.05] 0.7470 0.7479

θ = [0.4, 3.4, 0.2], λ = [0.1, 0.85, 0.05] 0.7470 0.7480
(change λ) θ = [0.1, 0.85, 0.05], λ = [0.2, 1.7, 0.1] 0.7468 0.7477
(change both) θ = λ = [0.05, 0.425, 0.025] 0.7465 0.7473

θ = λ = [0.2, 1.7, 0.1] 0.7470 0.7479
θ = λ = [0.4, 3.4, 0.2] 0.7470 0.7480
θ = λ = [0.8, 6.8, 0.4] 0.7471 0.7480

TABLE 4.2: Inductive link prediction results on the crime network. The best results
in the transductive and inductive settings are highlighted separately. Note that the

ROC-AUC is not applicable for Radius Neighbour and linear approaches.

We compare the methods with respect to ROC-AUC and Average Preci-
sion (AP). However, simple baselines such as Radius Neighbours and Linear

4.4. Experimental Analysis 61

Models can only deliver Average Precision. The results of our experiments
are reported in Table 4.2, while our findings are as follows:

• LASSO and Radius Neighbours achieve the worst results in correctly
predicting links in the crime network. This was expected since both use
straightforward strategies in comparing node embeddings. However,
more complex regression methods, such as Ridge Regression, which
gives more importance to the correlation between variables, notably
achieve better results. Moreover, an SVM classifier with a linear kernel
(SVC) can achieve comparable results to Ridge Regression. Graph2Gauss
reaches the best results among the conventional baselines.

• Low-dimensional node embedding methods, including LINE, node2vec,
and DeepWalk, do not show promising results on the crime network.
LINE achieves the worst results among all three tested node embedding
methods, unlike the experiments and comparisons in the original pa-
per [7]. LINE is supposed to be more scalable than DeepWalk. Still, since
it is an adjacency-based node representation, it does not perform as well
as random walk-based embeddings in smaller networks like criminal
analysis networks. Furthermore, since these node embedding methods
are unsupervised, a simple SVC or Ridge classifier can reach comparable
results.

• DEAL achieves considerably better results than conventional linear
models and node embedding methods. This indicates that the DEAL
framework effectively combines the structure and attributes of the crime
network and extracts their augmented relations better than the methods
that only use structure or attributes. Therefore, aligning the network
topology with the node attributes is an effective strategy.

• Using a transductive validation set marginally improves the DEAL
results. The larger the training set, the greater the performance improve-
ment.

• Finally, DEAL is not sensitive to its hyperparameters. Changing the pa-
rameters θ and λ does not have a noticeable impact on the performance
of the DEAL link prediction framework in both its transductive and
inductive tests.

62

Chapter 5

Multi-Level Heterogeneous Graph
Embeddings for Fine-Grained
Detection of Smart Contract
Vulnerabilities

5.1. Introduction 63

Learning heterogeneous graphs consisting of different types of
nodes and edges enhances the results of homogeneous graph tech-
niques. An interesting example of such graphs is control-flow
graphs representing possible software code execution flows. As
such graphs represent more semantic information of code, devel-
oping techniques and tools for such graphs can be highly beneficial
for detecting vulnerabilities in software for its reliability. However,
existing heterogeneous graph techniques are still insufficient in
handling complex graphs where the number of different types
of nodes and edges is large and variable. This chapter concen-
trates on the Ethereum smart contracts as a sample of software
codes represented by heterogeneous contract graphs built upon both
control-flow graphs and call graphs containing different types of
nodes and links. We propose MANDO, a new heterogeneous
graph representation to learn such heterogeneous contract graphs’
structures. MANDO extracts customized metapaths, which com-
pose relational connections between different types of nodes and
their neighbors. Moreover, it develops a multi-metapath heteroge-
neous graph attention network to learn multi-level embeddings
of different types of nodes and their metapaths in the heteroge-
neous contract graphs, which can capture the code semantics of
smart contracts more accurately and facilitate both fine-grained
line-level and coarse-grained contract-level vulnerability detection.
Our extensive evaluation of large smart contract datasets shows
that MANDO improves the vulnerability detection results of other
techniques at the coarse-grained contract level.

5.1 Introduction

Graph learning has been an active research area for a long time. Learning
heterogeneous graphs that consist of nodes and edges of different types has
recently attracted extensive attention since such graphs contain richer informa-
tion from the application domains than homogeneous graphs and, therefore,
can achieve better learning results [11]. However, when it comes to complex
heterogeneous graphs, where the graph structures have particular properties
and the number of node types and edge types can be arbitrarily large and
changing, it is still unclear if existing techniques can handle them well. Ex-
amples of such graphs can be found in control-flow graphs or call graphs
representing possible software code execution flows and call relations. A
control-flow graph depicts all possible sequences of statements or lines of
code that might be traversed in one function during program executions. In
contrast, a call graph represents every possible call relation among functions
in a program.

This chapter aims to develop a new approach for learning such complex
and dynamic heterogeneous graphs and apply them to address critical soft-
ware quality assurance problems, such as detecting vulnerabilities in software

64 Chapter 5. MANDO Framework

code that can be represented as control-flow graphs and call graphs. Ex-
pressly, we represent software code as a combination of heterogeneous graphs
of multiple granularity levels that capture the control-flow and call relations
in code. Then, we extract specially defined metapaths for such graphs that
acquire relations between different types of nodes and their neighbors, and
fuse various kinds of graph neural networks together to learn both of the
node-level and graph-level embeddings. Further, we use the embeddings to
train networks to recognize graphs or nodes that may contain vulnerabilities
and thus identify the vulnerable code functions or lines. Last but not least,
we apply our approach to the Ethereum smart contracts written in the So-
lidity programming language. We choose smart contracts from distributed
blockchains [209] as they become increasingly popular in various domains
that involve payments and contracts. Different techniques are essential to
detect their potential bugs and ensure correct executions of the payments and
contracts. In short, our approach enables novel multi-level graph embeddings
for fine-grained detection of smart contract vulnerabilities, and thus we name
it as MANDO. MANDO is novel in its graph neural network structure that
fuses topological GNN and node-level attentions with heterogeneous GNN
to generate both node-level and graph-level embeddings that can capture
structural information of graphs more accurately. It is also novel in enabling
both node-level and graph-level classifications to detect fine-grained line-level
vulnerabilities in smart contract source code in addition to coarse-grained
contract-level vulnerabilities.

For our empirical evaluation, we have curated a mixed dataset containing
493 Solidity vulnerable contracts from multiple data sources from previous
studies. There are seven types of vulnerabilities in the dataset; each has
between 50 to 80 instances. Our evaluation results show that MANDO
achieves a heightened F1-score from 81.98% to 90.51% for detecting the vul-
nerabilities at the fine-grained line-level, while previous deep learning and
embedding-based techniques can only detect the vulnerabilities at the contract
file/function level.

To summarize, our main contributions are as follows:

• We propose a new technique for representing Ethereum smart contracts
written in Solidity as heterogeneous contract graphs that combines hetero-
geneous control-flow graphs (CFGs) and call graphs (CGs) of multiple
levels of granularity. This new technique allows us to represent the
semantic relation of node and edge types that the previous approaches
could not capture with only using the homogeneous forms of these
CFGs and CGs separately.

• We propose a novel architecture for the Heterogeneous Graph Neural
Network using Node-Level Attention (Figure 5.2 and 5.3), which fits
our customized metapaths, to build embeddings of multiple granularity
levels for heterogeneous contract graphs.

5.2. Motivation and Problem Definition 65

1 pragma solidity ^0.4.19;
2
3 contract PrivateBank {
4 mapping (address => uint) public balances;
5 uint public MinDeposit = 1 ether;
6 Log TransferLog;
7
8 function Deposit() public payable {
9 if(msg.value >= MinDeposit) {
10 balances[msg.sender]+=msg.value;
11 TransferLog.AddMessage(msg.sender,msg.value,"Deposit"); } }
12
13 function CashOut(uint _am) {
14 if(_am<=balances[msg.sender]) {
15 if(msg.sender.call.value(_am)()) {
16 balances[msg.sender]-=_am;
17 TransferLog.AddMessage(msg.sender,_am,"CashOut"); } } }
18 }
19
20 contract Log {
21 struct Message {address Sender; string Data; uint Val; uint Time;}
22 Message[] public History;
23 Message LastMsg;
24 function AddMessage(address _adr,uint _val,string _data) public {
25 LastMsg.Sender = _adr;
26 LastMsg.Time = now;
27 LastMsg.Val = _val;
28 LastMsg.Data = _data;
29 History.push(LastMsg); }
30 }

Part A Part B Part C

True edge

False edge

Next edge

ENTRY_POINT Node

EXPRESSION Node

IF Node

END_IF Node

FUNCTION_NAME Node

PrivateBank

Deposit CashOut

External_Call
External_Call

AddMessage

Log

PrivateBank

Node Type: IF
Expression:

_am <= balance[mgs.sender]

PrivateBank_CashOut

Node Type: IF
Expression:

msg.sender.call.value(_am)()

Node Type: EXPRESSION
EXPRESSION:

balance[msg.sender] -= _am

Node Type: EXPRESSION
Expression:

TransferLog.AddMessage(msg.sender,_am
,CashOut)

Node Type: ENTRY_POINT

Node Type: END_IF

Node Type: END_IF

FIGURE 5.1: A sample Ethereum smart contract code snippet (Part A), its correspond-
ing heterogeneous call graph (CG) (Part B), and a sample heterogeneous control-flow
graph (CFG) for the function CashOut in the contract PrivateBank (Part C). Line 15
in Part A is the root cause of a Reentrancy bug; the nodes in CG and CFG containing

the Reentrancy bug are highlighted with red text
.

• We employ the multi-level embeddings of heterogeneous graphs and
labeled instances of vulnerable smart contracts to detect new vulnera-
bilities accurately at the line-level and contract-level, achieving better
results than prior state-of-the-art bug detection techniques for smart
contracts.

• We also publicize the dataset and our graph embedding models for the
research community1.

5.2 Motivation and Problem Definition

Motivating Example: Figure 5.1 (Part A) shows a sample code snippet of a
smart contract written in Solidity. Part B shows the corresponding call graph
(CG) of the contract. Part C shows a partial sample control-flow graph (CFG)
for the CashOut function containing a vulnerability whose root cause is at
Line 15 as msg.sender.call can repeatedly trigger calls to CashOut before
balances is deducted at Line 16, which means msg.sender can receive more
values than what is specified by _am. In order to catch this so-called reen-
trance vulnerability, the control-flow and call relations among msg.sender,
balances, and _am should be considered. We aim to automatically capture
such vulnerabilities’ properties via our new graph embedding techniques.

Problem Statement: Our high-level problem is to develop more effective
heterogeneous graph learning techniques, and use them to detect fine-grained

1https://github.com/MANDO-Project/ge-sc

https://github.com/MANDO-Project/ge-sc

66 Chapter 5. MANDO Framework

line-level software vulnerabilities and their types. More specifically, our ob-
jective for smart contracts written in Solidity based on our unique graph
representation and embedding techniques is to: (1) Represent it as a heteroge-
neous contract graph that combines its control-flow graph and call graph like
the example in Figure 5.1; (2) Learn the embeddings of the graphs and the
nodes at multiple levels of granularity to capture the syntactical and semantic
information of smart contract code; (3) Accurately identify the nodes that
contain certain types of vulnerabilities and locate them in the contract code.

Usage Scenarios: Such accurate vulnerability detection can be useful for
smart contract quality assurance under various situations. For example:

• During the contract development in an Integrated Development Envi-
ronment (IDE), it can help to identify early if the contract contains any
vulnerability of known types.

• When a developer is reusing a contract from a third party, the vulnera-
bility detection can check if it contains any known vulnerabilities and
warns the developer about potential risks in reusing the contract directly.

• Whenever a new type of vulnerability is discovered, we may want to
audit all existing contracts again to check if they contain the new type of
vulnerability. The vulnerability detection can then be easily applied to
all the contracts on a large scale for this purpose.

We believe that MANDO can be adapted to other software as long as their
control-flow and call graphs can be constructed and there are vulnerability
datasets available for training.

5.3 The MANDO Approach

5.3.1 Overview

This section gives an overview of our proposed approach consisting of four
main components presented in the four grey boxes in Figure 5.2 and describe
each component in the following subsections. The input of our approach is
the source code of one or many Ethereum smart contract source files written
in Solidity. The output is the bug prediction and the bug line in the source
code if there is one.

First, the source code is processed by the Heterogeneous Contract Graph
Generator component and translated into two heterogeneous graphs based
on call graphs and control-flow graphs corresponding to two levels of gran-
ularity: contract level and statement (line) level, respectively. Then, the two
heterogeneous graphs are fed into the second component: Multi-Metapaths
Extractor. Based on the type of each node and the types of its associated edges,
the component extracts their corresponding metapaths. This component is
novel in the sense that it can handle dynamic numbers of node and edge types
in metapaths from the automatically generated heterogeneous contract graphs.
The third component, Multi-Level Graph Neural Networks, contains two

5.3. The MANDO Approach 67

Call Graph
Generation

Control-Flow
Graph Generation

Heterogeneous
Graphs Fusion

Heterogeneous
Representation

Smart Contract
Source Code

Heterogeneous Contract
Graph Generator

Heterogeneous
Contract Graphs

Multi-Metapaths
Extractor

Phase 1:
Coarse-Grained

Detection

Topological Graph
Neural Network

Node-Level Attention
Heterogeneous Graph

Neural Network

Two-Phase Vulnerability Detector

Phase 2:
Fine-Grained

Detection

FIGURE 5.2: Overview of the MANDO framework.

steps. The first step takes metapaths or graph topology of the contract graphs
from the previous component as input and generates node embeddings. Then,
in the second step, the node embeddings are used as node features and fused
with metapaths using heterogeneous attention mechanisms at the node level.
Two-Phase Vulnerability Detector, the last component, uses the embeddings
to train multi-layer perceptron (MLP) to perform either graph classification
or node classification, depending on the kind of the input heterogeneous
contract graphs. In Coarse-Grained Detection, the heterogeneous contract
graphs embeddings are used to classify graphs if their respective contract is
clean or vulnerable. In Fine-Grained Detection, the heterogeneous contract
graphs embeddings of the vulnerable contracts, classified in the first phase,
are used to classify a node of a contract graph as to whether it is clean or
vulnerable. The classified nodes can then be used to find the exact locations
of the vulnerabilities in specific contracts (i.e., contract-level) and specific
statements or lines of code (i.e., line-level).

5.3.2 Heterogeneous Contract Graph Generator

Our approach uses Slither [123] to traverse and analyze the source code of
each Ethereum smart contract for generating the basic control-flow graphs
and call graphs with homogeneous structures where nodes and edges have
no types or labels. Following the Definition 2.1.2.2 of a heterogeneous graph

68 Chapter 5. MANDO Framework

in Section 2.1.2, we then transform these constructed graphs into heteroge-
neous forms to represent the semantics of graph structures and the relation of
different node and edge types:

Heterogeneous Control-Flow Graphs (HCFGs). A control-flow graph of
a function is an intermediate representation of all possible sequences of state-
ments or lines of code that might be traversed when the function is executed,
which is widely used in program analysis methods. Recent approaches on
smart contract vulnerability detection use such graph representations of code
when applying graph neural networks [76, 163], but they mostly normalize
and convert those representations into homogeneous graphs before applying
graph models. In particular, they only keep the major nodes and eliminate
some normal nodes to normalize graphs since using nodes of diverse code
semantics brings difficulties in training their graph neural networks. Thus,
these approaches tend to lose valuable information regarding the source code
semantics in smart contracts. In contrast, MANDO focuses on retaining most
of the structure and semantics of the source code through heterogeneous
representations where a variety of node types and edge types are preserved,
called heterogeneous control-flow graphs.

The set of all node types in control-flow graphs is denoted as ACF. Some
typical node types include ENTRY_POINT, EXPRESSION, NEW VARIABLE,
RETURN, IF, END_IF, IF_LOOP, and END_LOOP. Additionally, diverse types
of connections among nodes are used to describe statements’ sequential or
branching structure through edge types such as NEXT, TRUE, FALSE. The set
of all edge types in control-flow graphs is RCF. Figure 5.1 (Part C) shows a
sample heterogeneous control-flow graph generated for the CashOut function
of contract PrivateBank. A Solidity parser (e.g., Slither) produces the complete
sets of ACF and RCF based on the grammar of the Solidity language. GCF =
{VCF, ECF, ϕCF, ψCF} denotes an HCFG with VCF and ECF as its vertex and
edge sets, respectively. Each node i ∈ VCF can be viewed as a tuple of (i, ϕi

CF),
where i is the index of node and ϕi

CF ∈ ACF is the type of node i. Similarly,
each edge (i, j) ∈ ECF has an edge type ψ

i,j
CF ∈ RCF. Each function in a smart

contract can have an HCFG generated for it, and the HCFG has an entry node
corresponding to the entry point/header of the function. A smart contract
may be viewed as a set of HCFGs as it may contain more than one function.

Heterogeneous Call Graphs (HCGs). Call graphs are an intermediate
representation of invocation relations among functions from the same smart
contract or different smart contracts. A call graph generated via static program
analysis often represents every possible call relation among functions in a
program. Our study focuses on two major types of calls in smart contracts:
internal calls for function calls inside one smart contract and external calls for
function calls from a contract to others, represented by the two respective
edge types INTERNAL_CALL and EXTERNAL_CALL. In addition, Solidity
fallback functions are important in Ethereum blockchain, executed when a
function identifier does not match any of the available functions in a smart
contract or if no suitable data was provided for the function call. Many
vulnerabilities in Ethereum smart contracts are directly or indirectly related to

5.3. The MANDO Approach 69

such fallback functions [210]. Therefore, we represent such fallback functions
with a particular node type, called FALLBACK_NODE, besides the typical
function node type FUNCTION_NAME.

One HCG is generated from each smart contract. GC = {VC, EC, ϕC, ψC}
denotes a heterogeneous call graph with VC and EC as its node and edge sets,
respectively. Each node i in VC can be viewed as a tuple (i, ϕi

C) where i is
the index of node, ϕi

C ∈ AC is the type of the node i and AC is the set of all
node types in GC. Similarly, each edge (i, j) ∈ EC has an associate edge type
ψ

i,j
C ∈ RC.

Heterogeneous Contract Graphs: Fusion of Heterogeneous Call Graphs
and Heterogeneous Control-Flow Graphs. The structures of these two graphs
for a smart contract can be shared or combined into a global graph to enrich
information for learning. In MANDO, we design a core for HCGs and HCFGs
fusion. Accordingly, the HCG edges of the smart contract act as bridges to
link the discrete HCFGs of the smart contract functions into a global fused
graph. Specifically, the fusion graph of the heterogeneous CG and the hetero-
geneous CFGs for a smart contract is denoted by GFusion = {VF, EF, ϕF, ψF},
where VF = VC ∪ V1

CF ∪ ... ∪ VN
CF and EF = EC ∪ E1

CF ∪ ... ∪ EN
CF, and N is

number of the HCFGs for the contract. Intuitively, for each and every func-
tion node i in the call graph, the function control-flow graph Gi

CF is attached
to the function node i at the entry node of Gi

CF, and thus the call graph is
expanded with control-flow graphs to produce the heterogeneous contract
graph. For example, in Figure 5.1, the red arrow between CashOut in Part B
and PrivateBank_CashOut in Part C indicates a sample fusion between CGs
and CFGs.

5.3.3 Multi-Metapaths Extractor

The number of node types in our generated graphs is dynamic and can reach
sixteen, with three distinct connection types per node type, especially in the
heterogeneous control-flow graphs. Pre-defining all possible metapaths with
any length according to all possible node types and edge types is a challenge,
as it would lead to an exponential explosion of metapaths, increased data
sparsity, and reduced training accuracy. For example, in Figure 5.1, between
a node of ENTRY_POINT type and a node of EXPRESSION type, several
different node types can be included, such as IF and END_IF, and in other
smart contracts, NEW_VARIABLE, IF_LOOP, and END_LOOP can also be
included. Besides, the order of these node types can change dynamically,
depending on the input contracts’ structures.

In order to address the problem of exploding and changing metapaths,
our method focuses on length-2 metapaths through reflective connections
between adjacent nodes to extract multiple metapaths. For instance, the
relation between two adjacent nodes of the types ENTRY_POINT and IF in
Figure 5.1 can be described by a length-2 metapath: ENTRY_POINT next−−→
IF back−−→ ENTRY_POINT. HCFGs are mostly tree-like, having very few of
their own back-edges induced by the LOOP-related statements in the source

70 Chapter 5. MANDO Framework

code. This can lead to the lack of metapaths connecting many leaf-node
types in the graphs. Adding the “back” relations helps alleviate the lack and
improves the completeness of the extracted metapaths.

Previous studies [11, 211] also used length-2 in their evaluation, and a
length-N metapath can be decomposed into (N - 1) length-2 metapaths. Thus,
we follow those studies by using length-2 to capture the unique semantic
between each node types pair and their neighbors and leave longer metapaths
for future evaluations. Similar to the methods used in HAN [11], we extract
the set of length-2 metapaths of each node types pair in a smart contract.

5.3.4 Multi-Level Graph Neural Networks

AVG

...

Node
Attention

Node
Attention

AVG

MLP

Node
type

Node
type

... ...

... ...

...

...

...

Metapaths ... Metapaths

Nodes of
type

Nodes of
type

Extracted
Node Features

Extracted
Node Features

FIGURE 5.3: Our Novel Architecture for Node-Level Attention Heterogeneous Graph
Neural Network in the MANDO Framework.

This component has two major building blocks: Topological Graph Neural
Network and Node-Level Attention Heterogeneous Graph Neural Network. The

5.3. The MANDO Approach 71

Notation Explanation
i Node i
ϕk Node type k
eϕk

i Node embedding of i whose type is ϕk

e′ϕk
i Linear transformation of eϕk

i
Wϕk Matrix transformation for node i with type ϕk

Φϕk
t t-th metapath of node type ϕk

Mϕk
it

t-th metapath embedding of node i whose node type is ϕk

Mϕk
i Embedding of node type ϕk of node i

Nϕk A set of metapath of node type ϕk
Jk Total index of node type ϕk

TABLE 5.1: Table of Notation.

former learns an input graph topology, while the latter weights the importance
of the metapaths in the graph.

Topological Graph Neural Network

The main goal of this building block is to capture the graph topology. Each
node i has a node embedding ei such that ei and the embedding vector ej of
the neighboring nodes j of i are near in the embedding space. Various state-of-
the-art neural network techniques can be used to generate node embeddings
of graphs. For a more comprehensive comparison of their effectiveness, we
employ both embedding techniques for homogeneous graphs (e.g., node2vec
[6]) and embedding techniques for heterogeneous graphs (e.g., metapath2vec
[41]) in our empirical evaluation (see Section 5.4).

Node-Level Attention Heterogeneous Graph Neural Network

There are two kinds of input sources for this building block: the node embed-
dings from the previous topological graph neural network and the metapaths
from the Multi-Metapaths Extractor.

Node-Level Attention Graph Neural Network. Inspired by the node-
level attention mechanism proposed by HAN [11], we also learn to weigh
the importance of every metapath and node. However, unlike HAN, our
novel approach can handle multiple dynamic customized metapaths without
pre-defining the list of input metapaths (see Figure 5.3 and the summary
of notations in Table 5.1). The previous topological graph neural network
produces a node embedding eϕk

i for each node i whose type is ϕk; then, we
construct a corresponding weighted node feature e′ϕk

i by the following linear
transformation:

e′ϕk
i = Wϕk eϕk

i , (5.1)

where Wϕk is the transformation matrix associated to the type ϕk of node i.
Each node type ϕk has a specific matrix Wϕk to increase the flexibility of the
transformation by projecting each type into a separated weight space.

72 Chapter 5. MANDO Framework

We measure the weight of the t-th metapath Φϕk
t according to the node

type ϕk of (i, j) pair by leveraging the self-attention mechanism [212] between

i and j. The weight aΦ
ϕk
t

ij is defined as follows:

aΦ
ϕk
t

ij = softmaxj(ATT([e′ϕk
i , e′ϕk

j]; Φϕk
t)), (5.2)

where ATT is a multi-layer perceptron [213] whose values of parameters are au-
tomatically learned through back-propagation. The input of such perceptron
is the concatenation of two vectors e′ϕk

i and e′ϕk
j . We then normalize the output

of ATT into the range between 0 and 1 by all neighbors of j in metapaths. The
t-th metapath embedding Mϕk

it
of node i whose node type is ϕk is a weighted

sum of the node features of its neighbors with corresponding weights defined
in Equation (5.2). The formula is as follows:

Mϕk
it

= σ

 ∑
j∈NΦk

i

aΦ
ϕk
t

ij · e
′ϕk
j

 , (5.3)

where σ is the activation function, andNΦk
i denotes the neighbors of the node

i according to the metapath Φk.
To overcome the obstacle of high variance of data in heterogeneous graphs,

we propose to aggregate multi-metapath embeddings with different types of
nodes. Particularly, the metapath embedding Mϕk

it
of each node in Equation

(5.3) is calculated N times and then concatenated to create a final embedding
M′ϕk

it
for each metapath.

After extracting the metapath embedding, we calculate the corresponding
embedding of node i by averaging all metapath embedding related to i, noted
AVG in Figure 5.3. Specifically, the embedding of node i with node type ϕk is:

Mϕk
i =

∑t Mϕk
it

|Nϕk | , (5.4)

where Nϕk is a set of metapaths of the node type ϕk, and the total index of the
node type ϕk is equal to the size of this set i.e., |Nϕk |.

For fine-grained detection, we concatenate all node embedding Mϕk
i cor-

responding to all node type ϕk of all node i to generate a unified embedding
vector for a node. We get the average of all node embeddings belonging to
the graph for coarse-grained detection.

Optimization for Detection

We employ the multi-layer perceptron (MLP) with a softmax activation func-
tion for the graph and node classification tasks. The input of such a layer is
dependent on the type of prediction tasks. The loss function for the training

5.4. Empirical Evaluation 73

process is cross-entropy, and the parameters of our model are learned through
back-propagation.

5.3.5 Two-Phase Vulnerability Detector

This component has two main phases: Coarse-Grained Detection and Fine-
Grained Detection. The first phase classifies clean versus vulnerable smart
contracts at the coarse-grained contract level; the second phase identifies the
actual locations of the vulnerabilities in the smart contract source code at the
fine-grained line level. Providing line-level locations of the vulnerabilities is
one of our primary contributions, while the previous graph learning-based
methods [76, 77] only report vulnerabilities at the contract or function level.

Phase 1: Coarse-Grained Detection

This phase classifies if a smart contract contains a vulnerability. We use the
fused heterogeneous call graphs and control-flow graphs (i.e., heterogeneous
contract graphs) and their embeddings to represent each input smart contract,
and train the MLP (Section 5.3.4) to predict clean or vulnerable contracts. As
there can be many clean smart contracts, this classification assists in reducing
the search space by filtering out those clean contracts and reducing noisy data
before the second phase of fine-grained vulnerability detection at the line
level.

Phase 2: Fine-Grained Detection

For the vulnerable smart contracts identified in the first phase, we apply
node classification on the node embeddings of their Heterogeneous Contract
Graphs to identify the nodes that may contain vulnerabilities, which corre-
spond to statements or lines of code and allow us to detect the locations of the
vulnerabilities at the fine-grained line level in smart contract source code.

5.4 Empirical Evaluation

This section presents our experimental settings and results to answer these
research questions: RQ1: The performance of our models compared to several
state-of-the-art baselines on contract-level vulnerability classification, and
RQ2: The performance of our models on line-level vulnerability detection.

5.4.1 Datasets

Our evaluation is carried out on a mixed dataset from three datasets men-
tioned in Section 2.2.1: (1) Smartbugs Curated [73, 74], (2) SolidiFI Bench-
mark [75], and (3) Clean Smart Contracts from Smartbugs Wild [73, 74]. To
ensure consistency in the evaluation, we only focus on the seven types of

74 Chapter 5. MANDO Framework

vulnerabilities that are joint in both datasets Smartbugs Curated and Solid-
iFI Benchmark, including Access Control, Arithmetic, Denial of Service, Front
Running, Reentracy, Time manipulation, and Unchecked LowLevel Calls. Besides,
based on the results of eleven integrated detection tools, the Smartbugs frame-
work reports 2,742 contracts that do not contain any bugs, out of the 47,398
contracts in the Smartbugs Wild. Thus, we use the 2,742 contracts as the set of
clean contracts.

For the coarse-grained contract-level vulnerability classification tasks, we
randomly take some smart contracts from the clean set and then mix them
with the Smartbugs Curated and SolidiFi Benchmark sets. We keep a ratio of
1:1 between clean and buggy contracts since this helps us create more balanced
train/test sets for the tasks since there are only 44 to 95 buggy contracts labeled
per each bug type (see Table 5.3). For the fine-grained line-level vulnerability
detection tasks, we use the dataset containing vulnerable smart contracts only,
i.e., the union of SmartBugs Curated and SolidiFI Benchmark sets. We do
not use other datasets such as the ones of Zhuang et al. [76], Liu et al. [77]
and eThor [78] because they do not have fine-grained line-level labels for the
vulnerabilities.

Note that the Slither parser we use does not automatically generate the
clean or vulnerable labels for a node. Instead, the nodes are labeled based on
the lines of vulnerable code either manually by Smartbugs authors or injected
by the SolidiFI tool. For example, Line 15 in Figure 5.1 contains a Reentrancy
bug labeled by Smartbugs; then, the nodes with red text in the Heterogeneous
CFG and CG are labeled vulnerable.

5.4.2 Comparison Methods

Comparison to Graph-based neural network Methods

We use the four state-of-the-art methods presented in Section 2.1.2, includ-
ingnode2vec [6], LINE [7], GCN [8], and metapath2vec [41]. Note that the original
architectures of node2vec, LINE, GCN, and metapath2vec only focus on graph
topology and do not have any components to handle node features.

Although HAN [11] inspired some idea for our Node-Level Attention
Heterogeneous Graph Neural Network, our approach has novelty in resolving
the challenges of fitting with the customized metapaths that the original HAN
model could not handle effectively. In particular, HAN requires a predefined
list of metapaths and each HAN model only serves one or some predefined
node types. However, the MANDO’s Heterogeneous CFGs and CGs have
dynamic types of nodes and edges, leading to difficulties in predefining
metapaths like the original HAN model, and thus we did not use HAN as a
baseline in our evaluation.

The output embeddings of the homogeneous and heterogeneous graph
neural networks are used in two ways in our evaluation. First, we use them
directly as the baselines for the coarse-grained graph classification tasks and
fine-grained node classification tasks. Second, each of the graph neural net-
works is plugged into MANDO as the topological graph neural network.

5.4. Empirical Evaluation 75

The generated embeddings are then considered as the node features fed to
MANDO’s Node-Level Attention Heterogeneous Graph Neural Network.
Besides, we use fully-connected layers as the multi-layer perceptron in node
and graph classification tasks. In addition, the one-hot vectors based on
the Node-Type is also used as the node features, which allows MANDO to
perform independently without relying on any added-in topological graph
neural network.

Parameter Settings: The node embedding size is set to 128 for all models.
We use an adaptive learning rate from 0.0005 to 0.01 in coarse-grained tasks
and from 0.0002 to 0.005 in fine-grained tasks when training. For each GAT
layer [9] of each metapath that feeds to the MANDO’s Self-Attention Layer
per Node Type, we set 8 multi-heads whose hidden size is 32. The numbers of
learning epochs of coarse-grained and fine-grained tasks are 50 and 100, re-
spectively, to reach converging. For node2vec, LINE, GCN, and metapath2vec,
we use the authors’ recommended settings to ensure the highest performance.

Comparison with Conventional Detection Tools

We also compare our method to six common smart contract vulnerability
detection tools based on traditional software engineering approaches: Man-
ticore [117] analyzes the symbolic execution of smart contracts and binaries;
Mythril [214] uses symbolic execution, SMT solving, and taint analysis to
find out the security vulnerabilities of smart contracts; Oyente [127] analyzes
symbolic execution to detect bugs in the Ethereum blockchain; Securify [126]
can prove if the behavior of a smart contract is safe or not according to given
predicates and by checking its graph dependencies; Slither [123] reduces
the complexity of instruction sets with the intermediate representation of
Ethereum smart contract called SlithIR, while retaining much of the semantic
to increase the accuracy of bug detection; Smartcheck [128] converts smart con-
tracts into XML-based representation and finds possible bugs along executive
paths.

5.4.3 Evaluation Metrics

Since our prediction results are based on the binary classification of a node
or a graph, we use F1-score and Macro-F1 scores to measure the prediction
performance. The former is a measure of a model’s performance by balancing
between precision and recall, while the latter is used to assess the quality of
problems with multiple binary labels or multiple classes. In our evaluation,
the F1-score metric is used to evaluate the models’ performance when find-
ing vulnerabilities in the graphs, and we also call it Buggy-F1. Macro-F1 is
considered to avoid biases in the clean and vulnerability labels.

76 Chapter 5. MANDO Framework

Methods Metrics Access
Control Arithmetic Denial of

Service
Front

Running Reentrancy Time
Manipulation

Unchecked Low
Level Calls

Heterogeneous GNN metapath2vec Buggy F1 62.90% 56.46% 55.17% 63.40% 61.79% 66.29% 55.22%
Macro-F1 42.55% 46.32% 44.49% 43.03% 47.26% 45.94% 49.05%

Homogeneous GNNs

GCN Buggy F1 60.63% - 60.12% - - 59.60% -
Macro-F1 48.45% - 45.65% - - 46.60% -

LINE Buggy F1 61.45% 33.41% 59.61% 62.61% 66.23% 66.65% 60.51%
Macro-F1 40.88% 33.47% 35.77% 34.29% 37.91% 40.84% 40.08%

node2vec Buggy F1 62.63% 58.59% 56.41% 64.77% 58.29% 63.03% 61.69%
Macro-F1 48.83% 50.80% 40.63% 46.08% 45.80% 46.78% 49.91%

MANDO with
Node Features
Generated by

NodeType One
Hot Vectors

Buggy F1 71.19% 66.85% 87.37% 87.31% 76.09% 85.03% 72.08%
Macro-F1 74.57% 71.04% 86.68% 85.65% 75.80% 83.35% 74.52%

metapath2vec Buggy F1 57.70% 52.84% 60.16% 62.19% 55.06% 59.47% 51.37%
Macro-F1 55.60% 55.06% 64.12% 64.80% 60.96% 57.74% 55.58%

GCN Buggy F1 49.26% - 53.19% - - 49.50% -
Macro-F1 52.75% - 60.26% - - 57.31% -

LINE Buggy F1 65.12% 54.91% 89.15% 89.86% 71.04% 87.71% 59.44%
Macro-F1 70.15% 65.36% 89.46% 88.66% 74.97% 86.41% 66.16%

node2vec Buggy F1 55.71% 64.11% 83.86% 86.05% 71.39% 73.38% 66.10%
Macro-F1 64.70% 70.23% 83.40% 84.95% 72.31% 74.36% 71.02%

TABLE 5.2: Average Performance Comparison of the Coarse-Grained Contract-Level
Detection over 20 Runs. We use the Heterogeneous Contract Graphs of both Clean and
Buggy Smart Contracts as the MANDO framework inputs. Buggy- F1 means the
F1-score of the buggy graph label. ‘–’ denotes not applicable due to the insufficiency

of GPU memory to handle the input graphs for the GCN model.

Bug Types # Total / Buggy
Contracts

Total
Nodes

Total
Edges

Buggy
Nodes

Access
Control 114 / 57 13014 10721 7500

Arithmetic 120 / 60 17372 14271 10110
Denial of
Service 92 / 46 13968 11997 8280

Front
Running 88 / 44 22824 19761 10008

Reentrancy 142 / 71 18898 17614 11238
Time
Manipulation 100 / 50 16765 15550 10051

Unchecked
Low Level
Calls

190 / 95 17756 14858 7583

TABLE 5.3: Statistics of the Mixed Dataset.

5.4.4 Empirical Results

Table 5.3 shows the statistics of the mixed dataset. In the initial experiments,
we split the dataset into 60% / 20% / 20% for the corresponding train / valida-
tion / test sets. However, some bug types in our mixed dataset have less than
100 contracts, which leads to a lack of enough samples for training. Besides,
we realized that the loss value remains stable after a fixed number of epochs
(100 and 50 epochs for Fine-Grained for Coarse-Grained tasks, respectively).
Hence, we decided to split the dataset to 70%/30% to increase the train/test
set sizes and maintain the vulnerable nodes’ ratio in each set corresponding
to the whole dataset. To get robust results for each dataset, each embedding
method, and each vulnerability type, we run the experiment twenty times
independently, each time with a different random seed, and report the average
results. Besides, our approach shows impressive capabilities in training and
inference time. It takes around 30 seconds for over ten thousand nodes and
edges in the node classification task and under 10 seconds for about 100–200
contracts in the graph classification task. Also, it requires under 1 second for

5.4. Empirical Evaluation 77

all inferences.

Coarse-Grained Contract-Level Vulnerability Detection (RQ1)

In this experiment, we want to measure MANDO’s performance with various
node feature generator components in detecting vulnerable smart contracts
(see Section 5.3.5). It illustrates the flexibility of our method working with
different graph neural networks. Table 5.2 presents MANDO’s performance
via several different graph neural methods on various vulnerability types.
Accordingly, we have some observations:

• MANDO generally outperforms baseline GNNs in contract-level de-
tection. For instance, the Buggy-F1 and Macro-F1 of MANDO are over
88.66%, while the maximum performance of the baselines is 64.77% in
detecting the Front-Running vulnerability type.

• It is unclear which node feature generation method is the best among
the heterogeneous and homogeneous GNNs and the node-type one-hot
vectors. However, integrating these types of GNNs inside MANDO
outperforms all the baselines. Hence, we believe that the architecture
of MANDO for combining different GNNs is suitable for classifying
vulnerable smart contracts.

• MANDO is reliable in determining whether an unknown smart contract
contains vulnerabilities, especially for the vulnerability types of Denial
of Service, Front Running, and Time Manipulation with Buggy-F1 over
87.7%. MANDO is highly compatible with different solidity versions
based on the Slither tool [123], and its trained models can be applied in
practice to audit newly-appeared smart contracts that previous studies
using graph learning [76, 163] have not been able to do effectively (see
Section 2.2.3).

Fine-Grained Line-Level Vulnerability Detection (RQ2)

To help smart contract developers to locate vulnerabilities more easily, vul-
nerability detectors should be able to identify the vulnerabilities at the more
fine-grained line level (see Section 5.3.5). In this experiment, we examine the
performance of our method with respect to various state-of-the-art methods
for line-level detection.

Table 5.4 shows the performance of our method trained with different
models for Topological Graph Neural Network and the baselines methods,
including graph-based neural networks and the conventional detection tools
based on various software engineering techniques. From the table, we observe:

• Generally, MANDO outperforms conventional detection tools signifi-
cantly. Remarkably, an improvement is up to 63.4% of MANDO com-
pared to the best performance of the tools in detecting Reentrancy bugs.
We argue the significant improvement is from two sources: First, our
constructed heterogeneous graphs retain more CFGs’ aspects than other

78 Chapter 5. MANDO Framework

Methods Metrics Access
Control Arithmetic Denial of

Service
Front

Running Reentrancy Time
Manipulation

Unchecked Low
Level Calls

Conventional
Detection Tools

securify Buggy F1 13.0% 0.0% 18.0% 53.0% 23.0% 24.0% 11.0%
Macro-F1 52.3% 45.2% 52.0% 72.2% 58.4% 52.4% 54.1%

mythril Buggy F1 34.0% 73.0% 41.0% 63.0% 19.0% 23.0% 14.0%
Macro-F1 61.1% 84.1% 60.1% 77.8% 55.3% 50.8% 55.7%

slither Buggy F1 32.0% 0.0% 13.0% 26.0% 15.0% 44.0% 10.0%
Macro-F1 61.5% 45.2% 42.7% 56.9% 49.4% 57.3% 53.3%

manticore Buggy F1 30.0% 30.0% 12.0% 7.0% 9.0% 24.0% 4.0%
Macro-F1 61.1% 61.0% 48.0% 46.9% 51.2% 55.1% 50.6%

smartcheck Buggy F1 20.0% 22.0% 52.0% 0.0% 22.0% 44.0% 11.0%
Macro-F1 56.0% 56.1% 69.9% 46.2% 57.8% 64.2% 54.1%

oyente Buggy F1 21.0% 71.0% 48.0% 0.0% 20.0% 24.0% 8.0%
Macro-F1 57.3% 82.8% 67.2% 44.8% 56.1% 52.4% 52.6%

Heterogeneous GNN metapath2vec Buggy F1 35.46% 68.70% 60.64% 80.65% 71.66% 67.51% 26.06%
Macro-F1 48.52% 47.08% 48.67% 49.88% 49.15% 49.00% 49.91%

Homogeneous GNNs

GCN Buggy F1 43.92% 65.69% 64.06% 81.09% 71.76% 68.70% 38.13%
Macro-F1 54.20% 53.42% 54.81% 56.21% 53.00% 52.74% 53.57%

LINE Buggy F1 53.59% 68.61% 62.28% 83.06% 74.78% 70.76% 7.10%
Macro-F1 57.75% 48.53% 51.63% 42.27% 38.26% 42.40% 44.31%

node2vec Buggy F1 44.94% 67.84% 63.92% 81.84% 71.52% 67.81% 34.26%
Macro-F1 54.73% 52.92% 54.83% 56.17% 53.45% 53.19% 53.09%

MANDO with
Node Features
Generated by

NodeType One
Hot Vectors

Buggy F1 77.21% 81.62% 79.83% 88.19% 84.24% 86.64% 65.95%
Macro-F1 74.89% 76.01% 76.22% 68.70% 75.89% 82.72% 75.01%

metapath2vec Buggy F1 67.97% 74.84% 67.22% 86.08% 76.03% 73.81% 50.71%
Macro-F1 67.87% 65.92% 62.90% 65.22% 66.04% 71.04% 64.73%

GCN Buggy F1 69.00% 76.47% 70.88% 87.15% 77.57% 77.73% 52.95%
Macro-F1 66.77% 66.75% 64.26% 65.71% 65.85% 73.94% 65.75%

LINE Buggy F1 81.19% 81.58% 82.12% 90.47% 86.27% 89.21% 83.37%
Macro-F1 80.93% 77.80% 79.00% 78.43% 80.43% 86.17% 85.40%

node2vec Buggy F1 81.98% 84.35% 82.09% 90.51% 86.40% 90.29% 84.81%
Macro-F1 79.23% 79.10% 77.84% 78.60% 80.78% 86.76% 86.74%

TABLE 5.4: Average Performance Comparison of the Fine-Grained Line-Level De-
tection over 20 Runs. We use the Heterogeneous Contract Graphs of the Buggy Smart
Contracts as the inputs for MANDO framework. Buggy- F1 means the F1-score of
the buggy node label. A total of fifteen methods are examined in the comparisons.

The best performance in each vulnerability category is highlighted.

analysis tools. Secondly, our node-level attention module is flexible
enough for GNNs to learn the exact locations of vulnerabilities within
contracts.

• Our method beats the results of the baseline GNNs. Remarkably, the
macro-F1 scores of the baseline GNNs are up to 60.5%, while our models
can reach up to 80.78%. Hence, it is evident modeling the smart contracts
as Heterogeneous Contract Graphs can benefit vulnerability prediction.

• Conventional detection tools perform well in detecting arithmetic bugs.
The phenomenon is reasonable since these tools mostly use symbolic exe-
cution and such technique is suitable for detecting arithmetic bugs [215].
However, MANDO performance is still on par with the tools and our
future work will improve the graph models to learn arithmetic oper-
ations better. Besides, some conventional detection tools in Table 5.4
barely work (with Buggy-F1=0%) for some vulnerability types due to
their intrinsic limits in relying on predefined expert patterns that could
not capture these vulnerabilities.

Expanded Experiments. We also ran the experiments in Tables 5.2 and 5.4
with only Heterogeneous CFGs and CGs separately. Overall, these results are
worse than the fusion form in the heterogeneous contract graphs reported in
the chapter. The expanded experiments can be found in our Git repository
link.

79

Chapter 6

Heterogeneous Graph Transformers
for Smart Contract Vulnerability
Detection on Source Code and
Bytecode

80 Chapter 6. MANDO-HGT Framework

Smart contracts in blockchains have been increasingly used for
high-value business applications. It is essential to check smart con-
tracts’ reliability before and after deployment. Although various
program analysis and deep learning techniques have been pro-
posed to detect vulnerabilities in either Ethereum smart contract
source code or bytecode, their detection accuracy and scalability
are still limited. As a successor of MANDO presented in Chap-
ter 5, we propose a novel framework named MANDO-HGT for
detecting smart contract vulnerabilities in this chapter. Given
Ethereum smart contracts, either in source code or bytecode form,
and vulnerable or clean, MANDO-HGT custom-builds heteroge-
neous contract graphs to represent control-flow and/or function-call
information of the code. It then adapts heterogeneous graph trans-
formers (HGTs) with customized meta relations for graph nodes
and edges to learn their embeddings and train classifiers for de-
tecting various vulnerability types in the nodes and graphs of
the contracts more accurately. Our empirical results show that
MANDO-HGT can significantly improve the detection accuracy
of other state-of-the-art vulnerability detection techniques that are
based on either machine learning or conventional analysis tech-
niques. The accuracy improvements in terms of F1-score range
from 0.7% to more than 76% at either the coarse-grained contract
level or the fine-grained line level for various vulnerability types
in either source code or bytecode. Our method is general and can
be retrained easily for different vulnerability types without the
need for manually defined vulnerability patterns.

6.1 Introduction

Smart contracts on blockchain systems have been used for many application
domains [216], such as finance, e-commerce, healthcare, logistics, and law.
Any bug or security vulnerability in a smart contract deployed in a blockchain
can have devastating consequences for both the developers and the users of
the smart contracts [217, 218]. Therefore, there is a high demand for various
kinds of security assurance techniques for smart contracts, especially for
vulnerability detection.

Many studies have been carried out on vulnerability detection in smart
contracts based on conventional software testing, analysis, verification tech-
niques [112, 117, 123, 126–128, 132, 133]. Such techniques often require certain
types of oracles or specifications of the (un)expected patterns or semantics of
smart contract code for analysis. Unfortunately, specifying the patterns can
take much manual effort and make it troublesome to adapt the tools to the
evolving contract languages and types of vulnerabilities. Also, computational
complexity makes it very expensive to repeatedly run the techniques on a
large set of smart contracts to search for new types of vulnerabilities. Hence,
a new class of vulnerability detection techniques has been proposed based on

6.1. Introduction 81

machine learning and deep learning techniques [76,77,149,151,165,167]. Such
techniques aim to encode various syntactic and semantic code information
via syntax trees, control-flow graphs, or program dependency graphs, among
others, and to train automated classifiers to distinguish vulnerable code from
normal ones. The learning-based techniques reduce the need for manually
specified patterns or specifications, easier to be adapted to new types of code
and vulnerabilities as long as some training data is provided. However, exist-
ing code learning techniques often treat most nodes and edges homogeneously,
ignoring fine-grained differences in the nodes and edges types and their exact
locations in the code’s trees and graphs. This leads to insufficient learning
accuracy, and this limitation becomes more pronounced for smart contracts
bytecode without source code. Since the structures representing different
bytecode become more similar to each other if the types of the specific byte-
code instructions are ignored, making it harder to identify vulnerable/bug
patterns.

Combining the advantages of previous techniques and progresses in het-
erogeneous graph learning [11, 12, 41, 219], this chapter aims to develop a
new framework for smart contract vulnerability detection, applicable to both
source code and bytecode. The main idea of our framework is two-folded:

• First, we represent the contract code, either source code or bytecode, as
customized heterogeneous contract graphs that represent control flows
and call relations of the code. With the combined representations, we
aim to capture the code’s syntactic and semantic information more com-
prehensively to facilitate learning of code patterns and distinguishing
vulnerable code from clean ones.

• Second, we extend the heterogeneous graph transformer (HGT) [12]
techniques to learn different types of nodes and edges of the contract
graphs and encode the semantics of the code more accurately. The
encodings can then be used to train classifiers to recognize vulnerable
code.

We name our framework MANDO-HGT, following our previous work
MANDO in Chapter 5 that only works for source code and uses a different
graph learning technique. Our framework aims to be more general than
previous techniques, applicable for either source code or bytecode, can be
instantiated with various graph learning techniques, and can be re-trained
for new types of vulnerabilities and detect vulnerabilities in large sets of
contracts efficiently and accurately. The general approach is useful since it
is not uncommon for smart contracts to be deployed without their source
code or for the source code to be lost or deleted over time and the approach
should be able to handle variation in generated bytecode to some extent
when retrained with bytecode variants. Furthermore, MANDO-HGT can
be re-trained to detect different types of vulnerabilities without manually
defining bug patterns needed by analysis-based techniques. With its flexible
design, we believe that MANDO-HGT can be integrated with other code

82 Chapter 6. MANDO-HGT Framework

Node Type:
ENTRY_POINT

Node Type:
END_IF

Node Type: EXPRESSION
Expression:

acc.balance -= _am

Node Type: IF
Expression:

msg.sender.call.value(_am)()

Node Type:
EXPRESSION
Expression:

LogFile.AddMessage(msg.sender,_
am,Collect)

Node Type:IF
Expression:

acc.balance >= MinSum && acc.balance >=
_am && now > acc.unlockTime

MY_BANK-Collect

Node Type:
END_IF

Part CPart A

1 contract MY_BANK {
2 function Put(uint _unlockTime) public payable
3 var acc = Acc[msg.sender];
4 acc.balance += msg.value;
5 acc.unlockTime = _unlockTime>now?_unlockTime:now;
6 LogFile.AddMessage(msg.sender,msg.value,"Put");}
7
8 function Collect(uint _am) public payable {
9 var acc = Acc[msg.sender];
10 if(acc.balance>=MinSum && acc.balance>=_am && now>acc.unlockTime){
11 if(msg.sender.call.value(_am)()){
12 acc.balance-=_am;
13 LogFile.AddMessage(msg.sender,_am,”Collect”);} } }
14
15 function() public payable {Put(0);}
16 struct Holder{
17 uint unlockTime;
18 uint balance;}
19 mapping (address => Holder) public Acc;
20 Log LogFile;
21 uint public MinSum = 1 ether;
22 function MY_BANK(address log) public{
23 LogFile = Log(log);} }
24
25 contract Log {
26 struct Message{address Sender; string Data; uint Val; uint Time;}
27 Message[] public History;
28 Message LastMsg;
29 function AddMessage(address _adr,uint _val,string _data) public{
30 LastMsg.Sender = _adr;
31 LastMsg.Time = now;
32 LastMsg.Val = _val;
33 LastMsg.Data = _data;

Part B

PrivateBank

fallback collect

External_Call External_Call

AddMessage

Log

MY_BANK

MY_BANK

Put

Node Type: NEW_VARIABLE
Expression:

acc = Acc[msg.sender]

Internal_Call

True edge

False edge

Next edge

NEW_VARIABLE Node

EXPRESSION Node

IF Node

END_IF Node

ENTRY_POINT Node

FUNCTION_NAME Node

FALLBACK_NODE Node

FIGURE 6.1: A sample Ethereum smart contract MY_BANK (Part A), its call graph (CG)
(Part B), and a control-flow graph (CFG) (Part C) for the function Collect. Line 11 in
Part A is the root cause of a reentrancy bug; the nodes in CG and CFG containing the

reentrancy bug are highlighted with red text.

representation and learning techniques to improve its vulnerability detection
accuracy further.

Similar to Chapter 5, we have curated 55k Ethereum smart contracts
from various data sources, including SmartBugs [73, 74] and SolidiFI Bench-
mark [75], then verified the labels for 423 buggy and 2,742 clean contracts
and evaluated MANDO-HGT on the mixed dataset. Our evaluation shows
that MANDO-HGT significantly improves F1-score over other vulnerability
detection techniques: (1) Compared to other best-performing learning-based
techniques, it improves their F1-score by 0.74% to 22.56% at the contract level
and 3.51% to 7.48% at a more fine-grained line level for various vulnerability
types in either source code or bytecode; (2) Compared to best-performing
conventional analysis-based techniques that detect vulnerabilities at the fine-
grained line level, it improves their F1-score by 18.18% to 76.89%;

We also show that, through a few case studies assisted by recent neural
network interpretation techniques [220,221], the detection results of MANDO-
HGT are often meaningful, reflecting our understanding of the bug patterns.
We also provide possible explanations for the failures in a few cases where
the detection results are wrong, which may guide future improvements to
learning-based techniques.

6.2 Motivation

Motivating Sample Source Code. Similar to Figure 5.1, Figure 6.1 (Part A)
presents a snippet of a smart contract written in Solidity with a reentrance
vulnerability. Part B presents the call graph (CG) of the contract, and part C
presents a partial sample control-flow graph (CFG) for the collect function
of the sample contract. Line 11. msg.sender.call, is the root cause of the
vulnerability of this sample code. collect can be repeatedly called before
balances is deducted at Line 12, allowing msg.sender to receive more values

6.2. Motivation 83

1 pragma solidity ^0.4.0;
2 contract SimpleSuicide {
3 function sudicideAnyone() {
4 selfdestruct(msg.sender);
5 }
6 }

0: PUSH1 0x80
2: PUSH1 0x40
…
9: PUSH1 0x3f
11: JUMPI

68: JUMPDEST
69: CALLVALUE
…
72: PUSH1 0x4f
74: JUMPI

86: JUMPDEST
87: STOP

63: JUMPDEST
64: PUSH1 0x00
66: DUP1
67: REVERT

79: JUMPDEST
80: POP
81: PUSH1 0x56
83: PUSH1 0x58
85: JUMP

88: JUMPDEST
89: CALLER
90: PUSH20 0xff
111: AND
112: SELFDESTRUCT

113: EXIT BLOCK

12: PUSH1 0x00
14: CALLDATALOAD
…
60: PUSH1 0x44
62: JUMPI

76: PUSH1 0x00
77: DUP1
78: REVERT

True edge

False edge

Next edge

Root block

Exit block

Dispatcher block

Leaf block

runtime bytecode:

608060405260043610603f57600035
7c0100000000000000000000000000
000000000000000000000000000000
900463ffffffff168063a56a3b5a146044
575b600080fd5b348015604f576000
80fd5b5060566058565b005b3373ffff
ffffffffffffffffffffffffffffffffffff16ff00a16562
7a7a7230582068bf352f90d746bbb5
9454e32185387b941000083d7c824d
177cffb5ebec05940029

FIGURE 6.2: Code snippet, runtime bytecode, and control-flow graph of the runtime
bytecode of a contract containing an access control bug.

than what is specified by _am. In order to catch this so-called reentrance
vulnerability, the control-flow and call relations among msg.sender, balances,
and _am should be considered.

Motivating Sample Bytecode. Figure 6.2 shows a snippet of a smart
contract written in Solidity, together with its runtime bytecode 1 and the
control-flow graph of the bytecode. It contains an access control vulnerability
on lines 3–4 as selfdestruct is a critical function in Ethereum, leading to
the self-destruction of the smart contract but inadequately protected. Thus,
malicious parties can destruct the contract due to missing access controls.
This vulnerability would be represented by two node-edge-type relations in
our heterogeneous control-flow graph as DISPATCHER true−−→ DISPATCHER
and DISPATCHER next−−→ LEAF.

Objectives. Our primary objective is to automatically capture vulnera-
bilities in either contract source code like Figure 6.1 and contract bytecode
like Figure 6.2 via our graph embedding techniques. More specifically, our
objective is to: (1) Represent the Solidity source code or EVM bytecode as
heterogeneous call and control-flow graphs like the example flow charts; (2)
Learn the embeddings of the nodes and graphs; and (3) Efficiently and ac-
curately identify if a contract contains vulnerabilities and locate them if its
source code is available.

1When a contract in Solidity source code is compiled, the produced bytecode has two
types: creation bytecode is the constructor code of the contract that performs initializations
and deploys the runtime bytecode to the blockchain; the constructor code is then discarded,
not stored in blockchain.

84 Chapter 6. MANDO-HGT Framework

FIGURE 6.3: MANDO-HGT Overview. The process flows indicated by yellow arrows
are for both the bytecode and source code of the input contracts, while green arrows

are for source code only.

6.3 Approach

Our proposed framework, MANDO-HGT, consists of five main components
in the grey boxes in Figure 6.3: Heterogeneous Contract Graph Generator, Meta
Relations Extractor, Node Features Extractor, MANDO-HGT Graph Neural Net-
work, and Two-Phase Vulnerability Detector. The five components are explained
in detail below. The input of MANDO-HGT is either the source code or
bytecode of one or more Ethereum smart contracts, and the output is the bug
predictions for the input contracts at the contract level (for both source code
and bytecode) and the line-level (for source code only).

6.3.1 Heterogeneous Contract Graph Generator

Smart contract code, either source code or bytecode, is processed by the first
component of Figure 6.3, Heterogeneous Contract Graph Generator, and
translated into heterogeneous graphs based on control-flow graphs (CFGs)
and/or call graphs (CGs). In MANDO-HGT, we use Slither [123] to analyze
source code and EtherSolve [222] to analyze bytecode, respectively, to con-
struct basic CFGs and CGs. In contrast to previous studies [76, 163] that only
consider homogeneous forms of control-flow graphs where types of nodes and
edges are not utilized, we retain most of the structure and semantics of smart
contract code through heterogeneous graphs that preserve various node and
edge types. In particular, we convert basic CFGs and CGs into heterogeneous

6.3. Approach 85

forms, called heterogeneous control-flow graphs and heterogeneous call graphs, and
fuse them into heterogeneous contract graphs.

Heterogeneous Control-Flow Graphs (HCFGs). For input bytecode, a
CFG may involve all possible opcodes defined in the Ethereum yellow pa-
per [209], but using all the opcodes as node types can induce much learning
overhead. Based on EtherSolve [222], we define six primary types of nodes rep-
resenting important opcode blocks, including ROOT, BASIC, DISPATCHER,
FALLBACK, LEAF, and EXIT in MANDO-HGT: ROOT and EXIT repre-
sent entry and end blocks, respectively; DISPATCHER, FALLBACK, and
LEAF are BASIC blocks with some unique characteristics. Specifically, a
BASIC block is a sequence of opcodes executed sequentially between a jump
destination (JUMPDEST opcode) and a jump instruction (JUMP or JUMPI op-
code). A DISPATCHER block is a BASIC block with the last opcode being
the return or stop opcode. A FALLBACK block is a DISPATCHER block
that has no call data, and none of the hashes matches when executed (REVERT
opcode). A LEAF block has the last opcodes being REVERT, SELFDESTRUCT,
RETURN, INVALID, and STOP and has no successors, which means jumping to
the END block in the CFG. In addition, three edge types are used to describe
sequential (NEXT) or branching (TRUE and FALSE) connections between
nodes. Notably, the JUMPI opcode plays a vital role in a conditional branching
structure; we add the edge type FALSE for a branch that leads to the following
opcode block when the branch condition is false, and the TRUE edge type is
for the true branch, which is the argument of the PUSH opcode interpreted as
the destination offset for the JUMPI. Thus, a smart contract can be converted to
a heterogeneous control-flow graph (HCFG). Figure 6.2 shows the generated
HCFG for the runtime bytecode of a buggy contract.

For input source code, a CFG may involve many types of statements or
lines of code. We use typical statement types as the node types for source
code’s HCFGs, such as ENTRY_POINT, EXPRESSION, NEW_VARIABLE,
RETURN, IF, END_IF, IF_LOOP, and END_LOOP. Similar to bytecode,
three edge types are used to indicate statements’ sequential or branching
nature, such as NEXT, TRUE, and FALSE. Figure 6.1 (Part C) shows a
sample HCFG generated for the Collect function in the MY_BANK contract.

Due to the capabilities and limitations of the tools for generating CFGs
(Slither [123] for Solidity source code and EtherSolve [222] for EVM bytecode),
a bytecode’s HCFG represents the control flows throughout an entire smart
contract, while a source code’s HCFG is only for one function of a contract. To
integrate the HCFGs for all functions of a contract, we also utilize call graphs
for source code as explained below.

Heterogeneous Call Graphs. A call graph (CG) represents the invocation
relations among functions in one or multiple smart contracts. There are two
basic forms of calls in smart contracts that the MANDO-HGT framework
considers: internal calls for function calls within the same contract and exter-
nal calls for function calls across contracts, represented by two edge types
INTERNAL_CALL and EXTERNAL_CALL respectively. In addition to the
typical function node type FUNCTION_NAME, we also employ the

86 Chapter 6. MANDO-HGT Framework

FALLBACK_NODE node type to represent fallback functions that are ex-
ecuted if a function identifier to be called does not match any accessible
function in a smart contract or if insufficient data was provided for the func-
tion call. Such fallback functions are directly or indirectly related to numerous
Ethereum smart contract vulnerabilities [210]. Figure 6.1 (Part B) shows such
a heterogeneous call graph.

We also use Slither to process each smart contract source code to produce
its heterogeneous call graph and add the explicit types to the nodes and edges.

Heterogeneous Contract Graphs: Fusion of Heterogeneous Call Graphs
and Heterogeneous Control-Flow Graphs. The topologies of these two kinds
of graphs for a smart contract source code can be merged into a global graph,
to facilitate the graph learning process later. In MANDO-HGT, the sub-
component Heterogeneous Graphs Fusion is for this purpose: for each node
in the heterogeneous call graph that represents a function, a bridging edge
is added to link this node to the entry node of the heterogeneous control-
flow graph for the function (as illustrated by the double-arrow edge between
Figure 6.1 Part B and Part C). We call such a fused graph a heterogeneous contract
graph. For bytecode, since the heterogeneous control-flow graph generated
by EtherSolve has represented the entire smart contract, our Heterogeneous
Graphs Fusion sub-component directly utilizes the bytecode’s HCFG as the
fused heterogeneous contract graph.

6.3.2 Meta Relations Extractor

The component Meta Relations Extractor of MANDO-HGT extracts cus-
tomized meta relations from the generated heterogeneous contract graphs. The
main advantage of extracting meta relations is avoiding the explosion of all
possible node and edge types combinations in the traditional approaches
that use metapath [11, 41] as the number of node types and edge types in the
graphs is dynamic and can be up to eighteen node types and five edge types.

We also add meta relations through reflective connections between adja-
cent nodes, e.g., the relation between two adjacent nodes of the types EXPRES-
SION and END_IF in Figure 6.1 can be described by both
⟨EXPRESSION, next, END_IF⟩ and ⟨EXPRESSION, back, END_IF⟩. Het-
erogeneous contract graphs are predominantly tree-like, with only a few
back-edges created by LOOP-related statements. Adding the reflective rela-
tions increases the comprehensiveness of the extracted meta-relations, and
improves the stable operability of the heterogeneous graph transformer (HGT)
used in MANDO-HGT because the original architecture of each HGT layer
requires at least two source nodes for one target node [12] and, without re-
flective relations, many nodes having only one source node (e.g., the two
EXPRESSION nodes in Figure 6.1) would be ignored during training.

6.3.3 Node Features Extractor

The main goal of this extractor is to generate basic node features via one of
the two following ways. (1) Generate node embeddings via some basic graph

6.3. Approach 87

Meta Relation

of Node Type

Meta Relation

of Node Type

Node
Features

S1 S2

t

...

...

...

...

: Add

: Product ELU
...

Heterogeneous
Message
Passing Heterogeneous

Mutual Attention

Target-Specific
Aggregation

A Heterogeneous Graph Transformer (HGT) Layer

x L HGT
Layers

Node Embeddings
per each Node Type

Multi-Layer
Perceptron

Two-Phase
Vulnerability

Detector
...

Message Message

Attension
Attension

Edge Scaled
Softmax

FIGURE 6.4: The architecture of the MANDO-HGT Graph Neural Network.

neural network without considering node and edge types. Omitting node
and edge types is often reasonable for graph classification, as the connec-
tivity topology among nodes is often sufficient to differentiate the graphs.
We employ either homogeneous (e.g., node2vec [6]) or heterogeneous (e.g.,
metapath2vec [41]) graph neural networks in our evaluation (Section 6.4). (2)
Generate one-hot vectors based on the node types as the node features. These
node features were used as initial embeddings for the MANDO-HGT’s first
layer to leverage the rich information independently without relying on any
other neural network.

88 Chapter 6. MANDO-HGT Framework

6.3.4 MANDO-HGT Graph Neural Network

Figure 6.4 illustrates the architecture of the MANDO-HGT Graph Neural Net-
work, based on Heterogeneous Graph Transformer (HGT) [12]. In MANDO-
HGT GNN, we feed all pairs of meta relations of every target node, including
their node types and node features, as inputs to one HGT layer. This is
the major difference in our framework from the original HGT GNN. Such
a mechanism allows MANDO-HGT to learn the inter-relation among our
customized meta relations in heterogeneous contract graphs. It is important
since it disentangles complex node/edge relations for learning. The outputs
of MANDO-HGT GNN are fed into the final components Two-Phase Vul-
nerability Detector to identify whether the smart contracts contain bugs and
to find the bug locations in the contract source code.

Heterogeneous Graph Transformer (HGT) layer. The goal of this layer is
to learn the attention of every pair of meta relations between a target node t and
its neighbor source nodes s1 and s2 [12]. To achieve the goal, the architecture
of Transformer [212] is employed with the target node t as the “Query" vector
and its neighbors s1 and s2 as “Key" vectors. The attention is the output of the
softmax layer applied to the concatenation of the output of h attention head [9].
Each attention head explores a different relation aspect of the two pairs of
t with s1 and t with s2 by letting the embedding vectors of t with s1 and t
with s2 go through the l-th GNN layer denoted by H(l−1)[t], H(l−1)[s1] and
H(l−1)[s2] in Figure 6.4. Specifically, there are three sub-components inside the
HGT layer: (1) Heterogeneous Mutual Attention: The sub-component uses the Q
and K linear transformations of target node t, and the two source neighbors
s1 and s2 of t as the inputs, and the output is the attention or correlation
probability of the two node pairs, i.e., s1 or s2 with t as well as the edge types
ϕ(e1) and ϕ(e2) associated with the two given source nodes. The matrix WATT

encodes multiple semantic relations of the pairs with the same node type.
(2) Heterogeneous Message Passing: The input in this sub-component is the V
linear transformations of the pair of source nodes s1 and s2, and the output
is the multi-head message containing the distribution differences of nodes
and edges with different types. We use matrix WMSG to capture the edge
dependency of each head. Note that the sub-component does not depend
on the one above, so it can be processed simultaneously as the previous one.
(3) Target-Specific Heterogeneous Message Aggregation: The sub-component is a
multi-layer perception whose input is the aggregation of the outputs of the
two components above, and the output is the contextualized representative
vector H(l) of node t. Also, this sub-component uses an Exponential Linear
Unit (ELU) as an activation function.

The target node t goes through L HGT layers to create the embedding
vector H(L)[t]. Such a mechanism ensures the final embedding vector of t is
considered on multiple aspects through transformer architecture.

Optimization for Detection. For graph or node classification tasks, we
use a multi-layer perceptron (MLP) with the softmax function as an activation
function. The input of the layer depends on the prediction tasks. To reduce
the effects of derivative saturation, we use cross entropy as the loss function

6.4. Empirical Evaluation 89

during training, and the parameters of our model are learned through back-
propagation with gradient descent algorithms.

6.3.5 Two-Phase Vulnerability Detector

This component comprises two primary phases: Coarse-Grained Detection and
Fine-Grained Detection. While the former phase assesses clean versus vulnera-
ble smart contracts at the contract level based on the input bytecode or source
code, the latter phase determines the line locations of vulnerabilities in the
contract source code. One of our new contributions is detecting vulnerabilities
at the line level, whereas earlier learning-based methods [76, 77] only report
vulnerabilities at the contract or function level.

Phase 1: Coarse-Grained Detection

This phase determines whether a smart contract is vulnerable. We employ the
heterogeneous contract graphs and their embeddings for each input smart con-
tract, and we train the MLP (Section 6.3.4) to predict whether a heterogeneous
contract graph is clean or vulnerable. The MLP can produce a confidence
score for each input graph with respect to each bug type; the contract is classi-
fied/predicted as buggy when the confidence score for the graph with respect
to a bug type is greater than 0.5. This classification helps reduce the search
space by filtering out likely clean smart contracts prior to the second phase of
line-level vulnerability detection.

Phase 2: Fine-Grained Detection

For the smart contracts identified in the previous phase, the node embeddings
of their heterogeneous contract graphs will go through node classification to
determine if the nodes may be buggy. Similar to Phase 1, the MLP of the node
classification step can produce a confidence score for each node in the input
graph with respect to each bug type; a node is classified/predicted as buggy
when the confidence score for the node with respect to a bug type is greater
than 0.5. Note that the nodes correspond to statements or lines in source code,
so we can identify the locations of vulnerabilities at the line level in source
code 2.

6.4 Empirical Evaluation

We publicize the datasets and our graph embedding models at https://
github.com/MANDO-Project/ge-sc-transformer.

2MANDO-HGT can also potentially detect bugs at the instruction level in bytecodes.
However, when the bytecode instructions cannot be mapped back to source code lines, the
detection results may not be readable by human developers. Thus, in this thesis, we do not
perform instruction/line-level bug detection for bytecode.

https://github.com/MANDO-Project/ge-sc-transformer
https://github.com/MANDO-Project/ge-sc-transformer

90 Chapter 6. MANDO-HGT Framework

Bug Types # Total / Buggy
Contracts

Total Nodes
(source/byte code)

Total Edges
(source/byte code)

Buggy Nodes
(source code only)

Access
Control 114 / 57 13014 / 44475 10721 / 61896 7500

Arithmetic 120 / 60 17372 / 47967 14271 / 66020 10110
Denial of
Service 92 / 46 13968 / 41066 11997 / 56711 8280

Front
Running 88 / 44 22824 /51297 19761 / 71652 10008

Reentrancy 142 / 71 18898 / 46856 17614 / 64798 11238
Time
Manipulation 100 / 50 16765 / 43424 15550 / 60464 10051

Unchecked
Low Level Calls 190 / 95 17756 / 55103 14858 / 75950 7583

Total 846 / 423 120597 / 330188 119630 / 457491 64770

TABLE 6.1: Statistics of the Mixed Dataset.

Methods Access
Control Arithmetic Denial of

Service
Front

Running Reentrancy Time
Manipulation

Unchecked Low
Level Calls

Original
Heterogeneous GNN metapath2vec 48.43 54.89 64.13 66.79 64.28 60.73 62.74

72.80 69.52 69.46 69.86 62.38 64.88 69.23

Original
Homogeneous GNNs

LINE 57.22 51.45 61.11 50.74 66.34 65.92 63.79
68.64 69.20 70.98 69.52 67.39 69.99 70.00

node2vec 60.78 61.73 64.16 66.50 62.69 64.53 63.22
53.64 55.55 49.63 50.27 49.23 50.04 53.15

The best Buggy F1
scores of MANDO

Node features of
the best scores

71.19 66.85 89.15 89.86 76.09 87.71 72.08
82.91 81.22 83.95 84.09 79.13 83.95 77.76

MANDO-HGT with
Node Features
Generated by

NodeType One
Hot Vectors

82.86 88.13 89.33 92.69 93.84 95.68 80.11
79.46 88.93 85.93 87.67 87.97 81.39 76.14

metapath2vec 83.65 88.86 88.91 93.70 94.78 95.89 81.75
78.56 86.93 86.69 86.15 87.05 81.89 77.07

LINE 82.75 89.41 89.89 95.23 93.27 95.99 80.77
77.73 88.39 87.47 86.62 87.69 81.36 76.83

node2vec 82.65 87.91 85.86 90.83 93.75 95.81 79.05
80.67 87.77 87.63 86.19 84.84 81.23 76.14

TABLE 6.2: Performance comparison in terms of Buggy-F1 score on different bug
detection methods at the contract granularity level for both source code and bytecode.
In each cell, the first number is the source code’s result, and the second with grey
shading is the bytecode’s result. We use the Heterogeneous Contract Graphs of both
clean and buggy smart contracts as the inputs for MANDO. The best performance for
each bug type is in boldface separately for source code and bytecode. For MANDO,

we report the best performance among node feature generators.

6.4.1 Dataset

Similar to the MANDO’s experiments in Section 5.4, our evaluation is also
carried out on a mixture of three datasets: Smartbugs Curated [73, 74], So-
lidiFI Benchmark [75], and Clean Smart Contracts from Smartbugs Wild,
with the focus on seven bug types Access Control, Arithmetic, Denial of Ser-
vice, Front Running, Reentracy, Time Manipulation, and Unchecked Low Level
Calls. However, unlike MANDO’s experiments, which only require the smart
contracts in all the datasets to be in source code form, the bytecodes of the
corresponding smart contracts are needed for the evaluation. Thus, we first
employ Slither [123] to traverse and generate the basic homogeneous forms of
CFGs and CGs for the input source code. To get smart contract bytecode, we
use Cryptic compiler [223], a Python wrapper of the Solidity compiler, with
the Solc versions flexibly depending on the declared versions in the source
code, to generate the runtime bytecode from these source files. Then, we use

6.4. Empirical Evaluation 91

the EtherSolve tool [224] to build basic CFGs for bytecode. We have also devel-
oped a component for transforming the traditional CFGs and CGs generated
by EtherSolve or Slither to our heterogeneous CFGs and heterogeneous CGs
and then fuse them into heterogeneous contract graphs before extracting meta
relations and feeding them to the MANDO-HGT GNN component.

Also, we randomly take some smart contracts from the clean set and mix
them with the buggy set. We keep a ratio of 1:1 between clean and buggy
contracts, in order to have more balanced training/test datasets for both
graph and node classification tasks, following practices used in other deep
learning-based bug detection studies in the literature that use more or less
balanced datasets, e.g., SySeVR [145], Russell et al. [140]. Table 6.1 shows
the actual numbers of buggy contracts and total numbers of contracts used
in our experiments for each bug type, as well as the total numbers of nodes
and edges in the constructed heterogeneous contract graphs for source code
and bytecode. Note that for the fine-grained line-level bug detection task,
our approach requires line-level labels for the bugs but some other datasets,
such as the ones of Zhuang et al. [76], Liu et al. [77], and eThor [78] are not
suitable for our experiments because they only have coarse-grained contract-
or function-level labels for the bugs.

Note that the employed Slither and Ethersolve parsers do not automatically
generate clean or vulnerable labels for a node. Instead, we wrote automated
scripts to label the nodes based on the lines of vulnerable code identified either
manually by Smartbugs authors or injected by the SolidiFI tool. For instance,
Smartbugs authors label Line 11 in Figure 6.1 as containing a reentrancy bug;
then our scripts labeled the nodes with red text in the heterogeneous CFG and
CG as vulnerable.

6.4.2 Evaluation Metrics

Similar to Section 5.4, our prediction results are binary (clean versus vul-
nerable) classification of a node or graph, so we measure the prediction
performance using the commonly used F1 scores. An F1-score evaluates the
performance of a model’s prediction by taking the harmonic mean of precision
and recall of the model for a given class label. As detecting bugs is the main
interest of our evaluation, we measure the F1-score metrics to evaluate the
performance of the models when classifying vulnerabilities; for the bug label,
and we refer to this metric as Buggy-F1 3.

6.4.3 Baselines and Parameter Settings

Baselines. To show the advantages of heterogeneous graph learning over
homogeneous graph learning, we use both of them in our evaluation: We
apply metapath2vec [41] as the heterogeneous graph neural networks, while

3To measure the effects of imbalances between clean and buggy data, Macro-F1 is also
often considered in the literature by averaging the F1 scores of all class labels. However, in
our case, we used a ratio of 1:1 to balance the amount of clean and vulnerable contracts and
found that Macro-F1 scores are very close to Buggy-F1 and omitted them in the chapter.

92 Chapter 6. MANDO-HGT Framework

Methods Access
Control Arithmetic Denial of

Service
Front

Running Reentrancy Time
Manipulation

Unchecked Low
Level Calls

Conventional
Detection Tools

securify 13.0 0.0 18.0 53.0 23.0 24.0 11.0
mythril 34.0 73.0 41.0 63.0 19.0 23.0 14.0
slither 32.0 0.0 13.0 26.0 15.0 44.0 10.0
manticore 30.0 30.0 12.0 7.0 9.0 24.0 4.0
smartcheck 20.0 22.0 52.0 0.0 22.0 44.0 11.0
oyente 21.0 71.0 48.0 0.0 20.0 24.0 8.0

Heterogeneous GNN metapath2vec 35.46 68.70 60.64 80.65 71.66 67.51 26.06

Homogeneous GNNs GCN 43.92 65.69 64.06 81.09 71.76 68.70 38.13
LINE 53.59 68.61 62.28 83.06 74.78 70.76 7.10
node2vec 44.94 67.84 63.92 81.84 71.52 67.81 34.26

The best buggy
scores of MANDO

Node features
of the best scores

81.98 84.35 82.12 90.51 86.40 90.29 84.81

MANDO-HGT with
Node Features
Generated by

NodeType One
Hot Vectors

89.46 91.18 86.81 94.02 92.59 95.04 90.09

metapath2vec 78.99 82.99 76.54 89.13 84.06 89.83 76.05
GCN 87.76 88.86 83.73 92.96 89.59 92.91 89.47
LINE 86.58 87.98 83.00 92.17 88.77 93.26 90.89
node2vec 84.23 84.66 81.93 90.46 88.48 92.31 87.60

TABLE 6.3: Performance comparison in terms of Buggy-F1 score on different bug
detection methods based on source code at the line granularity level. The best perfor-

mance for each bug type is in boldface.

applying node2vec [6], LINE [7], and GCN [8] as homogeneous GNNs. Node
embeddings generated from the baseline GNNs are used as the Node Feature
Extractor for input node features of our MANDO-HGT GNN and the pre-
diction baselines as well. Additionally, we use some variants of MANDO in
Chapter 5, a framework specialized in smart contract vulnerability detection
based on GAT [9] and HAN [11] graph neural networks with multiple dy-
namic customized metapaths, as the baselines. We also compare our line-level
source code bug detection method to six widely used smart contract vulner-
ability detection tools based on conventional software analysis techniques:
Manticore [117], Mythril [214], Oyente [127], Securify [126], Slither [123], and
Smartcheck [128].

Parameter Settings. All models have their node or graph embedding
size set to 128. We employ an adaptive learning rate ranging from 0.0005 to
0.01 for coarse-grained classification and from 0.0002 to 0.005 for fine-grained
classification. For each target node and its each meta-relation pair that are
fed to the MANDO-HGT GNN, we use two HGT layers [12] and set eight
multi-heads whose hidden size is 128. We use their recommended settings
for node2vec, LINE, GCN, metapath2vec, and MANDO to ensure the highest
performance.

6.4.4 Experimental Results

In our initial experiments, we divided the 423 buggy contracts and 2,742 clean
contracts into the training/validation/test sets using the 60%/20%/20% split
ratio. However, some bug types in our dataset have fewer than 50 contracts,
resulting in insufficient training/testing samples. In addition, we discovered
that the loss value remains constant after a fixed number of epochs (100 and 50
epochs for Fine-Grained and Coarse-Grained tasks, respectively). In order to
increase the training/test set sizes and maintain the proportion of vulnerable

6.4. Empirical Evaluation 93

nodes in each set, we decided to split the contracts into only training/test sets
using the 70%/30% ratio for all the bug types. For each setting, embedding
method, and bug type, to ensure the robustness of our results we repeated the
experiments 20 times with a different random seed and performed t-tests, and
report the average results.

Coarse-Grained Contract-Level Vulnerability Detection

Table 6.2 shows the average results of 20 independent runs of the baselines
and MANDO-HGT at the contract level for both source code and bytecode.
We can observe that:

• MANDO-HGT and MANDO with node type generated by one hot vec-
tor [21] perform better than other methods, i.e., original heterogeneous
and homogeneous GNNs for detecting bugs at source code or byte code
levels. For instance, MANDO-HGT improves up to 34.52% compared
to heterogeneous GNN for detecting arithmetic bugs with source code
inputs. Moreover, no matter what methods are used to generate node
features, MANDO and MANDO-HGT frameworks still outperforms
the baselines.

• Between MANDO-HGT and MANDO, the performance of MANDO-
HGT is overall higher than that of the former for both source code and
bytecode. However, the performance gaps between the two frameworks
for some bug types are relatively small, e.g., 2.24% in access control
bugs in the bytecode. For this reason, we apply a t-test to check if the
performance of MANDO-HGT is statistically significantly better than
MANDO based on the 20 runs of both models for each bug type. All of
the t-values are positive while most p-values are less than 0.05, which
implies that the performance of MANDO-HGT for most bug types is
statistically significantly better than MANDO.

• It is clear that integrating node features via different graph neural net-
works inside MANDO-HGT outperforms all other GNN baselines,
although it is unclear which node features perform the best. This ob-
servation is also applicable to various node features used by previous
studies, e.g., MANDO. Hence, we believe that an architecture combining
different GNNs is useful for classifying buggy contracts.

Fine-Grained Line-Level Vulnerability Detection

Table 6.3 shows the performances of MANDO-HGT and other baselines
based on source code at the line level. From the results, we observe that:

• MANDO-HGT generally outperforms conventional analysis-based bug
detection tools and basic GNNs. The performance improvements are
around 10.96%–76.89% in Buggy-F1 scores, for different bug types. For
example, for the time manipulation bugs, we got a 95.04% Buggy-F1

94 Chapter 6. MANDO-HGT Framework

score, considerably higher than the best 70.76% among the baseline
conventional tools and basic GNNs. Some conventional detection tools
in Table 6.3 hardly function (Buggy-F1=0%) for certain vulnerability
types due to their inherent limitations in relying on predefined patterns
that are incapable of capturing these vulnerabilities.

• In MANDO-HGT, node features generated by one hot vector are better
than other node feature generating methods for most bug types. The
only exception is the node features generated by LINE in MANDO-
HGT for detecting unchecked low level calls bugs. For example, for the
reentrancy bugs, we got the best Buggy-F1, 92.59%, with the node features
based on NodeType One Hot vectors. The models with node features
generated by other methods are all lower.

6.4.5 Case Studies: Interpreting Vulnerability Prediction Re-
sults

To shed light on the reasons why MANDO-HGT can produce successful or
failed predictions, we aim to identify certain correlations between MANDO-
HGT’s prediction results and the actual semantics of smart contract code in
this section. We use a post-hoc local model-agnostic interpretable framework,
GraphSVX [221], a state-of-the-art method for graph interpretability, based on
Shapley value [225] for graph neural networks to interpret the behaviors and
confidence of our model’s predictions versus the input smart contract source
code. We also evaluated several other XAI methods, including the original
SHAP, and found that the results of GraphSVX were better than others since
GraphSVX considers more of the structures of graphs while the SHAP only
considers individual object embeddings. Shapley values of an individual
feature j is ϕ(val(j)) providing a proxy to assess the overall significance of the
feature j to an output of a data point by averaging the marginal contribution
of the feature across all possible coalitions where the feature presents. In
MANDO-HGT, when making a prediction on a focal node, we consider all
neighbors N of this node as the features which could impact the prediction
on the focal node. We obtain the Shapley value by:

ϕ(val(j)) = ∑S⊆{1,...,N}\{j}
|S|!×(N−|S|−1)!

N! (val(S ∪ {j})− val(S)),

where S ⊆ {1, . . . , N}\{j} are the possible coalitions of node j’s neighbors,
and val(S) = E [f (X) | XS = xs]−E[f (X)] with E[f (X)] being average pre-
diction of dataset X.

We extract neighbor nodes of a focal node and compute their marginal
contribution towards the prediction for the focal node, and use some random
masking strategy [221] to select subsets of them to calculate their Shapley
values more efficiently. The Shapley value of a node implies the contribution
of the node to the focal node, and a node’s confidence refers to the confidence
score of the model’s prediction for the node. A node is considered buggy if

6.4. Empirical Evaluation 95

its confidence score is greater than 0.5 with respect to a bug type (cf. Section
6.3.5).

For any given node used as a focal node for examination, we calculate
all of its neighbors’ Shapley values to find out their effect on the model’s
bug prediction result. Larger Shapley values indicate the neighbor’s higher
impact on the focal node. In the following, we explain several cases where
MANDO-HGT makes correct or incorrect predictions to further study possi-
ble correlations between the Shapley values of a focal node’s neighbors and
its meta relations. For instance, a buggy node might belong to several meta
relations, and if there is a meta relation that frequently contains nodes of a
certain bug type and contributes the highest Shapley value to the focal node,
the focal node’s bug prediction confidence might be high. On the contrary, if
some meta relations contain clean nodes contributing high Shapley values to
the focal node, the bug prediction confidence for the focal node might be low.

From Figure 6.5 to Figure 6.8, subgraphs of the heterogeneous contract
graphs are shown next to their source code. The nodes are filled with either
red or green, indicating either buggy or clean predictions by our model for
the nodes. The circle or triangle shapes of the nodes stand for buggy or clean
nodes as indicated by the ground-truth labels. The yellow tag for each node
contains information on the node type, its corresponding lines of source code,
the confidence score of our model prediction (when the confidence is higher
than 0.5, the node is predicted as buggy; otherwise, clean), and the Shapley
value of that node to the focal node at the end of the arrow chain in each
subgraph.

True positive cases

Figure 6.5-(1) shows a code snippet together with a sub-graph of its heteroge-
neous contract graph that contains an access control bug at Line 27 correspond-
ing to the focal node EXPRESSION. We saw a meta-relation pair
⟨FUNCTION_NAME, next, ENTRY_POINT⟩ and
⟨ENTRY_POINT, next, EXPRESSION⟩ frequently appear in our samples.
In this case, FUNCTION_NAME and ENTRY_POINT nodes correspond
to the whole PopBonusCode function were predicted as a buggy node and
had approximate Shapley values 0.506 and 0.494 contributing to the focal
EXPRESSION node, which implies that the focal node is likely buggy too.
Indeed, MANDO-HGT correctly predicted the focal EXPRESSION node as
buggy.

Figure 6.5-(2) illustrates a smart contract that has arithmetic bugs at Lines
15, 18, 21, 24, 27, and 30 because the input variables in these functions are not
checked for overflow or underflow before the operations are performed. One
of the meta-relation pairs, ⟨FUNCTION_NAME, next, ENTRY_POINT⟩ and
⟨ENTRY_POINT, next, EXPRESSION⟩, appears three times in Lines 15, 18,
and 21. Lines 24, 27, and 30 correspond to another meta-relation pair:
⟨FUNCTION_NAME, next, ENTRY_POINT⟩ and
⟨ENTRY_POINT, next, NEW_VARIABLE⟩. The FUNCTION_NAME and

96 Chapter 6. MANDO-HGT Framework

FIGURE 6.5: True positive cases of access control and arithmetic samples.

FIGURE 6.6: True negative case of access control sample.

ENTRY_POINT nodes represent an entire function and its entry point, indi-
cating such bugs often happen at the beginning of a function with specific
operations. MANDO-HGT is good at recognizing such frequently appearing
bug patterns. Correspondingly, the Shapley values of these nodes to the focal
buggy EXPRESSION and NEW_VARIABLE nodes are around 0.5, which
implies that relatively high Shapley values might reflect frequently occurring
patterns for bug detection.

True negative cases

The code in Figure 6.6 generated a heterogeneous contract graph with meta-
relation pair
⟨FUNCTION_NAME, next, ENTRY_POINT⟩ and
⟨ENTRY_POINT, next, RETURN⟩. Its meta relations with EXPRESSION,

6.4. Empirical Evaluation 97

FIGURE 6.7: False positive cases of front running and reentrancy samples.

ENTRY_POINT, and FUNCTION_NAME node types also differ from those
of access control bugs (e.g., the one in Figure 6.5-(1)). Besides, the Shap-
ley values of ENTRY_POINT and FUNCTION_NAME nodes of function
isComplete to the focal RETURN statement, in this case, are 0.5, indicating
that the two nodes (which are clean) have relatively significant impact on the
prediction for RETURN. MANDO-HGT correctly predicted the focal node
as a clean node (via a very low bug confidence score 0.002).

False positive cases

MANDO-HGT may wrongly predict some clean code as buggy. For example,
for front running vulnerabilities, which are typically found in a statement that
attempts to transfer a high amount for their transaction to be prioritized, they
often involve an EXPRESSION node, similar to the node for the line 22 in
Figure 6.7-(1). However, some clean statements occasionally preceding the
buggy line are also EXPRESSION nodes, such as lines 19 and 20 in function
setReward. The Shapley values from the buggy FUNCTION_NAME and
ENTRY_POINT nodes are 0.5 and 0.5, which indicated that they have signifi-
cant impact to that focal node, causing our model to mistakenly classify the
focal node at Line 19 as buggy.

Figure 6.7-(2) illustrates a similar false positive situation for the reentrancy
bug type. The NEW_VARIABLE node corresponds to the code Line 18 defin-
ing a new variable and has a reentrancy bug in relation to the reduction of
relevant credit to zero at Line 20. The focal EXPRESSION node at Line

98 Chapter 6. MANDO-HGT Framework

FIGURE 6.8: False negative cases of arithmetic and reentrancy samples.

19 was wrongly predicted by MANDO-HGT, likely because it has data de-
pendency with callResult defined at the buggy line 18. The buggy nodes
like FUNCTION_NAME, ENTRY_POINT, and NEW_VARIABLE at Line
18 have relatively higher Shapley values of 0.251, 0.251, and 0.169 to the focal
node at Line 19 than the Shapley values from the other two clean nodes (IF
at Line 15 and NEW_VARIABLE at Line 14), 0.184 and 0.108. This indicates
that the buggy nodes have more impact on the focal EXPRESSION node at
Line 19, causing MANDO-HGT to misclassify it as buggy.

False negative cases

MANDO-HGT may also miss certain vulnerabilities. For example, Fig-
ure 6.8 shows a reentrancy bug in the focal node ENTRY_POINT involving
lines 15,16,17, but our model predicts it as a clean node. By considering the
meta relations pair ⟨FUNCTION_NAME, next, FUNCTION_NAME⟩ and
⟨FUNCTION_NAME, next, ENTRY_POINT⟩ of the focal node, we have the
clean FUNCTION_NAME node containing lines 46, 47, 48 with 0.5 Shapley
value having the greatest impact to the focal ENTRY_POINT node, higher
than the 0.131 Shapley value from the buggy FUNCTION_NAME node con-
taining lines 15,16,17, causing our model to predict the focal node as clean.

6.4.6 Limitations and Discussions

We know that the effectiveness of heterogeneous graph transformers relies on
node/edge types and meta relations used, besides various hyperparameters
for training. The graphs used to represent syntactical and semantic informa-
tion from smart contract source code or bytecode also significantly impact
graph learning. Especially for bytecode, whose syntactical structure is flatter
with more obscured semantic information than source code, suitable graph
representations become more important for effective learning. Also, although
our model can detect fine-grained bugs at the instruction level for bytecode as

6.4. Empirical Evaluation 99

well, it would be better to map the detected bugs in bytecode back to source
code lines for better readability when reporting the results to developers. We
restrain our tool from reporting instruction-level bug detection results before
we have a reliable way to make the results understandable in relation to their
source code.

Lacking labeled data is always an issue when applying supervised learning
to classification tasks, especially for smart contracts with limited sample buggy
code for training. Although Smartbugs and SolidiFI datasets are useful, some
smart contracts in the datasets were not annotated. Furthermore, the labels
annotated in the datasets for some bugs may not always be objective and
agreeable by all developers as there can be subjective and more than one
interpretation of the root causes of a bug (e.g., bugs due to some missing
lines of code); some labels are not fine-grained enough for each line or even
each expression in code. Such inconsistent labels may hinder the training of
our models. In our experiments, we excluded unlabelled data and manually
checked some data samples and corrected a few inconsistent labels, and
used balanced data sets for training and testing, to minimize the impact of
inaccurate labels or imbalanced data.

In the experiments, some smart contracts could not be processed by
Slither [123] or EtherSolve [222]. One of the main limitations of the tools
is that they rely on the Solidity compiler to build the control-flow graph of the
contracts, but there are issues related to the version compatibility of Solidity
or the uses of optimized/obfuscated bytecode. For example, a smart contract
written in an older version of Solidity is not supported by the compiler used
by Slither or EtherSolve; the control-flow graph may not be built successfully.

100

Chapter 7

A Tool for Vulnerability Detection
for Smart Contract Source Code by
Heterogeneous Graph Embeddings

7.1. Introduction 101

Build on the MANDO framework in Chapter 5, we propose a
new graph learning-based tool, MANDO-GURU, that aims to
accurately detect vulnerabilities in smart contracts at both coarse-
grained contract-level and fine-grained line-level. Using a com-
bination of control-flow graphs and call graphs of Solidity code,
we leverage the heterogeneous graph attention neural networks
presented in Section 5.3.4 as core backend components to encode
more structural and potentially semantic relations among different
types of nodes and edges of such graphs and use the encoded
embeddings of the graphs and nodes to detect vulnerabilities.
Our validation of real-world smart contract datasets shows that
MANDO-GURU can significantly improve many other vulnera-
bility detection techniques by up to 24% in terms of the F1-score
at the contract level, depending on vulnerability types. It is the
first learning-based tool for Ethereum smart contracts that identi-
fies vulnerabilities at the line level and significantly improves the
traditional code analysis-based techniques by up to 63.4%.

7.1 Introduction

Leveraging on the built technical architecture of the MANDO framework
presented in Chapter 5, in this chapter, we propose a new tool with a new
method for representing smart contracts as specialized graphs and learn-
ing their patterns automatically via graph neural networks on a large scale
to detect vulnerabilities at both line-level and contract-level accuracy. In
particular, (1) we represent Ethereum smart contract source code written
in Solidity as heterogeneous contract graphs that combine control-flow graphs
(CFGs) and call graphs (CGs) using unique properties of Solidity to capture
contract code semantics, and (2) we design specialized metapaths for the
graphs and build heterogeneous attention graph neural networks to learn
multi-level embeddings of the contract code in various levels of granularity,
which are then used together with known instances of smart contract vulnera-
bilities to train classifiers that can recognize vulnerabilities accurately in new
smart contract code at both line-level and contract-level. Our tool is named
MANDO-GURU. We have constructed a dataset containing both buggy
and clean smart contracts, and compared MANDO-GURU with several
state-of-the-art and conventional baselines. Our validation results show that
MANDO-GURU outperforms the baselines in both contract- and line-level
vulnerability detection with significant improvements. Our tool is publicly
available at https://github.com/MANDO-Project/ge-sc-machine. A test ver-
sion is currently deployed at http://mandoguru.com, and a demo video of
our tool is available at http://mandoguru.com/demo-video.

https://github.com/MANDO-Project/ge-sc-machine
http://mandoguru.com
http://mandoguru.com/demo-video

102 Chapter 7. MANDO-GURU Tool

FIGURE 7.1: A sample vulnerability detection page of MANDO-GURU for an
Ethereum smart contract includes summary detection results for seven bug types
(Top), code snippet (Left), and its corresponding heterogeneous contract graph (Right).
Line 19 with a yellow background is the root cause of a Reentrancy bug (Left); the

nodes containing the Reentrancy bug are highlighted with red (Right).

7.2 Usage

Figure 7.1 illustrates MANDO-GURU’s main user interface and core fea-
tures. More specifically, after a user submits a Solidity source file using the
submit button on the top, MANDO-GURU scans the input and summarizes
the coarse-grained contract-level detection results of seven bug types (the
red/green buttons near top). A red button indicates a bug type detected for
the contract, and users can click it to show the fine-grained line-level detec-
tion results. On the left side of the figure, the source code lines containing
detected bugs would be highlighted with a yellow background. The right
side visualizes the corresponding heterogeneous contract graph of the input
contract. If a node is detected having a bug, it is colored red. When users
hover the pointer over a node, the node details will be shown, and when they
click a node, the code lines relevant to that node will be marked with the red
border on the left.

Besides the core features, MANDO-GURU also provides various statistics
charts for general analyses of the generated heterogeneous contract graphs.
In particular, after getting the detection results, users could click the “Show
Statistics” button to get three extended charts, including the number of clean
and buggy nodes, running time for coarse-grained and fine-grained detection,
and the density of each bug type. We explain in detail the charts in our demo
video.

7.3. Tool Design & Implementation 103

Backend

Frontend

Control Flow Graph
(CFG) Generation

Call Graph (CG)
Generation

Heterogeneous
CFG-CG Fusion

Node Feature
Initialization

MANDO-GURU
Heterogeneous
Graph Neural

Network

Labeled Smart
Contracts For

Training

New Smart
Contract For
Predicting

Coarse-Grained
Detection

Custom Multi-
Metapaths
Extraction

RESTful
APIsVisualization

Prediction
Results Statistics

Heterogeneous
Representation

Fine-Grained
Detection

FIGURE 7.2: Overview of the MANDO-GURU Tool.

7.3 Tool Design & Implementation

Figure 7.2 illustrates an overview of MANDO-GURU with three main com-
ponents: Backend, RESTful APIs, and Frontend. Backend plays a vital role with
several core sub-components such as heterogeneous representation for the
generated graphs from input smart contracts, heterogeneous graph fusion,
custom multi-metapaths extraction, heterogeneous graph neural network,
and vulnerability detections in coarse-grained and fine-grained levels. The
technical details of Backend are described in Section 5.3. The Frontend compo-
nent services are used to visualize the prediction results and the statistics of
the analyzed smart contracts. RESTful APIs are implemented as a bridge to
communicate between the Backend and the Frontend.

7.3.1 Backend

Heterogeneous Representation for the Generated Control-Flow Graphs and
Call Graphs

First, to generate the basic control-flow graphs and call graphs, we use
Slither [123] to process the source code of each input Ethereum smart contract.
Then, we convert the graphs into heterogeneous forms, called heterogeneous
control-flow graphs (HCFGs) and heterogeneous call graphs (HCGs), to represent

104 Chapter 7. MANDO-GURU Tool

the relations of different node and edge types and graph topologies. In par-
ticular, a heterogeneous graph is defined as a special graph consisting of
multiple-type of nodes or edges. Unlike some recent studies [76, 163] that
use only homogeneous graph structures and lead to loss of valuable informa-
tion on the code semantics in smart contracts, one primary contribution of
MANDO-GURU is to focus on capturing and retaining more structures and
semantics of source code through our heterogeneous representations.

Fusion of Heterogeous Control-Flow Graphs and Heterogeous Call Graphs

An HCFG can represent each function in a smart contract, and it contains an
entry node corresponding to the entry point/header of the function. Generally,
a smart contract may be considered as a set of HCFGs since it consists of more
than one function. The invocation relations among the functions in one
contract or between contracts are represented by HCGs.

The structures of the heterogeneous graphs can be shared or combined to
enrich information for graph learning. Hence, we design a sub-component as
a core fusion of HCGs and HCFGs into a global graph. Accordingly, the HCG
edges of a contract act as bridges to link the discrete HCFGs of the contract
functions into a global fused graph. We call the fusion graphs as heterogeneous
contract graphs. Intuitively, for each and every function node i in the call
graph GC, the function control-flow graph Gi

CF is attached to the function
node i at the entry node of Gi

CF, and thus the call graph GC is expanded with
control-flow graphs to produce the heterogeneous contract graph GFusion. The
heterogeneous graph generation also allows us to expand the generalizability
of the proposed method to other programming languages (e.g., C/C++, Java)
with minor modifications.

Node Feature Initialization

In the default setting of MANDO-GURU, the one-hot vectors based on node
types are used to initialize node features. Besides, various state-of-the-art
node embedding techniques can be plugged into MANDO-GURU to capture
the graph topology and extract the node features. For a more comprehensive
validation of the effectiveness of various initialization of node features, we
use both embedding methods for homogeneous graphs (e.g., node2vec [6])
and embedding methods for heterogeneous graphs (e.g., metapath2vec [41])
(see Section 7.4).

Extraction of Custom Multi-Metapaths

Build on MANDO framework, MANDO-GURU tool also extracts length-2
metapaths of each node type pair from a heterogeneous contract graph since
learning the extracted metapaths can be an effective way to learn the graph
structures [11, 41]. Similar to the method used in HAN [11], we only focus
on metapaths of length 2 to capture the relations between each node type
pair and its neighbors and to prevent the explosion of metapaths when the

7.3. Tool Design & Implementation 105

generated heterogeneous contract graphs contain a dynamic number of node
types (reaching eighteen in some large smart contracts, with five different
connections per node type) and pre-defining all possible metapaths with any
length according to all possible node types and edge types would lead to
an exponential explosion of metapaths, increased data sparsity, and reduced
accuracy in training data.

In addition, the heterogeneous contract graphs have mostly tree-like struc-
tures, with very few of their own back-edges induced by the LOOP-related
statements in the smart contracts’ source code, leading to the lack of metapaths
connecting many types of leaf-node in the graphs. Therefore, we customize the
length-2 metapaths by reflecting the relation Ri between adjacent nodes, from
type Ai to type Ai+1 and also from Ai+1 to Ai to extract multiple-metapaths.

Heterogeneous Graph Neural Network

Our unique heterogeneous graph neural network learns to weigh the impor-
tance of every metapath and node by the node-level attention mechanism
and can handle multiple dynamic custom metapaths without pre-defining
the list of input metapaths. In particular, with the initialized node features
(node embeddings) eϕk

i for each node i whose type is ϕk; then, we construct a
corresponding weighted node feature by a linear transformation. Next, we
measure the weight of the t-th metapath according to the node type ϕk of (i, j)
pair by leveraging the self-attention mechanism [212] between i and j.

We concatenate all node embedding Mϕk
i corresponding to all node type

ϕk of all node i to generate a unified embedding vector for a node, which is
used to train a fine-grained bug classifier. The average of all node embeddings
in a graph is used as the graph embedding, which is used to train a coarse-
grained bug classifier. Also, we employ the multi-layer perceptron (MLP)
with a softmax activation function for predicting, with the inputs depending
on the type of detection tasks. Moreover, the loss function for the training
process is cross-entropy, and the parameters of our model are learned through
back-propagation.

Coarse-Grained Detection and Fine-Grained Detection

First, MANDO-GURU classifies if a contract is clean or contains a type of vul-
nerabilities at the contract level by using coarse-grained graph classification.
Next, MANDO-GURU identifies the actual locations of the vulnerabilities
in the smart contract source code at the line level using fine-grained node
classification. Providing line-level locations of vulnerabilities is one of our
primary contributions, while the previous graph learning-based methods
(e.g., [76, 77]) only report vulnerabilities at the contract or function level.

7.3.2 RESTful APIs and Frontend

MANDO-GURU is based on the FastAPI framework [226] to create our
RESTful APIs as well as validation data to handle the requests and respond

106 Chapter 7. MANDO-GURU Tool

the detection results to the Frontend services. Also, we use a token for each
request to validate and reduce the unexpected demands to our system via the
basic HTTP authentication method. All RESTful APIs in MANDO-GURU
are implemented and provided under POST methods. Besides, to ensure the
MANDO-GURU’s overall performance, we encode the source code of smart
contracts to Base64 format before processing. Our APIs could be categorized
into two groups depending on the request purposes from the Frontend com-
ponent services: (1) Coarse-Grained requests for predicting whether a source
code has any bug; and (2) Fine-Grained requests for getting the lines and
nodes detected as having bugs.

Our Frontend web application is built on ReactJS [227] and ApexChart-
sJS [228] libraries. When users submit a source file to our web app, it scans
through the file for a total of seven bug kinds supported and returns the
summary and details of detection results for each bug type. We also provide
some sample smart contracts in a dropdown menu, which may help the users
who lack the Solidity source files to test MANDO-GURU more flexibly. The
detection results are then visualized by interactive graphs and highlighted
code snippets for users to double-check them easier.

7.4 Tool Validation

7.4.1 Setup

Based on the MANDO’s experiments in Section 5.4, our evaluation uses two
tasks: (i) contract-level vulnerability detection; and (ii) line-level vulnerability
detection. We combine the three following datasets for our training: (1)
Smartbugs Curated [73, 74] (2) SolidiFI Benchmark [75] and (3) Clean Smart
Contracts from Smartbugs Wild [73,74]. In total, we have 2,742 clean contracts
and 493 annotated buggy contracts.

We use the following four state-of-the-art methods presented in Section 2.1.2
as the graph-based neural network comparison methods: node2vec [6]; LINE [7];
Graph Convolutional Network (GCN) [8]; and metapath2vec [41]. We use the
output embeddings of the homogeneous and heterogeneous graph neural
networks in two ways in our validation: First, directly as the baselines for the
coarse-grained graph classification tasks and fine-grained node classification
tasks. Second, each of the graph neural networks is plugged into MANDO-
GURU as the topological graph neural network; the generated embeddings
are considered the node features besides those based on the node-type one-hot
vectors of the default setting and then fed to MANDO-GURU Heterogeneous
Graph Neural Network (HGNN). We also used six detection tools built upon
traditional software engineering techniques: Manticore [117]; Mythril [121];
Oyente [127]; Securify [126]; Slither [123]; and Smartcheck [128].

We use F1-score and Macro-F1 scores to measure the performance of our
node/graph classification for the detection tasks. F1-score is used to validate
the models’ performance when finding bugs, and is also called Buggy-F1.
Macro-F1 is considered to avoid biases in the clean and bug labels.

7.4. Tool Validation 107

7.4.2 Empirical Results

We only briefly report highlights of our contributions and achievements here
(See Section 5.4 for more comprehensive evaluations).

Contract-Level Vulnerability Detection

• MANDO-GURU outperforms baseline GNNs. E.g., an improvement
of 24% in both metrics is achieved by MANDO-GURU over the best
baselines for detecting the Front Running type of bugs.

• The node feature generatation methods help MANDO-GURU outper-
form all the baselines; and it shows that our architecture is general for
plugging in various kinds of GNNs.

• Being competible with Slither [123] makes MANDO-GURU more effec-
tively with various versions of Solidity; MANDO-GURU is able to find
newly-appeared bugs that graph learning methods [76, 163] struggle to
achieve.

Line-Level Vulnerabilty Detection

• MANDO-GURU outperforms conventional tools significantly with
improvement up to 63.4% compared to the best performing tools for the
Reentrancy type of bugs. It can be explained by (i) more CFG structures
retained by our heterogeneous graphs; and (ii) the flexibility of our
architecture.

• Our method beats the results of the baseline GNNs where the macro-F1
scores of our model is up to 20% higher than the ones of the baseline
GNNs.

• Conventional detection tools perform well in detecting arithmetic bugs
because they mostly use symbolic execution and such technique is suit-
able for detecting arithmetic bugs [215]. However, MANDO-GURU
performance is still on par with the tools.

108

Chapter 8

Conclusion and Future Work

8.1. Summary of Contributions 109

8.1 Summary of Contributions

With the expanding presence of social networks and decentralized systems
like blockchain, the need for enhanced security analytics and investigations
on these platforms is growing. Notably, these systems often utilize or can be
represented as graph-structured data, requiring appropriate approaches to
manage and analyze these data types. Based on graph representation learning
approaches, this thesis addressed two vital challenges regarding security
analytics in this context: (1) Utilizing social network analysis to aid criminal
investigations and (2) Detecting vulnerabilities in blockchain smart contracts
through heterogeneous graph embeddings.

8.2 Utilizing social network analysis to aid crimi-
nal investigations

In the early stage, we presented SoChainDB, a framework to crawl blockchain-
based social networks. Its robust and general architecture can handle various
kinds of blockchain systems. Along with our system, we provide the pub-
lic dataset of Hive - one of the largest blockchain social networks. We also
discussed and released the data of Splinterlands, a collectible decentralized
card game, and NFTShowroom, a platform for purchasing the ownership of
digital arts, both built upon Hive blockchain technology. With over 100 GB of
post-processed data, SoChainDB allows for large-scale combined analysis of
social networks’ various aspects, especially in security topics. All data pre-
sented in this thesis is ready and accessible via our website through a RESTful
API service or archival data files. Several research directions on information
retrieval might fit this blockchain-powered social network database:

• Massive Scale Social Network Analytics: Based on over 100 GB of post-
processed data, besides common social networking factors, extensive
research can exploit the unique blockchain characteristics, such as users’
motivation to contribute highly-rated content through the built-in crypto-
tokens and rewards mechanisms, to explore the impact of articles. Hence,
the assessments could be more comprehensive than similar approaches
on the regular social network data.

• Cross-domain Behavior Analytics: Since we can obtain the entire Hive
data, we could use the data to answer different basic questions related
to the behavior of users across services. For example, game players
could use social network platforms to publicize their achievements and
build friendships with other players. Such activities allow us to under-
stand users’ behaviors in various domains and build a more accurate
recommender system that offers helpful information.

• Impact of Reward on User Engagement: The reward system is a unique
feature of blockchain-based social networks. Understanding the causal-
ity between earning and user activities in social networks can open a

110 Chapter 8. Conclusion and Future Work

direction to redesign existing social networks toward offering a better
user experience.

In the deep stage of social network analysis, we addressed the problem
of utilizing link prediction to aid criminal investigations by proposing two
network-based learning frameworks to automatically predict the links among
offenders or crime cases. The first framework is a simple similarity-based
unsupervised approach that does not require any labeled training instances,
as it makes predictions solely based on the network topology. The second
framework, DEAL, is a supervised approach that efficiently aligns the network
topology with its node attributes to predict links, specifically for unseen newly
emerged nodes. Since the unsupervised approach does not require training
phases, it is better in scalability and has less need for memory requirements.
However, it only works for transductive link prediction, which is suitable
for predicting upcoming crimes based on the previous network structure.
Alternatively, inductive link prediction is beneficial for finding connections
between a new unknown case and existing ones.

Although experimental results indicate that the proposed frameworks are
reliable and improve state of the art in criminology, several enhancements can
be made in the future:

• The proposed frameworks, especially the supervised DEAL framework,
deal with an offline setting. As a future direction, we will adapt the
DEAL framework to the online setting, where the model is updated
upon receipt of new instances.

• As mentioned in Section 4.2, we build on a previous study ([93]) and
use the SIF embeddings for crime reports. However, one could train and
fine-tune more recent embedding methods, like AlephBERT, specifically
on police reports. This experiment will be continued in the future.

• In the scope of this thesis, we only consider homogeneous graphs where
the nodes are either offenders or crimes. However, the original graph is
bipartite, with nodes representing both offenders and crimes. Therefore,
the bipartite graph could be converted into a hypergraph, where the
nodes are offenders and a hyperedge indicates a crime and connects
it to all associated offenders. In this way, both high-order semantics
and complex relations between nodes can be captured, thus making
transductive link prediction a hyperedge prediction problem. There is a
rich literature on heterogeneous graph embedding [229–231] and even
on bipartite embedding as a special case [232]. Moreover, heterogeneous
multi-level frameworks have recently attempted to learn the importance
of nodes through hyperedge attention mechanisms [233, 234]. An inter-
esting future direction is to extend the DEAL framework for hyperedge
prediction [235] and compare it with heterogeneous graph embedding
methods and the homogeneous version.

8.3. Detecting vulnerabilities in blockchain smart contracts 111

8.3 Detecting vulnerabilities in blockchain smart
contracts

To navigate through the security challenge, we started by proposing a method
named MANDO, based on multi-level graph embeddings of control-flow
graphs and call graphs of Solidity smart contracts to train more accurate
vulnerability detection models to identify vulnerabilities in smart contracts
at fine-grained line level and contract level of granularity. Our evaluation of
a large-scale dataset curated from real-world Solidity smart contracts shows
that our method is promising and outperforms several baselines. Our method
is thus a valuable complement to other vulnerability detection techniques and
contributes to smart contract security. However, with all the achievements,
our MANDO framework and evaluation can still be improved further. The
embedding techniques can fuse more semantic properties of the smart contract
source code and adapt newer and more sophisticated graph neural networks.

Leveraging the foundation established by MANDO, MANDO-HGT is
proposed as a new learning-based vulnerability detection framework for
both Ethereum smart contract source code and bytecode using heterogeneous
graph transformer (HGT) techniques. Inherited from MANDO, it also con-
structs heterogeneous contract graphs representing smart contracts’ control
flow and function call relations. However, instead of using metapaths as
MANDO, it defines customized meta relations based on node/edge types in
the generated heterogeneous graphs, then adapts HGT models to generate em-
beddings for nodes and graphs, and uses the embeddings to train classifiers to
recognize various kinds of buggy code at the granularity levels corresponding
to either individual contracts or individual lines of code. Our evaluation
results in a curated smart contract dataset containing labeled vulnerabili-
ties show that MANDO-HGT can significantly improve the accuracy of
many previous vulnerability detection techniques, including best-performing
learning-based and best-performing conventional analysis-based ones. The
improvements in terms of the F1-score range from 0.74% to 76.89% for various
bug types and detection techniques.

Additionally, we introduced a visualization tool MANDO-GURU, to
demonstrate the ability of the MANDO frameworks to detect vulnerabilities
in real-world blockchain smart contracts. This tool facilitates the visualiza-
tion of predictive results and statistical data of analyzed smart contracts
directly within web browsers. Notably, the architecture of MANDO-GURU
is designed to be compatible with both MANDO and MANDO-HGT, and it
is adaptable to accommodate other future MANDO frameworks with only
minor adjustments.

Future works could extend the generated heterogeneous contract graphs
to more comprehensive graph representations of Ethereum smart contracts
(e.g., data dependencies and contract calls) for both source code and bytecode.
There are several potential research directions can be explored in the future:

• Heterogeneous graph transformers could be combined with more graph
learning techniques, especially those suitable for few-shot learning and

112 Chapter 8. Conclusion and Future Work

handling inconsistent labels, for more accurate and usable vulnerability
detection.

• It may also be possible and interesting to utilize results from conven-
tional testing, analysis, and verification techniques to help better train
and improve our approaches.

• Although the techniques used to construct control-flow graphs and
call graphs show efficiency in the MANDO, MANDO-GURU, and
MANDO-HGT frameworks, they still depend on the Solidity compiler
to generate the graphs. In the future, some syntax-based-only techniques,
such as building abstract syntax trees first and then transforming them
into control-flow graphs and call graphs, can be applied to eliminate
the dependency on the Solidity compiler to extend the adaptability for
forthcoming models.

• The swift advancement of large language models (LLMs), particularly
for code generation, demonstrates a significant ability to model and cap-
ture the semantics of code fragments in various software programs. The
extracted embedding features from LLMs could potentially represent a
more semantic-aware and accurate encoding of code fragments. These
embedding features could combine with advanced heterogeneous graph
representation learning methods like heterogeneous graph transformers
to improve the overall performance of bug detection in the future.

113

Appendix A

Curriculum Vitae

GENERAL INFORMATION
Full Name Huu Hoang Nguyen

Date of Birth 21 January 1990
Place of Birth Dong Thap, Vietnam

Address Hannover, Germany
Phone +49-151-400-26121
Email ehoang@l3s.de

Homepage https://hoanghnguyen.com
ORCID https://orcid.org/0000-0003-0611-4634

Google Scholar https://scholar.google.com/citations?user=cDB2Tt8AAAAJ

EDUCATION
10/2020 - 05/2024 PH.D. IN COMPUTER SCIENCE

Gottfried Wilhelm Leibniz Universität Hannover, Germany
Thesis: “Graph Representation Learning for Security
Analytics in Decentralized Software Systems and Social
Networks.”

08/2014 - 04/2017 M.ENG. IN COMPUTER SCIENCE
Ho Chi Minh City University of Technology, Vietnam
Thesis: “Generating Control-Flow Graph from An-
droid Binary Code.”

09/2008 - 03/2013 B.SC. IN ELECTRONICS AND TELECOMMUNICATIONS
Ho Chi Minh City University of Science, Vietnam

WORKING EXPERIENCE
02/2020 - Current RESEARCHER

L3S Research Center, Gottfried Wilhelm Leibniz Universität
Hannover, Germany
Utilizing graph embeddings to enhance investigative
capabilities by predicting unseen connections in crim-
nal networks. Employing graph learning for vulnera-
bility detection in blockchain smart contracts. Devel-
oping a database to manage and analyze large-scale
blockchain-powered social network data.

06/2018-12/2019 RESEARCH COLLABORATOR

114 Appendix A. Curriculum Vitae

Ho Chi Minh City University of Technology, Vietnam
Modeling Ethereum smart contracts’ control flow and
data dependency. Applying machine learning to ana-
lyze Bitcoin and Ethereum transaction security vulner-
abilities. Analyzing real-time data of warehouse and
transportation management systems integrated with
Ethereum and EOS blockchain.

05/2017-03/2018 RESEARCH ASSOCIATE
Singapore Management University, Singapore
Generating control-flow graphs and data dependencies
of Android platform. Analyzing Android apps behav-
iors based on whole-network graphs. Context-aware
code localization and recommendation.

03/2016-02/2017 RESEARCH ASSISTANT
Livelabs, Singapore Management University, Singapore
Generating control-flow graph of Android framework.
Analyzing Android apps behaviors based on whole-
system control flow. Identifying private data leaks in
Android framework APIs.

06/2014-12/2015 ANDROID DEVELOPER
Fabrica Vietnam Co., Ltd, Vietnam
User experience analysis using Material Design. QR
Code and Image Processing technologies. Payment
Processing technologies. Building apps related to
Coupon & Auction, Car Selling, and Overlay Photos.

01/2013-05/2014 ANDROID TEAM LEADER
EFSE Co., Ltd, Vietnam
Exploring and designing mobile apps’ user-interaction
interface for the young. Near Field Communication
and Call Blocking technologies. Analyzing Android
native launcher. Designing new techniques for floating
apps. Building apps related to Android Launcher, NFC,
Call Blocker, and Location.

REVIEWS
2024 Information and Software Technology journal

Elsevier, 2024
2023 Knowledge-Based Systems journal

Elsevier, 2023
2023 38th AAAI Conference on Artificial Intelligence

AAAI 2024, Vancouver, Canada, February 20-27, 2024
2023 Information and Software Technology journal

Elsevier, 2023
2023 Blockchain: Research and Applications journal

Zhejiang University Press, 2023
2023 IEEE Transactions on Multimedia journal

Appendix A. Curriculum Vitae 115

IEEE, 2023
2022 37th AAAI Conference on Artificial Intelligence

AAAI 2023, Washington DC, USA, February 7-24, 2023
2020 Digital Transformation and Global Society 2020

DTGS 2020, St. Petersburg, Russia, June 24-26, 2020
2017 40th International Conference on Software Engineering

ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018

TECHNICAL SKILLS
Programming Languages Python, Java, JavaScript, Solidity

Programming Frameworks PyTorch, NetworkX, Scikit-learn, Scoot, Flask, NodeJS,
KnockoutJS, D3JS

Platforms & Tools Hive, Ethereum, Git, Android SDK, Google Cloud

ACHIEVEMENTS
2023 Two Best Paper Awards

L3S Research Center, Leibniz University Hannover
2023 SIGSOFT CAPS: ICSE 2023 Travel Grants

45th International Conference on Software Engineer-
ing, ICSE 2023

2018 Silver Award $7000
Blockchain Hackathon, Vietnam Blockchain Hub 2018

2016 SMU Internship Scholarship for Excellent Graduate
Students
Ho Chi Minh City University of Technology

2015 500,000 app downloads
Google Play Store

REFERENCES
Available upon request.

116

Bibliography

[1] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[2] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on
Artifical Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

[3] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[4] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[5] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ser. KDD ’14,
2014, pp. 701–710.

[6] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for net-
works,” in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2016, p. 855–864.

[7] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-
scale information network embedding,” in Proceedings of the 24th Inter-
national Conference on World Wide Web (WWW), 2015, pp. 1067–1077.

[8] M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[9] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in International Conference on Learning
Representations, 2018.

[10] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” Advances in neural information processing systems,
vol. 30, 2017.

[11] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous
graph attention network,” in The World Wide Web Conference, 2019, pp.
2022–2032.

[12] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in Proceedings of The Web Conference 2020, 2020, pp. 2704–2710.

BIBLIOGRAPHY 117

[13] Z. Ahmadi, H. H. Nguyen, Z. Zhang, D. Bozhkov, D. Kudenko,
M. Jofre, F. Calderoni, N. Cohen, and Y. Solewicz, “Inductive and
transductive link prediction for criminal network analysis,” Journal of
Computational Science, vol. 72, p. 102063, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877750323001230

[14] H. H. Nguyen, D. Bozhkov, Z. Ahmadi, N.-M. Nguyen, and
T.-N. Doan, “Sochaindb: A database for storing and retrieving
blockchain-powered social network data,” in Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’22. New York, NY, USA: Association
for Computing Machinery, Jul. 2022, pp. 3036–3045. [Online]. Available:
https://doi.org/10.1145/3477495.3531735

[15] T. H. Nguyen, H. H. Nguyen, Z. Ahmadi, T.-A. Hoang, and T.-N. Doan,
“On the impact of dataset size: A twitter classification case study,” in
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, ser. WI-IAT ’21. New York, NY, USA: Association
for Computing Machinery, Dec. 2021, pp. 210–217. [Online]. Available:
https://doi.org/10.1145/3486622.3493960

[16] K. Maly, G. Backfried, F. Calderoni, J. Černocký, E. Dikici, M. Fabien,
J. Hořínek, J. Hughes, M. Janošík, M. Kovac, P. Motlicek, H. H. Nguyen,
S. Parida, J. Rohdin, M. Skácel, S. Zerr, D. Klakow, D. Zhu, and A. Krish-
nan, “Roxsd: a simulated dataset of communication in organized crime,”
in 2021 ISCA Symposium on Security and Privacy in Speech Communication,
Nov. 2021, pp. 32–36.

[17] M. Fabien, S. Parida, P. Motlícek, D. Zhu, A. Krishnan, and H. H.
Nguyen, “ROXANNE research platform: Automate criminal inves-
tigations,” in Interspeech 2021, 22nd Annual Conference of the International
Speech Communication Association, H. Hermansky, H. Cernocký, L. Bur-
get, L. Lamel, O. Scharenborg, and P. Motlícek, Eds. ISCA, Aug. 2021,
pp. 962–964.

[18] H. H. Nguyen, S. Zerr, and T.-A. Hoang, “On node embedding of
uncertain networks,” in 2020 IEEE International Conference on Big Data
(Big Data), Dec. 2020, pp. 5792–5794.

[19] H. H. Nguyen, N.-M. Nguyen, C. Xie, Z. Ahmadi, D. Kudendo, T.-N.
Doan, and L. Jiang, “Mando-hgt: Heterogeneous graph transformers
for smart contract vulnerability detection,” in 2023 IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR), 2023, pp.
334–346.

[20] H. H. Nguyen, N.-M. Nguyen, H.-P. Doan, Z. Ahmadi, T.-N. Doan, and
L. Jiang, “Mando-guru: Vulnerability detection for smart contract source
code by heterogeneous graph embeddings,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the

https://www.sciencedirect.com/science/article/pii/S1877750323001230
https://www.sciencedirect.com/science/article/pii/S1877750323001230
https://doi.org/10.1145/3477495.3531735
https://doi.org/10.1145/3486622.3493960

118 BIBLIOGRAPHY

Foundations of Software Engineering, ser. ESEC/FSE 2022. New York, NY,
USA: Association for Computing Machinery, Nov. 2022, pp. 1736–1740.
[Online]. Available: https://doi.org/10.1145/3540250.3558927

[21] H. H. Nguyen, N.-M. Nguyen, C. Xie, Z. Ahmadi, D. Kudendo, T.-
N. Doan, and L. Jiang, “MANDO: Multi-level heterogeneous graph
embeddings for fine-grained detection of smart contract vulnerabilities,”
in 9th IEEE International Conference on Data Science and Advanced Analytics
(DSAA), 2022.

[22] T. T. Nguyen, H. H. Nguyen, M. Sartipi, and M. Fisichella, “Multi-
vehicle multi-camera tracking with graph based tracklet features,” IEEE
Transactions on Multimedia, pp. 1–13, 2023.

[23] ——, “Real-time multi-vehicle multi-camera tracking with graph based
tracklet features,” Transportation Research Record, May 2023. [Online].
Available: https://doi.org/10.1177/03611981231170591

[24] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of anthropological research, pp. 452–473, 1977.

[25] L. C. Freeman, D. Roeder, and R. R. Mulholland, “Centrality in social
networks: Ii. experimental results,” Social networks, vol. 2, no. 2, pp.
119–141, 1979.

[26] D. Easley, J. Kleinberg et al., Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge university press Cambridge,
2010, vol. 1.

[27] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7, pp.
107–117, 1998.

[28] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[29] F. Calderoni, D. Brunetto, and C. Piccardi, “Communities in criminal
networks: A case study,” Social Networks, vol. 48, pp. 116–125, 2017.

[30] L. Tang and H. Liu, Community detection and mining in social media.
Morgan & Claypool Publishers, 2010.

[31] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
nature, vol. 435, no. 7043, pp. 814–818, 2005.

[32] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the national academy of sciences, vol. 103, no. 23, pp. 8577–
8582, 2006.

https://doi.org/10.1145/3540250.3558927
https://doi.org/10.1177/03611981231170591

BIBLIOGRAPHY 119

[33] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” Advances in neural information processing systems, vol. 14,
2001.

[34] M. Girvan and M. E. Newman, “Community structure in social and bio-
logical networks,” Proceedings of the national academy of sciences, vol. 99,
no. 12, pp. 7821–7826, 2002.

[35] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American Society for Information Science
and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[36] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social
Networks, vol. 25, no. 3, pp. 211–230, 2003.

[37] A.-L. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek,
“Evolution of the social network of scientific collaborations,” Physica A:
Statistical Mechanics and Its Applications, vol. 311, no. 3-4, pp. 590–614,
2002.

[38] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: Statistical Mechanics and Its Applications, vol. 390, no. 6, pp.
1150–1170, 2011.

[39] S. Soundarajan and J. Hopcroft, “Using community information to
improve the precision of link prediction methods,” in Proceedings of
the 21st International Conference on World Wide Web (WWW), 2012, pp.
607–608.

[40] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2018.

[41] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable rep-
resentation learning for heterogeneous networks,” in the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2017, pp. 135–144.

[42] Minds Inc., “Minds whitepaper v2,” 2021. [Online]. Avail-
able: https://cdn-assets.minds.com/front/dist/browser/en/assets/
documents/Minds-Whitepaper-v2.pdf

[43] Indorse Pte. Ltd, “Indorse 2.0,” 2020. [Online]. Avail-
able: https://indorse-staging-bucket.s3.amazonaws.com/Indorse+
2.0+Light+Paper.pdf

[44] Allabout.me Tokens Ltd., “all.me whitepaper,” 2017. [Online]. Available:
https://allmestatic.com/mepaytoken/all-me_whitepaper.pdf

[45] Ethereum Foundation, “Ethereum whitepaper,” 2014. [Online].
Available: https://github.com/ethereum/wiki/wiki/White-Paper

https://cdn-assets.minds.com/front/dist/browser/en/assets/documents/Minds-Whitepaper-v2.pdf
https://cdn-assets.minds.com/front/dist/browser/en/assets/documents/Minds-Whitepaper-v2.pdf
https://indorse-staging-bucket.s3.amazonaws.com/Indorse+2.0+Light+Paper.pdf
https://indorse-staging-bucket.s3.amazonaws.com/Indorse+2.0+Light+Paper.pdf
https://allmestatic.com/mepaytoken/all-me_whitepaper.pdf
https://github.com/ethereum/wiki/wiki/White-Paper

120 BIBLIOGRAPHY

[46] Block.one, “Eos.io technical white paper v2,” 2018. [Online].
Available: https://github.com/EOSIO/Documentation/blob/master/
TechnicalWhitePaper.md

[47] Binance, “Binance smart chain: A parallel binance chain to enable
smart contracts,” 2020. [Online]. Available: https://github.com/
binance-chain/whitepaper/blob/master/WHITEPAPER.md

[48] Steemit Inc., “Steem: An incentivized, blockchain-based, public
content platform,” 2018. [Online]. Available: https://steem.com/
steem-whitepaper.pdf

[49] Hive.io, “Hive: Fast. scalable. powerful. the blockchain for web 3.0,”
2020. [Online]. Available: https://hive.io/whitepaper.pdf

[50] Block.one, “Voice: The road to beta,” 2019. [Online]. Available:
https://b1.com/news/voice-the-road-to-beta/

[51] The BitShares Organization, “The bitshares blockchain,”
2018. [Online]. Available: https://whitepaper.io/document/388/
bitshares-whitepaper

[52] ARK Ecosystem, SCIC, “Ark ecosystem whitepaper,” 2019. [Online].
Available: https://ark.io/Whitepaper.pdf

[53] Lisk Foundation, “Lisk consensus algorithm,” 2021. [On-
line]. Available: https://lisk.com/documentation/lisk-sdk/protocol/
consensus-algorithm.html

[54] TRON Foundation, “Tron: Advanced decentralized blockchain
platform,” 2018. [Online]. Available: https://tron.network/static/doc/
white_paper_v_2_0.pdf

[55] N. Szabo, “The idea of smart contracts, 1 997,” http://szabo.best.vwh.
net/smart_contracts_idea.html, 1997, accessed: 2016-08-22. [Online].
Available: http://szabo.best.vwh.net/smart_contracts_idea.html

[56] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[57] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts sok,” in Proceedings of the 6th International Conference on
Principles of Security and Trust - Volume 10204. New York, NY, USA:
Springer-Verlag New York, Inc., 2017, pp. 164–186. [Online]. Available:
https://doi.org/10.1007/978-3-662-54455-6_8

[58] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step
towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab,” in Financial Cryptography and Data Security: FC
2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ
Church, Barbados, February 26, 2016, Revised Selected Papers 20. Springer,
2016, pp. 79–94.

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/binance-chain/whitepaper/blob/master/WHITEPAPER.md
https://github.com/binance-chain/whitepaper/blob/master/WHITEPAPER.md
https://steem.com/steem-whitepaper.pdf
https://steem.com/steem-whitepaper.pdf
https://hive.io/whitepaper.pdf
https://b1.com/news/voice-the-road-to-beta/
https://whitepaper.io/document/388/bitshares-whitepaper
https://whitepaper.io/document/388/bitshares-whitepaper
https://ark.io/Whitepaper.pdf
https://lisk.com/documentation/lisk-sdk/protocol/consensus-algorithm.html
https://lisk.com/documentation/lisk-sdk/protocol/consensus-algorithm.html
https://tron.network/static/doc/white_paper_v_2_0.pdf
https://tron.network/static/doc/white_paper_v_2_0.pdf
http://szabo.best.vwh.net/smart_contracts_idea.html
http://szabo.best.vwh.net/smart_contracts_idea.html
http://szabo.best.vwh.net/smart_contracts_idea.html
https://doi.org/10.1007/978-3-662-54455-6_8

BIBLIOGRAPHY 121

[59] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978309

[60] D. Siegel, “Understanding the dao attack,” 2016. [Online]. Available:
https://www.coindesk.com/understanding-dao-hack-journalists

[61] H. Qureshi, “A hacker stole $31m of ether - how it happened,
and what it means for ethereum,” 2017. [Online]. Available:
https://medium.freecodecamp.org/

[62] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, and J. Blackburn,
“The pushshift reddit dataset,” in Proceedings of the International AAAI
Conference on Web and Social Media, vol. 14, 2020, pp. 830–839.

[63] J. Baumgartner, S. Zannettou, M. Squire, and J. Blackburn, “The
pushshift telegram dataset,” in Proceedings of the International AAAI
Conference on Web and Social Media, vol. 14, 2020, pp. 840–847.

[64] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego
networks.” in NIPS, vol. 2012. Citeseer, 2012, pp. 548–56.

[65] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user
movement in location-based social networks,” in Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data
mining, 2011, pp. 1082–1090.

[66] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42, no. 1,
pp. 181–213, 2015.

[67] A. S. M. Tayeen, A. Mtibaa, and S. Misra, “Location, location, location!
quantifying the true impact of location on business reviews using a yelp
dataset,” in Proceedings of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, 2019, pp. 1081–1088.

[68] C. S. Bojer and J. P. Meldgaard, “Kaggle forecasting competitions: An
overlooked learning opportunity,” International Journal of Forecasting,
vol. 37, no. 2, pp. 587–603, 2021.

[69] M. Mohri and A. M. Medina, “Learning theory and algorithms for
revenue optimization in second price auctions with reserve,” in Interna-
tional Conference on Machine Learning. PMLR, 2014, pp. 262–270.

[70] A. Capocci, V. D. Servedio, F. Colaiori, L. S. Buriol, D. Donato,
S. Leonardi, and G. Caldarelli, “Preferential attachment in the growth of
social networks: The internet encyclopedia wikipedia,” Physical review
E, vol. 74, no. 3, p. 036116, 2006.

http://doi.acm.org/10.1145/2976749.2978309
https://www.coindesk.com/understanding-dao-hack-journalists
https://medium.freecodecamp.org/

122 BIBLIOGRAPHY

[71] C. B. Clement, M. Bierbaum, K. P. O’Keeffe, and A. A. Alemi, “On the
use of arxiv as a dataset,” arXiv preprint arXiv:1905.00075, 2019.

[72] K. Oliver, N. Crossley, G. Edwards, J. Koskinen, M. Everett, and C. Broc-
catelli, “Covert networks: structures, processes and types,” Unpublished
manuscript, University of Manchester, Manchester, UK, pp. 4–13, 2014.

[73] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 ethereum smart contracts,” in the
ACM/IEEE 42nd International Conference on Software Engineering, 2020,
pp. 530–541.

[74] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: a frame-
work to analyze solidity smart contracts,” in the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2020, pp. 1349–1352.

[75] A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug
injection,” in the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020.

[76] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network.” in IJCAI, 2020, pp.
3283–3290.

[77] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Combining
graph neural networks with expert knowledge for smart contract vulner-
ability detection,” IEEE Transactions on Knowledge and Data Engineering,
2021.

[78] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “ethor:
Practical and provably sound static analysis of ethereum smart con-
tracts,” in the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2020, pp. 621–640.

[79] C. Li and B. Palanisamy, “Incentivized blockchain-based social media
platforms: A case study of steemit,” in Proceedings of the 10th ACM
Conference on Web Science, 2019, pp. 145–154.

[80] C. Li, B. Palanisamy, R. Xu, J. Xu, and J. Wang, “Steemops: Extracting
and analyzing key operations in steemit blockchain-based social media
platform,” arXiv preprint arXiv:2102.00177, 2021.

[81] G. M. Campedelli, Machine Learning for Criminology and Crime Research:
At the Crossroads. London: Routledge, 2022.

[82] J. Woodhams and K. Toye, “An empirical test of the assumptions of
case linkage and offender profiling with serial commercial robberies.”
Psychology, Public Policy, and Law, vol. 13, no. 1, p. 59, 2007.

BIBLIOGRAPHY 123

[83] C. Bennell, B. Snook, S. Macdonald, J. C. House, and P. J. Taylor, “Com-
puterized crime linkage systems: A critical review and research agenda,”
Criminal Justice and Behavior, vol. 39, no. 5, pp. 620–634, 2012.

[84] Y. Li and X. Shao, “Thresholds learning of three-way decisions in pair-
wise crime linkage,” Applied Soft Computing, vol. 120, p. 108638, 2022.

[85] Y.-S. Li, H. Chi, X.-Y. Shao, M.-L. Qi, and B.-G. Xu, “A novel random
forest approach for imbalance problem in crime linkage,” Knowledge-
Based Systems, vol. 195, p. 105738, 2020.

[86] H. Chi, Z. Lin, H. Jin, B. Xu, and M. Qi, “A decision support system for
detecting serial crimes,” Knowledge-Based Systems, vol. 123, pp. 88–101,
2017.

[87] J. Vimala Devi and K. Kavitha, “Adaptive deep q learning network with
reinforcement learning for crime prediction,” Evolutionary Intelligence,
pp. 1–12, 2022.

[88] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770–778.

[89] B. Wang, D. Zhang, D. Zhang, P. Brantingham, and A. L. Bertozzi, “Deep
learning for real time crime forecasting,” IEICE Proceeding Series, vol. 29,
no. A3L-E-2-4, pp. 330–333, 2017.

[90] Q. Wang, G. Jin, X. Zhao, Y. Feng, and J. Huang, “Csan: A neural
network benchmark model for crime forecasting in spatio-temporal
scale,” Knowledge-Based Systems, vol. 189, p. 105120, 2020.

[91] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” Advances in Neural Information Process-
ing Systems, vol. 27, 2014.

[92] Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue, “Modeling spatial-
temporal clues in a hybrid deep learning framework for video clas-
sification,” in Proceedings of the 23rd ACM International Conference on
Multimedia, 2015, pp. 461–470.

[93] A. Solomon, A. Magen, S. Hanouna, M. Kertis, B. Shapira, and
L. Rokach, “Crime linkage based on textual hebrew police reports uti-
lizing behavioral patterns,” in Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM), 2020, p.
2749–2756.

[94] A. Ghazvini, S. N. H. S. Abdullah, M. K. Hasan, and D. Z. A. B. Kasim,
“Crime spatiotemporal prediction with fused objective function in time
delay neural network,” IEEE Access, vol. 8, pp. 115 167–115 183, 2020.

124 BIBLIOGRAPHY

[95] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs:
Unsupervised inductive learning via ranking,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[96] S. Jha, E. Yang, A. O. Almagrabi, A. K. Bashir, and G. P. Joshi, “Com-
parative analysis of time series model and machine testing systems for
crime forecasting,” Neural Computing and Applications, vol. 33, no. 17, pp.
10 621–10 636, 2021.

[97] T. Nakaya and K. Yano, “Visualising crime clusters in a space-time cube:
An exploratory data-analysis approach using space-time kernel density
estimation and scan statistics,” Transactions in GIS, vol. 14, no. 3, pp.
223–239, 2010.

[98] Y.-L. Lin, M.-F. Yen, and L.-C. Yu, “Grid-based crime prediction using
geographical features,” ISPRS International Journal of Geo-Information,
vol. 7, no. 8, p. 298, 2018.

[99] X. Zhang, L. Liu, L. Xiao, and J. Ji, “Comparison of machine learn-
ing algorithms for predicting crime hotspots,” IEEE Access, vol. 8, pp.
181 302–181 310, 2020.

[100] A. M. Olligschlaeger, “Artificial neural networks and crime mapping,”
Crime Mapping and Crime Prevention, vol. 1, p. 313, 1997.

[101] W. Gorr, A. Olligschlaeger, and Y. Thompson, “Short-term forecasting
of crime,” International Journal of Forecasting, vol. 19, no. 4, pp. 579–594,
2003.

[102] M. Feng, J. Zheng, J. Ren, A. Hussain, X. Li, Y. Xi, and Q. Liu, “Big data
analytics and mining for effective visualization and trends forecasting
of crime data,” IEEE Access, vol. 7, pp. 106 111–106 123, 2019.

[103] K. Kianmehr and R. Alhajj, “Effectiveness of support vector machine for
crime hot-spots prediction,” Applied Artificial Intelligence, vol. 22, no. 5,
pp. 433–458, 2008.

[104] C.-H. Yu, M. W. Ward, M. Morabito, and W. Ding, “Crime forecasting us-
ing data mining techniques,” in Proceedings of the IEEE 11th International
Conference on Data Mining Workshops (ICDMW), 2011, pp. 779–786.

[105] E. Eftelioglu, S. Shekhar, J. M. Kang, and C. C. Farah, “Ring-shaped
hotspot detection,” IEEE Transactions on Knowledge and Data Engineering,
vol. 28, no. 12, pp. 3367–3381, 2016.

[106] G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and
G. E. Tita, “Self-exciting point process modeling of crime,” Journal of the
American Statistical Association, vol. 106, no. 493, pp. 100–108, 2011.

BIBLIOGRAPHY 125

[107] J. H. Ratcliffe, “A temporal constraint theory to explain opportunity-
based spatial offending patterns,” Journal of Research in Crime and Delin-
quency, vol. 43, no. 3, pp. 261–291, 2006.

[108] M. Rosenblatt, “Remarks on some nonparametric estimates of a density
function,” The Annals of Mathematical Statistics, pp. 832–837, 1956.

[109] B. W. Silverman, Density estimation for statistics and data analysis. Rout-
ledge, 2018.

[110] J. L. Toole, N. Eagle, and J. B. Plotkin, “Spatiotemporal correlations in
criminal offense records,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 4, pp. 1–18, 2011.

[111] M. Alharby, A. Aldweesh, and A. v. Moorsel, “Blockchain-based smart
contracts: A systematic mapping study of academic research,” in Inter-
national Conference on Cloud Computing, Big Data and Blockchain, 2018, pp.
1–6.

[112] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection,” in the 33rd IEEE/ACM International
Conference on Automated Software Engineering, 2018, pp. 259–269.

[113] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp. 778–788.

[114] I. Ashraf, X. Ma, B. Jiang, and W. K. Chan, “GasFuzzer: Fuzzing
ethereum smart contract binaries to expose gas-oriented exception secu-
rity vulnerabilities,” IEEE Access, vol. 8, pp. 99 552–99 564, 2020.

[115] Y. Liu, Y. Li, S.-W. Lin, and Q. Yan, “ModCon: A model-based testing
platform for smart contracts,” in Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 1601–1605.

[116] Y. Huang, B. Jiang, and W. K. Chan, “EOSFuzzer: Fuzzing eosio smart
contracts for vulnerability detection,” in 12th Asia-Pacific Symposium on
Internetware, 2020, pp. 99–109.

[117] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in the 34th
IEEE/ACM International Conference on Automated Software Engineering,
2019, pp. 1186–1189.

[118] B. Jiang, Y. Chen, D. Wang, I. Ashraf, and W. Chan, “WANA: Symbolic
execution of wasm bytecode for extensible smart contract vulnerability
detection,” in 2021 IEEE 21st International Conference on Software Quality,
Reliability and Security (QRS). IEEE, 2021, pp. 926–937.

126 BIBLIOGRAPHY

[119] K. Weiss and J. Schütte, “Annotary: A concolic execution system for
developing secure smart contracts,” in European Symposium on Research
in Computer Security. Springer, 2019, pp. 747–766.

[120] S. So, S. Hong, and H. Oh, “smartest: Effectively hunting vulnera-
ble transaction sequences in smart contracts through language model-
guided symbolic execution,” in 30th USENIX Security Symposium, 2021,
pp. 1361–1378.

[121] Consensys, “Mythril framework,” 2017. [Online]. Available: https:
//github.com/ConsenSys/mythril

[122] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-contract static
analysis for detecting practical reentrancy vulnerabilities in smart con-
tracts,” in 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2020, pp. 1029–1040.

[123] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework for
smart contracts,” in IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain, 2019, pp. 8–15.

[124] I. Grishchenko, M. Maffei, and C. Schneidewind, “Foundations and
tools for the static analysis of ethereum smart contracts,” in International
Conference on Computer Aided Verification. Springer, 2018, pp. 51–78.

[125] ——, “Ethertrust: Sound static analysis of ethereum bytecode,” Technis-
che Universität Wien, Tech. Rep, 2018.

[126] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” in 25th ACM
Conference on Computer and Communications Security, 2018.

[127] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in the ACM SIGSAC conference on computer and com-
munications security, 2016, pp. 254–269.

[128] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis of
ethereum smart contracts,” in the 1st International Workshop on Emerging
Trends in Software Engineering for Blockchain, 2018, pp. 9–16.

[129] A. Wang, H. Wang, B. Jiang, and W. K. Chan, “Artemis: An improved
smart contract verification tool for vulnerability detection,” in 2020
7th International Conference on Dependable Systems and Their Applications
(DSA). IEEE, 2020, pp. 173–181.

[130] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart contract
formal specification and verification,” ACM Computing Surveys (CSUR),
vol. 54, no. 7, pp. 1–38, 2021.

https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril

BIBLIOGRAPHY 127

[131] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu, “A formal verifica-
tion tool for ethereum vm bytecode,” in 26th ACM ESEC/FSE, 2018, pp.
912–915.

[132] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 IEEE
symposium on security and privacy (SP). IEEE, 2020, pp. 1661–1677.

[133] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “KEVM: A complete
formal semantics of the ethereum virtual machine,” in 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). IEEE, 2018, pp. 204–
217.

[134] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic un-
derstanding of smart contracts: Executable operational semantics of
solidity,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 1695–1712.

[135] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” in Interna-
tional Conference on Principles of Security and Trust. Springer, 2018, pp.
243–269.

[136] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey on formal
verification for solidity smart contracts,” in 2021 Australasian Computer
Science Week Multiconference, 2021, pp. 1–10.

[137] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detec-
tion,” in The Network and Distributed System Security Symposium, 2018.

[138] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “VulDeeLocator: a deep
learning-based fine-grained vulnerability detector,” IEEE Transactions
on Dependable and Secure Computing, 2021.

[139] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “Bgnn4vd: Constructing bidi-
rectional graph neural-network for vulnerability detection,” Information
and Software Technology, vol. 136, p. 106576, 2021.

[140] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 17th IEEE inter-
national conference on machine learning and applications (ICMLA), 2018, pp.
757–762.

[141] X. Cheng, H. Wang, J. Hua, M. Zhang, G. Xu, L. Yi, and Y. Sui, “Static de-
tection of control-flow-related vulnerabilities using graph embedding,”
in 24th ICECCS. IEEE, 2019, pp. 41–50.

128 BIBLIOGRAPHY

[142] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[143] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet,” IEEE Transactions on Software
Engineering, 2021.

[144] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “Vulcnn: An image-
inspired scalable vulnerability detection system,” in ICSE, 2022.

[145] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A frame-
work for using deep learning to detect software vulnerabilities,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[146] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “DeepWukong: Statically
detecting software vulnerabilities using deep graph neural network,”
ACM TOSEM, vol. 30, no. 3, pp. 1–33, 2021.

[147] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, 2021, pp. 292–303.

[148] K. Zhang, W. Wang, H. Zhang, G. Li, and Z. Jin, “Learning to represent
programs with heterogeneous graphs,” in ICPC, 2022.

[149] S. Han, B. Liang, J. Huang, and W. Shi, “DC-Hunter: Detecting danger-
ous smart contracts via bytecode matching,” Journal of Cyber Security,
May 2020.

[150] J. Huang, S. Han, W. You, W. Shi, B. Liang, J. Wu, and Y. Wu, “Hunting
vulnerable smart contracts via graph embedding based bytecode match-
ing,” IEEE Transactions on Information Forensics and Security, vol. 16, pp.
2144–2156, 2021.

[151] Z. Bo, S. Chenhan, P. Xiaoyan, A. Yang, T. Juncheng, and Y. Anqi,
“Semantic-aware graph neural network for smart contract bytecode
vulnerability detection,” Advanced Engineering Sciences, vol. 54, no. 2, pp.
49–55, 2022.

[152] D. Zhu, F. Yue, J. Pang, X. Zhou, W. Han, and F. Liu, “Bytecode similarity
detection of smart contract across optimization options and compiler
versions based on triplet network,” Electronics, vol. 11, no. 4, p. 597,
2022. [Online]. Available: https://github.com/Zdddzz/smartcontract

[153] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “ContractWard: Au-
tomated vulnerability detection models for ethereum smart contracts,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp.
1133–1144, 2020.

https://github.com/Zdddzz/smartcontract

BIBLIOGRAPHY 129

[154] A. K. Gogineni, S. Swayamjyoti, D. Sahoo, K. K. Sahu, and R. Kishore,
“Multi-class classification of vulnerabilities in smart contracts using
AWD-LSTM, with pre-trained encoder inspired from natural language
processing,” IOP SciNotes, vol. 1, no. 3, p. 035002, 2020.

[155] T. H.-D. Huang, “Hunting the ethereum smart contract: Color-inspired
inspection of potential attacks,” arXiv preprint arXiv:1807.01868, 2018.

[156] O. Lutz, H. Chen, H. Fereidooni, C. Sendner, A. Dmitrienko, A. R.
Sadeghi, and F. Koushanfar, “ESCORT: Ethereum smart contracts vul-
nerability detection using deep neural network and transfer learning,”
arXiv preprint arXiv:2103.12607, 2021.

[157] W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer
smart contracts: A sequence learning approach to detecting security
threats,” arXiv preprint arXiv:1811.06632, 2018.

[158] J. Tian, W. Xing, and Z. Li, “Bvdetector: A program slice-based binary
code vulnerability intelligent detection system,” Information and Software
Technology, vol. 123, p. 106289, 2020.

[159] T. Le, T. Nguyen, T. Le, D. Phung, P. Montague, O. De Vel, and L. Qu,
“Maximal divergence sequential autoencoder for binary software vulner-
ability detection,” in International Conference on Learning Representations
(ICLR), 2018.

[160] Y. J. Lee, S.-H. Choi, C. Kim, S.-H. Lim, and K.-W. Park, “Learning
binary code with deep learning to detect software weakness,” in KSII
the 9th international conference on internet (ICONI) 2017 symposium, 2017.

[161] H. Hanif, M. H. N. M. Nasir, M. F. Ab Razak, A. Firdaus, and N. B. Anuar,
“The rise of software vulnerability: Taxonomy of software vulnerabilities
detection and machine learning approaches,” Journal of Network and
Computer Applications, vol. 179, p. 103009, 2021.

[162] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order matters:
semantic-aware neural networks for binary code similarity detection,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 01, 2020, pp. 1145–1152.

[163] Z. Liu, P. Qian, X. Wang, L. Zhu, Q. He, and S. Ji, “Smart contract
vulnerability detection: From pure neural network to interpretable
graph feature and expert pattern fusion,” arXiv preprint arXiv:2106.09282,
2021.

[164] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and X. Mao,
“Peculiar: Smart contract vulnerability detection based on crucial data
flow graph and pre-training techniques,” in the 32nd International Sym-
posium on Software Reliability Engineering, 2021.

130 BIBLIOGRAPHY

[165] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking smart con-
tracts with structural code embedding,” IEEE Transactions on Software
Engineering, 2020.

[166] S. Jeon, G. Lee, H. Kim, and S. S. Woo, “Smartcondetect: Highly accurate
smart contract code vulnerability detection mechanism using bert,” in
KDD Workshop on Programming Language Processing, 2021.

[167] H. Zhao, P. Su, Y. Wei, K. Gai, and M. Qiu, “Gan-enabled code em-
bedding for reentrant vulnerabilities detection,” in Knowledge Science,
Engineering and Management, 2021, pp. 585–597.

[168] Facebook, “Facebook press release,” 2021. [Online]. Available:
https://investor.fb.com/investor-news/

[169] Twitter, “Twitter about,” 2021. [Online]. Available: https://about.
twitter.com

[170] Coin Market Cap, “Hive price,” 2021. [Online]. Available: https:
//coinmarketcap.com/currencies/hive-blockchain/

[171] P. Baker, “Steem hard fork confiscates $6.3m, community immediately
takes it back,” 2020. [Online]. Available: https://www.coindesk.com/
steem-hard-fork-hive

[172] J. Redman, “Bitcoin fees tap $60 per transaction, users say fees restrict
adoption, others ’embrace’ the btc fee pump,” 2021. [Online]. Available:
https://news.bitcoin.com/

[173] PeakD, “Peakd,” 2021. [Online]. Available: https://peakd.com

[174] HiveBlog, “Hiveblog,” 2021. [Online]. Available: https://hive.blog

[175] J. Tigani and S. Naidu, Google BigQuery Analytics. John Wiley & Sons,
2014.

[176] Falcon Framework, “Falcon framework,” 2021. [Online]. Available:
https://falconframework.org/

[177] F. Gimian, “Choosing a fast python api framework,” 2018.
[Online]. Available: https://fgimian.github.io/blog/2018/05/17/
choosing-a-fast-python-api-framework/

[178] G. Csányi and B. Szendrői, “Structure of a large social network,” Physical
Review E, vol. 69, no. 3, p. 036131, 2004.

[179] D. Weisburd, “The law of crime concentration and the criminology of
place,” Criminology, vol. 53, no. 2, pp. 133–157, 2015.

[180] N. N. Martinez, Y. Lee, J. E. Eck, and S. O, “Ravenous wolves revisited:
a systematic review of offending concentration,” Crime Science, vol. 6,
no. 1, p. 10, 2017.

https://investor.fb.com/investor-news/
https://about.twitter.com
https://about.twitter.com
https://coinmarketcap.com/currencies/hive-blockchain/
https://coinmarketcap.com/currencies/hive-blockchain/
https://www.coindesk.com/steem-hard-fork-hive
https://www.coindesk.com/steem-hard-fork-hive
https://news.bitcoin.com/
https://peakd.com
https://hive.blog
https://falconframework.org/
https://fgimian.github.io/blog/2018/05/17/choosing-a-fast-python-api-framework/
https://fgimian.github.io/blog/2018/05/17/choosing-a-fast-python-api-framework/

BIBLIOGRAPHY 131

[181] Y. Lee, J. E. Eck, S. O, and N. N. Martinez, “How concentrated is crime
at places? A systematic review from 1970 to 2015,” Crime Science, vol. 6,
no. 1, p. 6, 2017.

[182] M. A. Tayebi, U. Glässer, M. A. Tayebi, and U. Glässer, Social network
analysis in predictive policing. Springer, 2016.

[183] A. G. Ferguson, Policing Predictive Policing. Washington University
Law Review, 2017, vol. 94, no. 5.

[184] K. J. Bowers and S. D. Johnson, “Who commits near repeats? a test of
the boost explanation,” Western Criminology Review, vol. 5, no. 3, 2004.

[185] S. D. Johnson, W. Bernasco, K. J. Bowers, H. Elffers, J. Ratcliffe,
G. Rengert, and M. Townsley, “Space–time patterns of risk: A cross
national assessment of residential burglary victimization,” Journal of
Quantitative Criminology, vol. 23, no. 3, pp. 201–219, 2007.

[186] O. Kounadi, A. Ristea, A. Araujo, and M. Leitner, “A systematic review
on spatial crime forecasting,” Crime Science, vol. 9, no. 1, p. 7, 2020.

[187] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

[188] H. Zhang, “The optimality of naive bayes,” in Proceedings of the 17th
International FLAIRS Conference (FLAIRS), 2004, pp. 562–567.

[189] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[190] C. D. Uchida, “Predictive Policing,” in Encyclopedia of Criminology and
Criminal Justice, G. Bruinsma and D. Weisburd, Eds. Springer, 2014, pp.
3871–3880.

[191] A. Meijer and M. Wessels, “Predictive Policing: Review of Benefits and
Drawbacks,” International Journal of Public Administration, vol. 42, no. 12,
pp. 1031–1039, 2019.

[192] J. H. Ratcliffe, “Advocate: Predictive Policing,” in Police Innovation:
Contrasting Perspectives, 2nd ed., D. Weisburd and A. A. Braga, Eds.
Cambridge: Cambridge University Press, 2019, pp. 347–365.

[193] R. Boba Santos, “Critic: Predictive Policing: Where’s the Evidence?” in
Police Innovation: Contrasting Perspectives, 2nd ed., D. Weisburd and A. A.
Braga, Eds. Cambridge University Press, 2019, pp. 366–398.

[194] Y.-S. Li and M.-L. Qi, “An approach for understanding offender modus
operandi to detect serial robbery crimes,” Journal of Computational Sci-
ence, vol. 36, p. 101024, 2019.

132 BIBLIOGRAPHY

[195] K. Davies and J. Woodhams, “The practice of crime linkage: A review
of the literature,” Journal of Investigative Psychology and Offender Profiling,
vol. 16, no. 3, pp. 169–200, 2019.

[196] J. Woodhams, C. R. Hollin, and R. Bull, “The psychology of linking
crimes: A review of the evidence,” Legal and Criminological Psychology,
vol. 12, no. 2, pp. 233–249, 2007.

[197] P. Stalidis, T. Semertzidis, and P. Daras, “Examining deep learning
architectures for crime classification and prediction,” Forecasting, vol. 3,
no. 4, pp. 741–762, 2021.

[198] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives
and methods in link prediction,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2010,
pp. 243–252.

[199] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using
supervised learning,” in Proceedings of the SIAM Data Mining Workshop
on Link Analysis, Counterterrorism and Security, 2006.

[200] M. A. Tayebi, M. Ester, U. Glässer, and P. L. Brantingham, “Spatially em-
bedded co-offence prediction using supervised learning,” in Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2014, p. 1789–1798.

[201] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for
sentence embeddings,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[202] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics,
2019, pp. 4171–4186.

[203] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[204] Y. Hao, X. Cao, Y. Fang, X. Xie, and S. Wang, “Inductive link prediction
for nodes having only attribute information,” in Proceedings of the 29th
International Joint Conferences on Artificial Intelligence (IJCAI), 2021, pp.
1209–1215.

[205] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol. 2, 2006, pp.
1735–1742.

BIBLIOGRAPHY 133

[206] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and Édouard Duchesnay, “Scikit-learn: Machine learning in python,”
Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.
[Online]. Available: http://jmlr.org/papers/v12/pedregosa11a.html

[207] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[208] A. Zhou, J. Yang, Y. Gao, T. Qiao, Y. Qi, X. Wang, Y. Chen, P. Dai, W. Zhao,
and C. Hu, “Brief industry paper: Optimizing memory efficiency of
graph neural networks on edge computing platforms,” in 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2021, pp. 445–448.

[209] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[210] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1–43, 2020.

[211] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks,” the
VLDB Endowment, vol. 4, no. 11, pp. 992–1003, 2011.

[212] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008.

[213] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[214] B. Mueller, “Smashing smart contracts for fun and real profit,” in 9th
annual HITB Security Conference, 2018, pp. 2–51.

[215] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Comput. Surv., vol. 51,
no. 3, 2018.

[216] J. Frizzo-Barker, P. A. Chow-White, P. R. Adams, J. Mentanko, D. Ha,
and S. Green, “Blockchain as a disruptive technology for business:
A systematic review,” International Journal of Information Management,
vol. 51, p. 102029, 2020.

[217] B. Bhushan, P. Sinha, K. M. Sagayam, and J. Andrew, “Untangling
blockchain technology: A survey on state of the art, security threats,
privacy services, applications and future research directions,” Computers
& Electrical Engineering, vol. 90, p. 106897, 2021.

http://jmlr.org/papers/v12/pedregosa11a.html

134 BIBLIOGRAPHY

[218] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintenance-related
concerns for post-deployed ethereum smart contract development: is-
sues, techniques, and future challenges,” Empirical Software Engineering,
vol. 26, no. 6, pp. 1–44, 2021.

[219] Y. Sun and J. Han, “Mining heterogeneous information networks: a
structural analysis approach,” Acm Sigkdd Explorations Newsletter, vol. 14,
no. 2, pp. 20–28, 2013.

[220] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[221] A. Duval and F. Malliaros, “Graphsvx: Shapley value explanations for
graph neural networks,” in European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML PKDD), 2021.

[222] F. Contro, M. Crosara, M. Ceccato, and M. Dalla Preda, “Ethersolve:
Computing an accurate control-flow graph from ethereum bytecode,” in
2021 IEEE/ACM 29th International Conference on Program Comprehension
(ICPC). IEEE, 2021, pp. 127–137.

[223] Crytic-compile, “Abstraction layer for smart contract build systems,”
https://github.com/crytic/crytic-compile, 2022.

[224] F. Contro, M. Crosara, and cmariano, “SeUniVr/EtherSolve: Version
used for ICPC-2021 paper,” Mar. 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.4607305

[225] L. S. Shapley, 17. A Value for n-Person Games. Princeton: Princeton
University Press, 2016, pp. 307–318. [Online]. Available: https:
//doi.org/10.1515/9781400881970-018

[226] S. Ramírez, “Fastapi framework, high performance, easy to learn, fast to
code, ready for production,” Berlin, Germany, 2022. [Online]. Available:
https://fastapi.tiangolo.com/

[227] Meta Platforms, Inc., “React: A javascript library for building user
interfaces,” 2022. [Online]. Available: https://reactjs.org/

[228] ApexCharts, “Apexcharts.js: Modern & interactive open-source charts,”
2022. [Online]. Available: https://apexcharts.com/

[229] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable repre-
sentation learning for heterogeneous networks,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017, pp. 135–144.

[230] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in hetero-
geneous information networks for representation learning,” in Proceed-
ings of the ACM on Conference on Information and Knowledge Management
(CIKM), 2017, pp. 1797–1806.

https://github.com/crytic/crytic-compile
https://doi.org/10.5281/zenodo.4607305
https://doi.org/10.5281/zenodo.4607305
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1515/9781400881970-018
https://fastapi.tiangolo.com/
https://reactjs.org/
https://apexcharts.com/

BIBLIOGRAPHY 135

[231] R. Aponte, R. A. Rossi, S. Guo, J. Hoffswell, N. Lipka, C. Xiao, G. Chan,
E. Koh, and N. Ahmed, “A hypergraph neural network framework
for learning hyperedge-dependent node embeddings,” arXiv preprint
arXiv:2212.14077, 2022.

[232] W. Huang, Y. Li, Y. Fang, J. Fan, and H. Yang, “Biane: Bipartite attributed
network embedding,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2020, pp.
149–158.

[233] H. Fan, F. Zhang, Y. Wei, Z. Li, C. Zou, Y. Gao, and Q. Dai, “Heteroge-
neous hypergraph variational autoencoder for link prediction,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp.
4125–4138, 2021.

[234] H. Chen, H. Yin, X. Sun, T. Chen, B. Gabrys, and K. Musial, “Multi-level
graph convolutional networks for cross-platform anchor link predic-
tion,” in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 1503–1511.

[235] C. Chen and Y.-Y. Liu, “A survey on hyperlink prediction,” arXiv preprint
arXiv:2207.02911, 2022.

	Abstract
	ZUSAMMENFASSUNG
	Acknowledgements
	General Introduction
	Overview of Graph Representation Learning
	General Motivation
	Research Objectives
	Thesis Outline
	List of Publications

	Background and Related Work
	Background
	Basics of Social Network Analysis
	Social Influence Analysis
	Community Detection
	Link Prediction

	Graph Embedding Neural Networks
	Fundamental Graph Embeddings
	Homogeneous Graph Neural Networks
	Heterogeneous Graph Neural Networks

	Preliminary of Blockchain-Related Social Networks
	Blockchain Smart Contracts and Their Security Issues

	Related Work
	Relevant Datasets
	Crime Investigation and Machine Learning Methods
	Crime Linkage
	Crime Prediction

	Code Representation and Machine Learning Techniques for Bug Detection in Smart Contracts
	Conventional Bug Detection Techniques
	Learning-Based Bug Detection Techniques
	Graph Embedding Neural Network Techniques

	SoChainDB Database
	Introduction
	Overview of Hive Blockchain
	Dataset Collections & API Service
	Pipeline
	SoChainDB's Public APIs and Homepage

	Use Cases
	Hive Ecosystem Overview
	Analysis of Hive Social Network
	Overall Analysis
	Social Network Analysis
	Comparison with Available Hive Statistics Analysis

	Splinterlands - A Hive-based decentralized card game
	NFTShowroom

	Link Prediction in Criminal Investigation
	Introduction
	Data Collection and Network Creation
	Burglary Dataset
	Generated Networks

	Link Prediction Methods
	Transductive Link Prediction
	Prediction by Transductive Algorithm

	Inductive Link Prediction
	Attribute-Oriented Encoder
	Structure-Oriented Encoder
	Alignment Mechanism
	Link Prediction

	Experimental Analysis
	Transductive Link Prediction Results
	Inductive Link Prediction Results
	Data Splitting
	Methods of Comparison
	Parameter Setting
	Results Discussion

	MANDO Framework
	Introduction
	Motivation and Problem Definition
	The MANDO Approach
	Overview
	Heterogeneous Contract Graph Generator
	Multi-Metapaths Extractor
	Multi-Level Graph Neural Networks
	Topological Graph Neural Network
	Node-Level Attention Heterogeneous Graph Neural Network
	Optimization for Detection

	Two-Phase Vulnerability Detector
	Phase 1: Coarse-Grained Detection
	Phase 2: Fine-Grained Detection

	Empirical Evaluation
	Datasets
	Comparison Methods
	Comparison to Graph-based neural network Methods
	Comparison with Conventional Detection Tools

	Evaluation Metrics
	Empirical Results
	Coarse-Grained Contract-Level Vulnerability Detection (RQ1)
	Fine-Grained Line-Level Vulnerability Detection (RQ2)

	MANDO-HGT Framework
	Introduction
	Motivation
	Approach
	Heterogeneous Contract Graph Generator
	Meta Relations Extractor
	Node Features Extractor
	MANDO-HGT Graph Neural Network
	Two-Phase Vulnerability Detector
	Phase 1: Coarse-Grained Detection
	Phase 2: Fine-Grained Detection

	Empirical Evaluation
	Dataset
	Evaluation Metrics
	Baselines and Parameter Settings
	Experimental Results
	Coarse-Grained Contract-Level Vulnerability Detection
	Fine-Grained Line-Level Vulnerability Detection

	Case Studies: Interpreting Vulnerability Prediction Results
	True positive cases
	True negative cases
	False positive cases
	False negative cases

	Limitations and Discussions

	MANDO-GURU Tool
	Introduction
	Usage
	Tool Design & Implementation
	Backend
	Heterogeneous Representation for the Generated Control-Flow Graphs and Call Graphs
	Fusion of Heterogeous Control-Flow Graphs and Heterogeous Call Graphs
	Node Feature Initialization
	Extraction of Custom Multi-Metapaths
	Heterogeneous Graph Neural Network
	Coarse-Grained Detection and Fine-Grained Detection

	RESTful APIs and Frontend

	Tool Validation
	Setup
	Empirical Results
	Contract-Level Vulnerability Detection
	Line-Level Vulnerabilty Detection

	Conclusion and Future Work
	Summary of Contributions
	Utilizing social network analysis to aid criminal investigations
	Detecting vulnerabilities in blockchain smart contracts

	Curriculum Vitae

